Stochastic simulation and Monte Carlo methods mathematical foundations of stochastic simulation

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Graham, Carl (VerfasserIn), Talay, Denis (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Berlin [u.a.] Springer 2013
Schriftenreihe:Stochastic modelling and applied probability 68
Schlagworte:
Online-Zugang:Inhaltstext
Inhaltsverzeichnis
Klappentext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000002cb4500
001 BV041108154
003 DE-604
005 20170809
007 t|
008 130626s2013 xx |||| 00||| eng d
016 7 |a 749533846  |2 DE-101 
020 |a 9783642393624  |9 978-3-642-39362-4 
035 |a (OCoLC)864489387 
035 |a (DE-599)DNB1035564386 
040 |a DE-604  |b ger 
041 0 |a eng 
049 |a DE-11  |a DE-824  |a DE-384  |a DE-188  |a DE-19  |a DE-83  |a DE-739  |a DE-634 
082 0 |a 518.282  |2 22/ger 
084 |a SK 820  |0 (DE-625)143258:  |2 rvk 
100 1 |a Graham, Carl  |e Verfasser  |4 aut 
245 1 0 |a Stochastic simulation and Monte Carlo methods  |b mathematical foundations of stochastic simulation  |c Carl Graham ; Denis Talay 
264 1 |a Berlin [u.a.]  |b Springer  |c 2013 
300 |a XVI, 260 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Stochastic modelling and applied probability  |v 68 
500 |a Literaturverz. S. 253 - 255 
650 0 7 |a Monte-Carlo-Simulation  |0 (DE-588)4240945-7  |2 gnd  |9 rswk-swf 
689 0 0 |a Monte-Carlo-Simulation  |0 (DE-588)4240945-7  |D s 
689 0 |5 DE-604 
700 1 |a Talay, Denis  |e Verfasser  |0 (DE-588)114468907  |4 aut 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-3-642-39363-1 
830 0 |a Stochastic modelling and applied probability  |v 68  |w (DE-604)BV019623501  |9 68 
856 4 2 |q text/html  |u http://deposit.dnb.de/cgi-bin/dokserv?id=4356891&prov=M&dok%5Fvar=1&dok%5Fext=htm  |3 Inhaltstext 
856 4 2 |m Digitalisierung UB Passau - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026084419&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
856 4 2 |m Digitalisierung UB Passau - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026084419&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA  |3 Klappentext 
943 1 |a oai:aleph.bib-bvb.de:BVB01-026084419 

Datensatz im Suchindex

_version_ 1819609914156253184
adam_text Contents Part I Principles of Monte Carlo Methods 1 Introduction .....................-,.......... 3 1.1 Why Use Probabilistic Models and Simulations? .......... 3 1.1.1 What Are the Reasons for Probabilistic Models? ...... 4 1.1.2 What Are the Objectives of Random Simulations? ..... 6 1.2 Organization of the Monograph ................... 9 2 Strong Law of Large Numbers and Monte Carlo Methods ...... 13 2.1 Strong Law of Large Numbers, Examples of Monte Carlo Methods 13 2.1.1 Strong Law of Large Numbers, Almost Sure Convergence . 13 2.1.2 Buffon s Needle ....................... 15 2.1.3 Neutron Transport Simulations ............... 15 2.1.4 Stochastic Numerical Methods for Partial Differential Equations .......................... 17 2.2 Simulation Algorithms for Simple Probability Distributions .... 18 2.2.1 Uniform Distributions .................... 19 2.2.2 Discrete Distributions .................... 20 2.2.3 Gaussian Distributions .................... 21 2.2.4 Cumulative Distribution Function Inversion, Exponential Distributions ......................... 22 2.2.5 Rejection Method ...................... 23 2.3 Discrete-Time Martingales, Proof of the S LLN ........... 25 2.3.1 Reminders on Conditional Expectation ........... 25 2.3.2 Martingales and Sub-martingales, Backward Martingales . 27 2.3.3 Proof of the Strong Law of Large Numbers ......... 30 2.4 Problems ............................... 33 3 Non-asymptotic Error Estimates for Monte Carlo Methods ..... 37 3.1 Convergence in Law and Characteristic Functions ......... 37 3.2 Central Limit Theorem ....................... 40 3.2.1 Asymptotic Confidence Intervals .............. 41 3.3 Berry-Esseen s Theorem ...................... 42 3.4 Bikelis Theorem .......................... 45 3.4.1 Absolute Confidence Intervals ................ 45 3.5 Concentration Inequalities ...................... 47 3.5.1 Logarithmic Sobolev Inequalities .............. 48 3.5.2 Concentration Inequalities, Absolute Confidence Intervals . 50 3.6 Elementary Variance Reduction Techniques ............ 54 3.6.1 Control Variate ........................ 54 3.6.2 Importance Sampling .................... 55 3.7 Problems ............................... 60 Part II Exact and Approximate Simulation of Markov Processes 4 Poisson Processes as Particular Markov Processes ........... 67 4.1 Quick Introduction to Markov Processes .............. 67 4.1.1 Some Issues in Markovian Modeling ............ 67 4.1.2 Rudiments on Processes, Sample Paths, and Laws ..... 68 4.2 Poisson Processes: Characterization, Properties ........... 69 4.2.1 Point Processes and Poisson Processes ........... 69 4.2.2 Simple and Strong Markov Property ............ 75 4.2.3 Superposition and Decomposition .............. 77 4.3 Simulation and Approximation ................... 80 4.3.1 Simulation of Inter-arrivals ................. 80 4.3.2 Simulation of Independent Poisson Processes ........ 81 4.3.3 Long Time or Large Intensity Limit, Applications ..... 82 4.4 Problems ............................... 85 5 Discrete-Space Markov Processes .................... 89 5.1 Characterization, Specification, Properties ............. 89 5.1.1 Measures, Functions, and Transition Matrices ....... 89 5.1.2 Simple and Strong Markov Property ............ 91 5.1.3 Semigroup, Infinitesimal Generator, and Evolution Law . . 95 5.2 Constructions, Existence, Simulation, Equations .......... 99 5.2.1 Fundamental Constructions ................. 99 5.2.2 Explosion or Existence for a Markov Process ........ 101 5.2.3 Fundamental Simulation, Fictitious Jump Method ..... 103 5.2.4 Kolmogorov Equations, Feynman— Кас Formula ...... 105 5.2.5 Generators and Semigroups in Bounded Operator Algebras 107 5.2.6 A Few Case Studies ..................... 112 5.3 Problems ............................... 115 6 Continuous-Space Markov Processes with Jumps ........... 121 6.1 Preliminaries ............................. 121 6.1.1 Measures, Functions, and Transition Kernels ........ 121 6.1.2 Markov Property, Finite-Dimensional Marginals ...... 123 6.1.3 Semigroup, Infinitesimal Generator ............. 125 6.2 Markov Processes Evolving Only by Isolated Jumps ........ 126 6.2.1 Semigroup, Infinitesimal Generator, and Evolution Law . . 126 6.2.2 Construction, Simulation, Existence ............. 130 6.2.3 Kolmogorov Equations, Feynman-Kac Formula, Bounded Generator Case ........................ 133 6.3 Markov Processes Following an Ordinary Differential Equation Between Jumps: PDMP ....................... 136 6.3.1 Sample Paths, Evolution, Integro-Differential Generator . . 136 6.3.2 Construction, Simulation, Existence ............. 141 6.3.3 Kolmogorov Equations, Feynman— Кас Formula ...... 144 6.3.4 Application to Kinetic Equations .............. 146 6.3.5 Further Extensions ...................... 149 6.4 Problems ............................... 151 7 Discretization of Stochastic Differential Equations .......... 155 7.1 Reminders on Itô s Stochastic Calculus ............... 155 7.1.1 Stochastic Integrals and Itô Processes ............ 155 7.1.2 Itô s Formula, Existence and Uniqueness of Solutions of Stochastic Differential Equations ............. 160 7.1.3 Markov Properties, Martingale Problems and Fokker- Planck Equations ...................... 162 7.2 Euler and Milstein Schemes ..................... 165 7.3 Moments of the Solution and of Its Approximations ........ 168 7.4 Convergence Rates in LP(Q) Norm and Almost Surely ...... 173 7.5 Monte Carlo Methods for Parabolic Partial Differential Equations . 176 7.5.1 The Principle of the Method ................. 176 7.5.2 Introduction of the Error Analysis .............. 177 7.6 Optimal Convergence Rate: The Talay—Tubaro Expansion ..... 180 7.7 Romberg-Richardson Extrapolation Methods ............ 185 7.8 Probabilistic Interpretation and Estimates for Parabolic Partial Differential Equations ........................ 186 7.9 Problems ............................... 191 Part III Variance Reduction, Girsanov s Theorem, and Stochastic Algorithms 8 Variance Reduction and Stochastic Differential Equations ...... 199 8.1 Preliminary Reminders on the Girsanov Theorem ......... 199 8.2 Control Variâtes Method ....................... 200 8.3 Variance Reduction for Sensitivity Analysis ............ 202 8.3.1 Differentiable Terminal Conditions ............. 202 8.3.2 Non-differentiable Terminal Conditions ........... 204 8.4 Importance Sampling Method .................... 206 8.5 Statistical Romberg Method ..................... 209 8.6 Problems ............................... 210 9 Stochastic Algorithms .......................... 213 9.1 Introduction ............................. 213 9.2 Study in an Idealized Framework .................. 214 9.2.1 Definitions .......................... 214 9.2.2 The Ordinary Differential Equation Method, Martingale Increments .......................... 216 9.2.3 Long-Time Behavior of the Algorithm ........... 217 9.3 Variance Reduction for Monte Carlo Methods ........... 221 9.3.1 Searching for an Importance Sampling .......... . 221 9.3.2 Variance Reduction and Stochastic Algorithms ....... 223 9.4 Problems ............................... 225 Appendix Solutions to Selected Problems .................231 References ...................................253 Index ......................................257 Stochastic Modelling and Applied Probability Carl Graham -DenisTalay Stochastic Simulation and Monte Carlo Methods Mathematical Foundations of Stochastic Simulation In various scientific and industrial fields, stochastic simulations are taking on a new importance. This is due to the increasing power of computers and practitioners aim to simulate more and more complex systems, and thus use random parameters as well as random noises to model the parametric uncertainties and the lack of knowledge on the physics of these systems. The error analysis of these computations is a highly complex mathematical undertaking. Approaching these issues, the authors present stochastic numerical methods and prove accurate convergence rate estimates in terms of their numerical parameters (number of simulations, time discretization steps). As a result, the book is a self-contained and rigorous study of the numerical methods within a theoretical framework. After briefly reviewing the basics, the authors first introduce fundamental notions in stochastic calculus and continuous-time martingale theory, then develop the analysis of pure-jump Markov processes, Poisson processes, and stochastic differential equations, in particular, they review the essential properties of Ito integrals and prove fundamental results on the probabilistic analysis of parabolic partial differential equations. These results in turn provide the basis for developing stochastic numerical methods, both from an algorithmic and theoretical point of view, The book combines advanced mathematical tools, theoretical analysis of stochastic numerical methods, and practical issues at a high level, so as to provide optimal results on the accuracy of Monte Carlo simulations of stochastic processes. It is intended for master and Ph.D. students in the field of stochastic processes and their numerical appli¬ cations, as well as for physicists, biologists, economists and other professionals working with stochastic simulations, who will benefit from the ability to reliably estimate and control the accuracy of their simulations.
any_adam_object 1
author Graham, Carl
Talay, Denis
author_GND (DE-588)114468907
author_facet Graham, Carl
Talay, Denis
author_role aut
aut
author_sort Graham, Carl
author_variant c g cg
d t dt
building Verbundindex
bvnumber BV041108154
classification_rvk SK 820
ctrlnum (OCoLC)864489387
(DE-599)DNB1035564386
dewey-full 518.282
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 518 - Numerical analysis
dewey-raw 518.282
dewey-search 518.282
dewey-sort 3518.282
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02089nam a22004212cb4500</leader><controlfield tag="001">BV041108154</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170809 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">130626s2013 xx |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">749533846</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642393624</subfield><subfield code="9">978-3-642-39362-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864489387</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1035564386</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518.282</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Graham, Carl</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic simulation and Monte Carlo methods</subfield><subfield code="b">mathematical foundations of stochastic simulation</subfield><subfield code="c">Carl Graham ; Denis Talay</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 260 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Stochastic modelling and applied probability</subfield><subfield code="v">68</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 253 - 255</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Monte-Carlo-Simulation</subfield><subfield code="0">(DE-588)4240945-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Monte-Carlo-Simulation</subfield><subfield code="0">(DE-588)4240945-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Talay, Denis</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)114468907</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-642-39363-1</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Stochastic modelling and applied probability</subfield><subfield code="v">68</subfield><subfield code="w">(DE-604)BV019623501</subfield><subfield code="9">68</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=4356891&amp;prov=M&amp;dok%5Fvar=1&amp;dok%5Fext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=026084419&amp;sequence=000003&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=026084419&amp;sequence=000004&amp;line_number=0002&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026084419</subfield></datafield></record></collection>
id DE-604.BV041108154
illustrated Not Illustrated
indexdate 2024-12-24T03:23:04Z
institution BVB
isbn 9783642393624
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-026084419
oclc_num 864489387
open_access_boolean
owner DE-11
DE-824
DE-384
DE-188
DE-19
DE-BY-UBM
DE-83
DE-739
DE-634
owner_facet DE-11
DE-824
DE-384
DE-188
DE-19
DE-BY-UBM
DE-83
DE-739
DE-634
physical XVI, 260 S.
publishDate 2013
publishDateSearch 2013
publishDateSort 2013
publisher Springer
record_format marc
series Stochastic modelling and applied probability
series2 Stochastic modelling and applied probability
spellingShingle Graham, Carl
Talay, Denis
Stochastic simulation and Monte Carlo methods mathematical foundations of stochastic simulation
Stochastic modelling and applied probability
Monte-Carlo-Simulation (DE-588)4240945-7 gnd
subject_GND (DE-588)4240945-7
title Stochastic simulation and Monte Carlo methods mathematical foundations of stochastic simulation
title_auth Stochastic simulation and Monte Carlo methods mathematical foundations of stochastic simulation
title_exact_search Stochastic simulation and Monte Carlo methods mathematical foundations of stochastic simulation
title_full Stochastic simulation and Monte Carlo methods mathematical foundations of stochastic simulation Carl Graham ; Denis Talay
title_fullStr Stochastic simulation and Monte Carlo methods mathematical foundations of stochastic simulation Carl Graham ; Denis Talay
title_full_unstemmed Stochastic simulation and Monte Carlo methods mathematical foundations of stochastic simulation Carl Graham ; Denis Talay
title_short Stochastic simulation and Monte Carlo methods
title_sort stochastic simulation and monte carlo methods mathematical foundations of stochastic simulation
title_sub mathematical foundations of stochastic simulation
topic Monte-Carlo-Simulation (DE-588)4240945-7 gnd
topic_facet Monte-Carlo-Simulation
url http://deposit.dnb.de/cgi-bin/dokserv?id=4356891&prov=M&dok%5Fvar=1&dok%5Fext=htm
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026084419&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026084419&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV019623501
work_keys_str_mv AT grahamcarl stochasticsimulationandmontecarlomethodsmathematicalfoundationsofstochasticsimulation
AT talaydenis stochasticsimulationandmontecarlomethodsmathematicalfoundationsofstochasticsimulation