Introduction to tensor products of banach spaces

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Ryan, Ray 1965- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: London [u.a.] Springer 2010
Schriftenreihe:Springer monographs in mathematics
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000008c 4500
001 BV040879695
003 DE-604
005 20220706
007 t|
008 130313s2010 gw |||| |||| 00||| eng d
020 |a 9781849968720  |9 978-1-84996-872-0 
035 |a (OCoLC)914675296 
035 |a (DE-599)BVBBV040879695 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a gw  |c DE 
049 |a DE-188  |a DE-739 
050 0 |a QA322.2 
082 0 |a 515.732 
084 |a SK 600  |0 (DE-625)143248:  |2 rvk 
084 |a 17,1  |2 ssgn 
100 1 |a Ryan, Ray  |d 1965-  |e Verfasser  |0 (DE-588)136727549  |4 aut 
245 1 0 |a Introduction to tensor products of banach spaces  |c Raymond A. Ryan 
264 1 |a London [u.a.]  |b Springer  |c 2010 
300 |a XIV, 225 S.  |b Diagramme 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Springer monographs in mathematics 
650 4 |a Banach-Raum - Tensorprodukt 
650 4 |a Banach spaces 
650 4 |a Tensor products 
650 0 7 |a Banach-Raum  |0 (DE-588)4004402-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Tensorprodukt  |0 (DE-588)4059478-6  |2 gnd  |9 rswk-swf 
689 0 0 |a Banach-Raum  |0 (DE-588)4004402-6  |D s 
689 0 1 |a Tensorprodukt  |0 (DE-588)4059478-6  |D s 
689 0 |5 DE-604 
856 4 2 |m Digitalisierung UB Passau - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025859491&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-025859491 

Datensatz im Suchindex

_version_ 1819724254893047808
adam_text Contents 1 Tensor Products........................................................................... 1.1 1.2 1.3 1.4 1.5 1.6 2 The Projective Norm ................................................................... The Dual Space of X®VY............................................................. L^^^^X and the Bochner Integral......................................... Li-spaces....................................................................................... Rademacher Techniques............................................................... Nuclear Bilinear Forms and Operators..................................... Exercises......................................................................................... 15 22 25 30 32 39 42 The Injective Tensor Product................................................... 45 The Injective Norm....................................................................... C(K) and Loo-spaces................................................................... Li(ß)®cX and the Pettis Integral............................................. The Dual Space of X®eY........................................................... Integral Operators......................................................................... Exercises......................................................................................... 45 49 51 57 62 68 The Approximation Property................................................... 71 The Approximation Property..................................................... Reflexivity of Tensor Products................................................... Tensor Product Bases................................................................... Exercises......................................................................................... 71 82 87 91 3.1 3.2 3.3 3.4 3.5 3.6 4 4.1 4.2 4.3 4.4 5 1 1 5 7 9 10 12 The Projective Tensor Product................................................ 15 2.1 2.2 2.3 2.4 2.5 2.6 2.7 3 Tensor Products of Vector Spaces............................................... Tensor Products and Linearization............................................. Tensors as Linear Mappings or Bilinear Forms ....................... Tensor and Trace Duality............................................................. Examples and Applications......................................................... Exercises......................................................................................... The Radon-Nikodým Property................................................ 93 5.1 5.2 5.3 Vector Measures and the Radon-Nikodým Property............... 93 Tensor Products and Vector Measures......................................... 103 Operators on C{K} Spaces ........................................................... 108 xiv Contents 5.4 5.5 5.6 6 The Chevet-Saphar Tensor Products.......................................127 6.1 6.2 6.3 6.4 6.5 7 Operators on Li (μ) Spaces ........................................................... 114 The Principle of Local Reflexivity............................................... 122 Exercises........................................................................................... 125 Tensor Norms................................................................................... 127 The Chevet-Saphar Tensor Norms............................................... 133 p-summing Operators..................................................................... 140 Grothendieck’s Inequality............................................................... 152 Exercises........................................................................................... 157 Tensor Norms................................................................................ 159 7.1 The Dual Norm............................................................................... 159 7.2 Injective and Projective Associates............................................. 165 7.3 The Chevet-Saphar Dual Norms and p-integral Operators ... 170 7.4 The Hilbertian Tensor Norm.......................................................... 176 7.5 Exercises............................................................................................ 184 8 Operator Ideals................................................................................ 187 8.1 The Forms and Operators Associated with a Tensor Norm ... 187 8.2 Operator Ideals................................................................................ 194 8.3 Exercises............................................... 198 A Suggestions for Further Reading................................................ 201 В Summability in Banach Spaces .................................................. 205 C Spaces of Measures........................................................................ 211 References............................................................................................... 219 Index........................................................................................................ 223
any_adam_object 1
author Ryan, Ray 1965-
author_GND (DE-588)136727549
author_facet Ryan, Ray 1965-
author_role aut
author_sort Ryan, Ray 1965-
author_variant r r rr
building Verbundindex
bvnumber BV040879695
callnumber-first Q - Science
callnumber-label QA322
callnumber-raw QA322.2
callnumber-search QA322.2
callnumber-sort QA 3322.2
callnumber-subject QA - Mathematics
classification_rvk SK 600
ctrlnum (OCoLC)914675296
(DE-599)BVBBV040879695
dewey-full 515.732
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515.732
dewey-search 515.732
dewey-sort 3515.732
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01584nam a22004338c 4500</leader><controlfield tag="001">BV040879695</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220706 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">130313s2010 gw |||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781849968720</subfield><subfield code="9">978-1-84996-872-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)914675296</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040879695</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-188</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA322.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.732</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ryan, Ray</subfield><subfield code="d">1965-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)136727549</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to tensor products of banach spaces</subfield><subfield code="c">Raymond A. Ryan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 225 S.</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer monographs in mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Banach-Raum - Tensorprodukt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Banach spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tensor products</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Banach-Raum</subfield><subfield code="0">(DE-588)4004402-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Tensorprodukt</subfield><subfield code="0">(DE-588)4059478-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Banach-Raum</subfield><subfield code="0">(DE-588)4004402-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Tensorprodukt</subfield><subfield code="0">(DE-588)4059478-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=025859491&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025859491</subfield></datafield></record></collection>
id DE-604.BV040879695
illustrated Not Illustrated
indexdate 2024-12-24T03:10:48Z
institution BVB
isbn 9781849968720
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-025859491
oclc_num 914675296
open_access_boolean
owner DE-188
DE-739
owner_facet DE-188
DE-739
physical XIV, 225 S. Diagramme
publishDate 2010
publishDateSearch 2010
publishDateSort 2010
publisher Springer
record_format marc
series2 Springer monographs in mathematics
spellingShingle Ryan, Ray 1965-
Introduction to tensor products of banach spaces
Banach-Raum - Tensorprodukt
Banach spaces
Tensor products
Banach-Raum (DE-588)4004402-6 gnd
Tensorprodukt (DE-588)4059478-6 gnd
subject_GND (DE-588)4004402-6
(DE-588)4059478-6
title Introduction to tensor products of banach spaces
title_auth Introduction to tensor products of banach spaces
title_exact_search Introduction to tensor products of banach spaces
title_full Introduction to tensor products of banach spaces Raymond A. Ryan
title_fullStr Introduction to tensor products of banach spaces Raymond A. Ryan
title_full_unstemmed Introduction to tensor products of banach spaces Raymond A. Ryan
title_short Introduction to tensor products of banach spaces
title_sort introduction to tensor products of banach spaces
topic Banach-Raum - Tensorprodukt
Banach spaces
Tensor products
Banach-Raum (DE-588)4004402-6 gnd
Tensorprodukt (DE-588)4059478-6 gnd
topic_facet Banach-Raum - Tensorprodukt
Banach spaces
Tensor products
Banach-Raum
Tensorprodukt
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025859491&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT ryanray introductiontotensorproductsofbanachspaces