Iterative splitting methods for differential equations

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Geiser, Jürgen (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Boca Raton CRC Press 2011
Schriftenreihe:Chapman & Hall/CRC numerical analysis and scientific computing
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV040793514
003 DE-604
005 20130708
007 t|
008 130304s2011 xxud||| |||| 00||| eng d
010 |a 2011026633 
020 |a 9781439869826  |c hardback : alk. paper  |9 978-1-439-86982-6 
035 |a (OCoLC)914643239 
035 |a (DE-599)BVBBV040793514 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
044 |a xxu  |c US 
049 |a DE-83 
050 0 |a QA377.3 
082 0 |a 518/.26 
084 |a 65L12  |2 msc 
084 |a 65M55  |2 msc 
100 1 |a Geiser, Jürgen  |e Verfasser  |0 (DE-588)128742402  |4 aut 
245 1 0 |a Iterative splitting methods for differential equations  |c Juergen Geiser 
264 1 |a Boca Raton  |b CRC Press  |c 2011 
300 |a XXIII, 303 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Chapman & Hall/CRC numerical analysis and scientific computing 
500 |a Includes bibliographical references (p. 285-300) and index 
650 4 |a Evolution equations  |x Numerical solutions 
650 4 |a Iterative methods (Mathematics) 
650 0 7 |a Iteration  |0 (DE-588)4123457-1  |2 gnd  |9 rswk-swf 
689 0 0 |a Iteration  |0 (DE-588)4123457-1  |D s 
689 0 |5 DE-604 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025773764&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-025773764 

Datensatz im Suchindex

_version_ 1819684380303425536
adam_text Titel: Iterative splitting methods for differential equations Autor: Geiser, Jürgen Jahr: 2011 Iterative Splitting Methods for Differential Equations Juergen Geiser C) CRC Press J Taylor Francis Croup Boca Raton London New York CRC Press is an imprint of the Taylor fit Francis Group, an informa business A CHAPMAN HALL BOOK Contents Preface vii Introduction 1 1 Model Problems 7 1.1 Related Models for Decomposition 8 1.2 Examples in Real-Life Applications 9 1.2.1 Waste Disposal 9 1.2.2 Elastic Wave Propagation 11 1.2.3 Deposition Models: CVD (Chemical Vapor Deposition) Processes 13 1.2.3.1 Standard Transport Model 14 1.2.3.2 Flow Field 16 1.2.3.3 Multiphase Model: Mobile and Immobile Zones 18 1.2.4 Navier-Stokes Molecular Dynamics: Coupling Continu¬ ous and Discrete Problems 20 1.2.4.1 Mathematical Model 21 2 Iterative Decomposition of Ordinary Differential Equations 25 2.1 Historical Overview 25 2.2 Decomposition Ideas 26 2.2.1 Physical Decomposition 27 2.2.1.1 Direct Decoupling Method 27 2.2.1.2 Decoupling Method Based on Numerical Meth¬ ods 28 2.2.2 Mathematical Decomposition 29 2.3 Introduction to Classical Splitting Methods 30 2.3.1 Classical Formulation of Splitting Methods 31. 2.3.2 Sequential Splitting Method 31 2.3.3 Symmetrical Weighted Sequential Splitting Methods . 33 2.3.4 Strang-Marchuk Splitting Method 34 2.3.5 Higher-Order Splitting Methods 35 2.4 Iterative Splitting Method 37 2.4.0.1 Iterative Splitting Method (Algorithm) . . . 39 2.5 Consistency Analysis of the Iterative Splitting Method . . . 40 ix X 40 2.5.1 Local Error Analysis - 2.5.2 Increasing the Order of Accuracy with Improved Initial Functions and Consistency Analysis 2.6 Stability Analysis of the Iterative Splitting Method for Bounded Operators 2.6.1 Time Integration Methods 48 2.6.1.1 Case 1: Alternating A and B ^8 2.6.1.2 Case 2: A is Stiff and B is Nonstiff 50 2.6.2 Time Discretization Methods 52 2.6.2.1 Runge-Kutta Methods 53 2.6.2.2 BDF Methods 54 3 Decomposition Methods for Partial Differential Equations 59 3.1 Iterative Schemes for Unbounded Operators f O 3.1.1 Iterative Splitting Schemes ( 1 3.1.2 One-Stage Iterative Splitting Method for ^4-bounded Operators 62 3.1.2.1 Consistency Analysis ( 3 3.1.2.2 Stability Analysis OG 3.1.3 Two-Stage Iterative Schemes for Operators Generating an Analytical Semigroup t 7 3.1.3.1 Consistency analysis ( 8 3.1.3.2 Stability Analysis 72 3.1.4 Some Examples for One-Stage and Two-Stage Iterative Operator Splitting Schemes 73 3.1.4.1 One-Stage Iterative Scheme 73 3.1.4.2 Two-Stage Iterative Scheme 75 4 Computation of the Iterative Splitting Methods: Algorithmic Part 77 4.1 Exponential Runge-Kutta Methods to Compute Iterative Split¬ ting Schemes 77 4.2 Matrix Exponentials to Compute Iterative Splitting Schemes 79 4.2.1 Derivation of the Formula ,S() 4.3 Algorithms ,Xl 4.3.1 Two-Side Scheme H2 4.3.2 One-Side Scheme (Alternative Notation with Commu¬ tators) 32 5 Extensions of Iterative Splitting Schemes 85 5.1 Embedded Spatial Discretization Methods SO 5.1.1 Balancing of Time and Spatial Discretization 5.1.2 Spatial Discretization Schemes with Dimensional Splitting 87 5.1.2.1 The Lax-Wendroff Scheme in One Dimension 87 xi 5.1.2.2 Generalization to Two Dimensions 90 5.1.2.3 Dimensional Splitting 91 5.1.2.4 Advection-Diffusion Splitting 92 5.2 Domain Decomposition Methods Based on Iterative Operator Splitting Methods 93 5.2.1 Combined Time-Space Iterative Splitting Method . . . 93 5.2.2 Nonoverlapping Time-Space Iterative Splitting Method 95 5.2.3 Overlapping Time-Space Iterative Splitting Method . 96 5.2.4 Error Analysis and Convergence of Combined Method 97 5.3 Successive Approximation for Time-Dependent Operators . . 101 5.3.1 Algorithm for Successive Approximation 102 Numerical Experiments 105 6.1 Introduction 105 6.2 Benchmark Problems 1: Introduction 108 6.2.1 Introduction Problem 1: Starting Conditions 108 6.2.2 Introduction Problem 2: Stiffness of Matrices 112 6.2.3 Introduction Problem 3: Nonsplitting and Splitting . . 115 6.2.4 Introduction Problem 4: System of ODEs with Stiff and Nonstiff Cases 117 6.2.4.1 First Experiment: Linear ODE with Nonstiff Parameters 118 6.2.4.2 Second Experiment: Linear ODE with Stiff Parameters 121 6.2.5 Introduction Problem 5: Linear Partial Differential Equation 122 6.2.6 Introduction Problem 6: Nonlinear Ordinary Differen¬ tial Equation 124 6.2.7 Introduction Problem 7: Coupling Convection-Diffusion and Reaction Equations with Separate Codes 126 6.2.7.1 First Experiment: Linear Reaction 128 6.2.7.2 Second Experiment: Nonlinear Reaction . . . 129 6.3 Benchmark Problems 2: Comparison with Standard Splitting- Methods 130 6.3.1 Comparison Problem 1: Iterative Splitting Method with Improved Time Discretization Methods 130 6.3.1.1 First Experiment: Heat Equation 131 6.3.1.2 Secotid Experiment: Anisotropic Equation with Time-Dependent Reaction 133 6.3.2 Comparison Problem 2: Iterative Splitting Method Com¬ pared to Standard Splitting Methods 138 6.3.2.1 First Experiment: Convection-Diffusion Equa¬ tion Split into its Spatial Dimensions .... 139 xii 6.3.2.2 Second Experiment: Convection-Diffusion Equa¬ tion Split into Operators 144 6.4 Benchmark Problems 3: Extensions to Iterative Splitting Methods 149 6.4.1 Extension Problem 1: Spatial Decomposition Methods (Clas¬ sical and Iterative Splitting Schemes) 149 6.4.1.1 First Experiment: One-Dimensional Convection- Diffusion-Reaction Equation 150 6.4.1.2 Second Experiment: Two-Dimensional Convection- Diffusion-Reaction Equation 154 6.4.1.3 Third Experiment: Three-Dimensional Convection- Diffusion-Reaction Equation 155 6.4.1.4 Fourth Experiment: Time-Dependent Diffu¬ sion Equation 157 6.4.2 Extension Problem 2: Hyperbolic Equations 159 6.4.2.1 First Experiment: Elastic Wave Propagation with Noniterative Splitting Methods 160 6.4.2.2 Second Experiment: Elastic Wave Propaga¬ tion with Iterative Splitting Methods .... 170 6.4.3 Extension Problem 3: Nonlinear Partial Differential Equa¬ tions 174 6.4.3.1 First Experiment: Burgers Equation 174 6.4.3.2 Second Experiment: Mixed Convection-Diffusion and Burgers Equation 177 6.4.3.3 Third Experiment: Momentum Equation (Molec¬ ular Flow) 179 6.4.4 Extension Problem 4: Coupled Equations 186 6.4.5 First Example: Matrix Problem 186 6.4.6 Second Experiment: 10 x 10 Matrix 186 6.4.7 Third Example: Commutator Problem 187 6.4.8 Two-Phase Example 189 6.5 Real-Life Applications 202 6.5.1 Waste Disposal: Transport and Reaction of Radioactive Contaminants 202 6.5.1.1 Two-Dimensional Model of Waste Disposal . 203 6.5.1.2 Three-Dimensional Model of Waste Disposal 205 6.5.2 Elastic Wave Propagation 209 6.5.2.1 Real-Life Application of Elastic Wave Propa¬ gation 209 6.5.2.2 Basic Numerical Methods 209 6.5.2.3 Fourth-Order Splitting Method 211 6.5.2.4 Initial Values and Boundary Conditions . . . 212 6.5.2.5 Test Example of the 2D Wave Equation .. . 212 6.5.2.6 Singular Forcing Terms 213 6.5.2.7 Computational Cost of the Splitting Method 217 i i xiii 6.5.2.8 A Three-Dimensional Splitting Method ... 217 6.5.2.9 Test Example of the 3D Wave Equation .. . 219 6.5.3 CVD Apparatus: Optimization of a Deposition Problem 221 6.5.3.1 Mathematical Model 223 6.5.3.2 Parameters of the Two-Dimensional Simula¬ tions 225 6.5.3.3 Experiments with the Plasma Reactor (Two- Dimensional) 227 6.5.3.4 Parameters of the Three-Dimensional Simula¬ tions 239 6.5.3.5 Experiments with the Plasma Reactor (Three- Dimensional) 241 6.5.4 Complex Flow Phenomena: Navier-Stokes and Molecu¬ lar Dynamics 246 6.5.4.1 Mathematical Model 246 6.5.4.2 Implicit Dual-Time Stepping Method for Time- Dependent Flows 248 6.5.4.3 Spatial Discretization of Equations for Micro- and Macroscales 248 6.5.4.4 Dual-Time Stepping Method 249 6.5.4.5 Time-Dependent Channel Flow Simulation . 249 6.5.4.6 Numerical Experiments: Splitting Methods for Coupled Micro-Macro System of Equations . 250 6.6 Conclusion to Numerical Experiments: Discussion of Some Delicate Problems 256 7 Summary and Perspectives 259 8 Software Tools 261 8.1 Software Package Unstructured Grids (UG) 261 8.1.1 Rough Structuring of the Software Packages 261 8.1.2 UG Software Toolbox 262 8.1.3 UG Concept 263 8.1.4 Software Package d3f 265 8.1.5 Equations in d3f 265 8.1.6 Structure of d3f 266 8.2 Software Package r3t 267 8.2.1 Equation in r3t 267 8.2.2 Taskofr3t 267 8.2.3 Conception of r3t 268 8.2.4 Application of r3t 269 8.2.5 Coupling Concept of r3t 270 8.3 Solving PDEs Using FIDOS 270 8.3.1 PDEs Treated 271 xiv 8.3.1.1 Wave Equation 271 8.3.1.2 Viscous Burgers Equation 272 8.3.1.3 Mixed Convection-Diffusion and Burgers Equation 272 8.3.1.4 Momentum Equation 272 8.3.1.5 Diffusion Equation 273 8.3.2 Methods 273 8.3.2.1 ADI Method 273 8.3.2.2 LOD Method 274 8.3.3 Iterative Operator Splitting Methods 274 8.3.3.1 Standard IOS Method 275 8.3.3.2 Coupled 77-IOS Method 275 8.3.4 Eigenvalue Methods 275 8.3.5 Numerical Examples 276 Appendix 281 List of Abbreviations 281 Symbols 282 General Notations 284 Bibliography 285 Index 301
any_adam_object 1
author Geiser, Jürgen
author_GND (DE-588)128742402
author_facet Geiser, Jürgen
author_role aut
author_sort Geiser, Jürgen
author_variant j g jg
building Verbundindex
bvnumber BV040793514
callnumber-first Q - Science
callnumber-label QA377
callnumber-raw QA377.3
callnumber-search QA377.3
callnumber-sort QA 3377.3
callnumber-subject QA - Mathematics
ctrlnum (OCoLC)914643239
(DE-599)BVBBV040793514
dewey-full 518/.26
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 518 - Numerical analysis
dewey-raw 518/.26
dewey-search 518/.26
dewey-sort 3518 226
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01562nam a2200421 c 4500</leader><controlfield tag="001">BV040793514</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20130708 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">130304s2011 xxud||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2011026633</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781439869826</subfield><subfield code="c">hardback : alk. paper</subfield><subfield code="9">978-1-439-86982-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)914643239</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040793514</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA377.3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518/.26</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">65L12</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">65M55</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Geiser, Jürgen</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)128742402</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Iterative splitting methods for differential equations</subfield><subfield code="c">Juergen Geiser</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIII, 303 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Chapman &amp; Hall/CRC numerical analysis and scientific computing</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 285-300) and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evolution equations</subfield><subfield code="x">Numerical solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iterative methods (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Iteration</subfield><subfield code="0">(DE-588)4123457-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Iteration</subfield><subfield code="0">(DE-588)4123457-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=025773764&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025773764</subfield></datafield></record></collection>
id DE-604.BV040793514
illustrated Illustrated
indexdate 2024-12-24T03:08:56Z
institution BVB
isbn 9781439869826
language English
lccn 2011026633
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-025773764
oclc_num 914643239
open_access_boolean
owner DE-83
owner_facet DE-83
physical XXIII, 303 S. graph. Darst.
publishDate 2011
publishDateSearch 2011
publishDateSort 2011
publisher CRC Press
record_format marc
series2 Chapman & Hall/CRC numerical analysis and scientific computing
spellingShingle Geiser, Jürgen
Iterative splitting methods for differential equations
Evolution equations Numerical solutions
Iterative methods (Mathematics)
Iteration (DE-588)4123457-1 gnd
subject_GND (DE-588)4123457-1
title Iterative splitting methods for differential equations
title_auth Iterative splitting methods for differential equations
title_exact_search Iterative splitting methods for differential equations
title_full Iterative splitting methods for differential equations Juergen Geiser
title_fullStr Iterative splitting methods for differential equations Juergen Geiser
title_full_unstemmed Iterative splitting methods for differential equations Juergen Geiser
title_short Iterative splitting methods for differential equations
title_sort iterative splitting methods for differential equations
topic Evolution equations Numerical solutions
Iterative methods (Mathematics)
Iteration (DE-588)4123457-1 gnd
topic_facet Evolution equations Numerical solutions
Iterative methods (Mathematics)
Iteration
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025773764&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT geiserjurgen iterativesplittingmethodsfordifferentialequations