Dualities and representations of Lie superalgebras

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cheng, Shun-Jen 1963- (VerfasserIn), Wang, Weiqiang 1970- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Providence, Rhode Island American Mathematical Society 2012
Schriftenreihe:Graduate studies in mathematics 144
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV040657445
003 DE-604
005 20210118
007 t|
008 130108s2012 xxu |||| 00||| eng d
010 |a 2012031989 
020 |a 9780821891186  |c alk. paper  |9 978-0-8218-9118-6 
035 |a (OCoLC)828788706 
035 |a (DE-599)BVBBV040657445 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
044 |a xxu  |c US 
049 |a DE-29T  |a DE-19  |a DE-355  |a DE-11 
050 0 |a QA252.3 
082 0 |a 512/.482 
084 |a SK 340  |0 (DE-625)143232:  |2 rvk 
100 1 |a Cheng, Shun-Jen  |d 1963-  |e Verfasser  |0 (DE-588)1033248436  |4 aut 
245 1 0 |a Dualities and representations of Lie superalgebras  |c Shun-Jen Cheng, Weiqiang Wang 
264 1 |a Providence, Rhode Island  |b American Mathematical Society  |c 2012 
300 |a XVII, 302 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Graduate studies in mathematics  |v 144 
650 4 |a Lie superalgebras 
650 4 |a Duality theory (Mathematics) 
650 7 |a Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Representations, algebraic theory (weights)  |2 msc 
650 7 |a Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Simple, semisimple, reductive (super)algebras  |2 msc 
650 0 7 |a Dualitätstheorie  |0 (DE-588)4150801-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Lie-Superalgebra  |0 (DE-588)4304027-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Mathematik  |0 (DE-588)4037944-9  |2 gnd  |9 rswk-swf 
689 0 0 |a Lie-Superalgebra  |0 (DE-588)4304027-5  |D s 
689 0 1 |a Dualitätstheorie  |0 (DE-588)4150801-4  |D s 
689 0 2 |a Mathematik  |0 (DE-588)4037944-9  |D s 
689 0 |5 DE-604 
700 1 |a Wang, Weiqiang  |d 1970-  |e Verfasser  |0 (DE-588)1033248576  |4 aut 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-0-8218-9447-7 
830 0 |a Graduate studies in mathematics  |v 144  |w (DE-604)BV009739289  |9 144 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025484266&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-025484266 

Datensatz im Suchindex

DE-19_call_number 1601/SK 340 C518
DE-19_location 95
DE-BY-UBM_katkey 4749397
DE-BY-UBM_media_number 41620566700012
DE-BY-UBR_call_number 80/SK 340 C518
DE-BY-UBR_katkey 5260841
DE-BY-UBR_location 80
DE-BY-UBR_media_number 069039562909
_version_ 1823055218472910848
adam_text Titel: Dualities and representations of Lie superalgebras Autor: Cheng, Shun-Jen Jahr: 2012 Contents Preface xiii Chapter 1. Lie superalgebra ABC 1 §1.1. Lie superalgebras: Definitions and examples 1 1.1.1. Basic definitions 2 1.1.2. The general and special linear Lie superalgebras 4 1.1.3. The ortho-symplectic Lie superalgebras 6 1.1.4. The queer Lie superalgebras 8 1.1.5. The periplectic and exceptional Lie superalgebras 9 1.1.6. The Cartan series 10 1.1.7. The classification theorem 12 §1.2. Structures of classical Lie superalgebras 13 1.2.1. A basic structure theorem 13 1.2.2. Invariant bilinear forms for 0 1 and 05p 16 1.2.3. Root system and Weyl group for gl(m|n) 16 1.2.4. Root system and Weyl group for spo(2m 2n+ 1) 17 1.2.5. Root system and Weyl group for spo (2m |2n) 17 1.2.6. Root system and odd invariant form for q («) 18 §1.3. Non-conjugate positive systems and odd reflections 19 1.3.1. Positive systems and fundamental systems 19 1.3.2. Positive and fundamental systems for gi(m|«) 21 1.3.3. Positive and fundamental systems for spo(2m|2n+1) 22 1.3.4. Positive and fundamental systems for spo(2m|2n) 23 1.3.5. Conjugacy classes of fundamental systems 25 §1.4. Odd and real reflections 26 1.4.1. A fundamental lemma 26 vii Contents viii 1.4.2. Odd reflections 4/ 1.4.3. Real reflections 28 1.4.4. Reflections and fundamental systems 28 1.4.5. Examples 30 §1.5. Highest weight theory 31 1.5.1. The Poincare-Birkhoff-Witt (PBW) Theorem 31 1.5.2. Representations of solvable Lie superalgebras 32 1.5.3. Highest weight theory for basic Lie superalgebras 33 1.5.4. Highest weight theory for q(n) 35 §1.6. Exercises 37 Notes 40 Chapter 2. Finite-dimensional modules 43 §2.1. Classification of finite-dimensional simple modules 43 2.1.1. Finite-dimensional simple modules of g[(m|n) 43 2.1.2. Finite-dimensional simple modules of spo(2m|2) 45 2.1.3. A virtual character formula 45 2.1.4. Finite-dimensional simple modules of spo(2m(277 + 1) 47 2.1.5. Finite-dimensional simple modules of spo(2m|2/i) 50 2.1.6. Finite-dimensional simple modules of q (77) 53 §2.2. Harish-Chandra homomorphism and linkage 55 2.2.1. Supersymmetrization 55 2.2.2. Central characters 56 2.2.3. Harish-Chandra homomorphism for basic Lie superalgebras 57 2.2.4. Invariant polynomials for gl and osp 59 2.2.5. Image of Harish-Chandra homomorphism for gl and osp 62 2.2.6. Linkage for gl and osp 65 2.2.7. Typical finite-dimensional irreducible characters 68 §2.3. Harish-Chandra homomorphism and linkage for q (77) 69 2.3.1. Central characters for q(/7) 70 2.3.2. Harish-Chandra homomorphism for q (77) 70 2.3.3. Linkage for q (77) 74 2.3.4. Typical finite-dimensional characters of q (77 ) 76 §2.4. Extremal weights of finite-dimensional simple modules 77 2.4.1. Extremal weights for Ql(m n) 11 2.4.2. Extremal weights for spo(2777|2/7 + 1) 80 2.4.3. Extremal weights for spo(2777|2/7) 82 §2.5. Exercises 85 Notes 89 Chapter 3. Schur duality 91 Contents IX §3.1. Generalities for associative superalgebras 91 3.1.1. Classification of simple superalgebras 92 3.1.2. Wedderburn Theorem and Schur’s Lemma 94 3.1.3. Double centralizer property for superalgebras 95 3.1.4. Split conjugacy classes in a finite supergroup 96 §3.2. Schur-Sergeev duality of type A 98 3.2.1. Schur-Sergeev duality, I 98 3.2.2. Schur-Sergeev duality, II 100 3.2.3. The character formula 104 3.2.4. The classical Schur duality 105 3.2.5. Degree of atypicality of X : 106 3.2.6. Category of polynomial modules 108 §3.3. Representation theory of the algebra !K„ 109 3.3.1. A double cover 110 3.3.2. Split conjugacy classes in B n 111 3.3.3. A ring structure on R~ 114 3.3.4. The characteristic map 116 3.3.5. The basic spin module 118 3.3.6. The irreducible characters 119 §3.4. Schur-Sergeev duality for q(n) 121 3.4.1. A double centralizer property 121 3.4.2. The Sergeev duality 123 3.4.3. The irreducible character formula 125 §3.5. Exercises 125 Notes 128 Chapter 4. Classical invariant theory 131 §4.1. FFT for the general linear Lie group 131 4.1.1. General invariant theory 132 4.1.2. Tensor and multilinear FFT for GL(V) 133 4.1.3. Formulation of the polynomial FFT for GL(V) 134 4.1.4. Polarization and restitution 135 §4.2. Polynomial FFT for classical groups 137 4.2.1. A reduction theorem of Weyl 137 4.2.2. The symplectic and orthogonal groups 139 4.2.3. Formulation of the polynomial FFT 140 4.2.4. From basic to general polynomial FFT 141 4.2.5. The basic case 142 §4.3. Tensor and supersymmetric FFT for classical groups 145 4.3.1. Tensor FFT for classical groups 145 4.3.2. From tensor FFT to supersymmetric FFT 147 x Contents §4.4. Exercises 149 Notes 1^0 Chapter 5. Howe duality 151 §5.1. Weyl-Clifford algebra and classical Lie superalgebras 152 5.1.1. Weyl-Clifford algebra 152 5.1.2. A filtration on Weyl-Clifford algebra 154 5.1.3. Relation to classical Lie superalgebras 155 5.1.4. A general duality theorem 157 5.1.5. A duality for Weyl-Clifford algebras 159 §5.2. Howe duality for type A and type Q 160 5.2.1. Howe dual pair (GL(k),Qi(m n)) 160 5.2.2. (GL(L),g[(m|n))-Howe duality 162 5.2.3. Formulas for highest weight vectors 164 5.2.4. (q(m),q(n))-Howe duality 166 §5.3. Howe duality for symplectic and orthogonal groups 169 5.3.1. Howe dual pair (Sp(V), osp(2m|2n)) 170 5.3.2. (Sp(y), osp(2wz|2n))-Howe duality 172 5.3.3. Irreducible modules of O(V) 175 5.3.4. Howe dual pair (O(fc),spo(2m|2n)) 177 5.3.5. (0(V),spo(2m|2n))-Howe duality 178 §5.4. Howe duality for infinite-dimensional Lie algebras 180 5.4.1. Lie algebras a M , c„c, and boo 180 5.4.2. The fermionic Fock space 183 5.4.3. (GL(f),cioo)-Howe duality 184 5.4.4. (Sp(k), c»o)-Howe duality 187 5.4.5. (0( ),Dc«,)-Howe duality 190 §5.5. Character formula for Lie superalgebras 192 5.5.1. Characters for modules of Lie algebras and be» 192 5.5.2. Characters of oscillator osp(2m|2n)-modules 193 5.5.3. Characters for oscillator spo(2m|2«)-modules 195 §5.6. Exercises 197 Notes 201 Chapter 6. Super duality 205 §6.1. Lie superalgebras of classical types 206 6.1.1. Head, tail, and master diagrams 206 6.1.2. The index sets 208 6.1.3. Infinite-rank Lie superalgebras 208 6.1.4. The case of m = 0 211 6.1.5. Finite-dimensional Lie superalgebras 213 Contents xi 6.1.6. Central extensions 213 §6.2. The module categories 214 6.2.1. Category of polynomial modules revisited 215 6.2.2. Parabolic subalgebras and dominant weights 217 6.2.3. The categories 0, 0, and 0 218 6.2.4. The categories 0„, 0„, and 0„ 220 6.2.5. Truncation functors 221 §6.3. The irreducible character formulas 222 6.3.1. Two sequences of Borel subalgebras of g 223 6.3.2. Odd reflections and highest weight modules 225 6.3.3. The functors T and T 228 6.3.4. Character formulas 231 §6.4. Kostant homology and KLV polynomials 232 6.4.1. Homology and cohomology of Lie superalgebras 232 6.4.2. Kostant u _ -homology and u-cohomology 235 6.4.3. Comparison of Kostant homology groups 236 6.4.4. Kazhdan-Lusztig-Vogan (KLV) polynomials 239 6.4.5. Stability of KLV polynomials 240 §6.5. Super duality as an equivalence of categories 241 6.5.1. Extensions a la Baer-Yoneda 241 6.5.2. Relating extensions in 0, 0, and 0 243 6.5.3. Categories 0-^, ((/, and 0^ 247 6.5.4. Lifting highest weight modules 247 6.5.5. Super duality and strategy of proof 248 6.5.6. The proof of super duality 250 §6.6. Exercises 255 Notes 258 Appendix A. Symmetric functions 261 § A. 1. The ring A and Schur functions 261 A. 1.1. The ring A 261 A. 1.2. Schur functions 265 A.1.3. Skew Schur functions 268 A. 1.4. The Frobenius characteristic map 270 §A.2. Supersymmetric polynomials 271 A.2.1. The ring of supersymmetric polynomials 271 A.2.2. Super Schur functions 273 §A.3. The ring T and Schur Q-functions 275 A.3.1. The ring T 275 A.3.2. Schur ^-functions 277 A.3.3. Inner product on T 278 Contents xii A.3.4. A characterization of T 280 A.3.5. Relating A and r 281 §A.4. The Boson-Fermion correspondence 282 A.4.1. The Maya diagrams 282 A.4.2. Partitions 282 A.4.3. Fermions and fermionic Fock space 284 A.4.4. Charge and energy 286 A.4.5. From Bosons to Fermions 287 A.4.6. Fermions and Schur functions 289 A.4.7. Jacobi triple product identity 289 Notes 290 Bibliography 291 Index 299
any_adam_object 1
author Cheng, Shun-Jen 1963-
Wang, Weiqiang 1970-
author_GND (DE-588)1033248436
(DE-588)1033248576
author_facet Cheng, Shun-Jen 1963-
Wang, Weiqiang 1970-
author_role aut
aut
author_sort Cheng, Shun-Jen 1963-
author_variant s j c sjc
w w ww
building Verbundindex
bvnumber BV040657445
callnumber-first Q - Science
callnumber-label QA252
callnumber-raw QA252.3
callnumber-search QA252.3
callnumber-sort QA 3252.3
callnumber-subject QA - Mathematics
classification_rvk SK 340
ctrlnum (OCoLC)828788706
(DE-599)BVBBV040657445
dewey-full 512/.482
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512/.482
dewey-search 512/.482
dewey-sort 3512 3482
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02228nam a2200505 cb4500</leader><controlfield tag="001">BV040657445</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210118 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">130108s2012 xxu |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2012031989</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780821891186</subfield><subfield code="c">alk. paper</subfield><subfield code="9">978-0-8218-9118-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)828788706</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040657445</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA252.3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.482</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cheng, Shun-Jen</subfield><subfield code="d">1963-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1033248436</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dualities and representations of Lie superalgebras</subfield><subfield code="c">Shun-Jen Cheng, Weiqiang Wang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, Rhode Island</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 302 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate studies in mathematics</subfield><subfield code="v">144</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie superalgebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Duality theory (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Representations, algebraic theory (weights)</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Simple, semisimple, reductive (super)algebras</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dualitätstheorie</subfield><subfield code="0">(DE-588)4150801-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Superalgebra</subfield><subfield code="0">(DE-588)4304027-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lie-Superalgebra</subfield><subfield code="0">(DE-588)4304027-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dualitätstheorie</subfield><subfield code="0">(DE-588)4150801-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Weiqiang</subfield><subfield code="d">1970-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1033248576</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-0-8218-9447-7</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate studies in mathematics</subfield><subfield code="v">144</subfield><subfield code="w">(DE-604)BV009739289</subfield><subfield code="9">144</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=025484266&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025484266</subfield></datafield></record></collection>
id DE-604.BV040657445
illustrated Not Illustrated
indexdate 2025-02-03T17:41:49Z
institution BVB
isbn 9780821891186
language English
lccn 2012031989
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-025484266
oclc_num 828788706
open_access_boolean
owner DE-29T
DE-19
DE-BY-UBM
DE-355
DE-BY-UBR
DE-11
owner_facet DE-29T
DE-19
DE-BY-UBM
DE-355
DE-BY-UBR
DE-11
physical XVII, 302 S.
publishDate 2012
publishDateSearch 2012
publishDateSort 2012
publisher American Mathematical Society
record_format marc
series Graduate studies in mathematics
series2 Graduate studies in mathematics
spellingShingle Cheng, Shun-Jen 1963-
Wang, Weiqiang 1970-
Dualities and representations of Lie superalgebras
Graduate studies in mathematics
Lie superalgebras
Duality theory (Mathematics)
Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Representations, algebraic theory (weights) msc
Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Simple, semisimple, reductive (super)algebras msc
Dualitätstheorie (DE-588)4150801-4 gnd
Lie-Superalgebra (DE-588)4304027-5 gnd
Mathematik (DE-588)4037944-9 gnd
subject_GND (DE-588)4150801-4
(DE-588)4304027-5
(DE-588)4037944-9
title Dualities and representations of Lie superalgebras
title_auth Dualities and representations of Lie superalgebras
title_exact_search Dualities and representations of Lie superalgebras
title_full Dualities and representations of Lie superalgebras Shun-Jen Cheng, Weiqiang Wang
title_fullStr Dualities and representations of Lie superalgebras Shun-Jen Cheng, Weiqiang Wang
title_full_unstemmed Dualities and representations of Lie superalgebras Shun-Jen Cheng, Weiqiang Wang
title_short Dualities and representations of Lie superalgebras
title_sort dualities and representations of lie superalgebras
topic Lie superalgebras
Duality theory (Mathematics)
Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Representations, algebraic theory (weights) msc
Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Simple, semisimple, reductive (super)algebras msc
Dualitätstheorie (DE-588)4150801-4 gnd
Lie-Superalgebra (DE-588)4304027-5 gnd
Mathematik (DE-588)4037944-9 gnd
topic_facet Lie superalgebras
Duality theory (Mathematics)
Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Representations, algebraic theory (weights)
Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Simple, semisimple, reductive (super)algebras
Dualitätstheorie
Lie-Superalgebra
Mathematik
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025484266&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV009739289
work_keys_str_mv AT chengshunjen dualitiesandrepresentationsofliesuperalgebras
AT wangweiqiang dualitiesandrepresentationsofliesuperalgebras