Plasma chemistry

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Fridman, Alexander A. 1953- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Cambridge [u.a.] Cambridge Univ. Press 2012
Ausgabe:1. paperback ed.
Schlagworte:
Online-Zugang:Klappentext
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV040546166
003 DE-604
005 20150408
007 t
008 121116s2012 xxkad|| |||| 00||| eng d
010 |a 2008298230 
020 |a 9781107684935  |c pbk.  |9 978-1-107-68493-5 
020 |a 9780521847353  |c hbk.  |9 978-0-521-84735-3 
035 |a (OCoLC)820399456 
035 |a (DE-599)BVBBV040546166 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
044 |a xxk  |c GB 
049 |a DE-703  |a DE-11  |a DE-83  |a DE-29T  |a DE-634 
050 0 |a QD581 
082 0 |a 541/.0424 
084 |a UR 8000  |0 (DE-625)146642:  |2 rvk 
084 |a VE 5850  |0 (DE-625)147126:253  |2 rvk 
100 1 |a Fridman, Alexander A.  |d 1953-  |e Verfasser  |0 (DE-588)1053135238  |4 aut 
245 1 0 |a Plasma chemistry  |c Alexander Fridman 
250 |a 1. paperback ed. 
264 1 |a Cambridge [u.a.]  |b Cambridge Univ. Press  |c 2012 
300 |a XLII, 978 S.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
500 |a Includes bibliographical references (p. 915-961) and index 
650 4 |a Plasma chemistry  |v Textbooks 
650 0 7 |a Plasmachemie  |0 (DE-588)4254737-4  |2 gnd  |9 rswk-swf 
689 0 0 |a Plasmachemie  |0 (DE-588)4254737-4  |D s 
689 0 |5 DE-604 
856 4 2 |m Digitalisierung UB Bayreuth  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025391978&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Klappentext 
856 4 2 |m Digitalisierung UB Bayreuth  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025391978&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-025391978 

Datensatz im Suchindex

_version_ 1804149637887557632
adam_text PLASMA CHEMISTRY This unique book provides a fundamental introduction to all aspects of modern plasma chemistry. The book describes mechanisms and kinetics of chemical pro¬ cesses in plasma, plasma statistics, thermodynamics, fluid mechanics, and elec¬ trodynamics, as well as all major electric discharges applied in plasma chemistry. The book considers most of the major applications of plasma chemistry, from electronics to thermal coatings, from treatment of polymers to fuel conversion and hydrogen production, and from plasma metallurgy to plasma medicine. The book can be helpful to engineers, scientists, and students interested in plasma physics, plasma chemistry, plasma engineering, and combustion, as well as in chemical physics, lasers, energy systems, and environmental control. The book contains an extensive database on plasma kinetics and thermodynamics, as well as many convenient numerical formulas for practical calculations related to specific plasma-chemical processes and applications. The book contains a large number of problems and concept questions that are helpful in university courses related to plasma, lasers, combustion, chemical kinetics, statistics and thermodynamics, and high-temperature and high-energy fluid mechanics. Alexander Fridman is Nyheim Chair Professor of Drexel University and Director of Drexel Plasma Institute. His research focuses on plasma approaches to material treatment, fuel conversion, hydrogen production, biology, medicine, and environ¬ mental control. Professor Fridman has more than 35 years of plasma research expe¬ rience in national laboratories and universities in Russia, France, and the United States. He has published 6 books and 450 papers, chaired several international plasma conferences, and received numerous awards, including the Stanley Kaplan Distinguished Professorship in Chemical Kinetics and Energy Systems, the George Soros Distinguished Professorship in Physics, and the State Prize of the USSR for discovery of selective stimulation of chemical processes in non-thermal plasma. Contents Foreword page xxxix Preface xli 1 Introduction to Theoretical and Applied Plasma Chemistry I 1.1. Plasma as the Fourth State of Matter I 1.2. Plasma in Nature and in the Laboratory 2 1.3. Plasma Temperatures: Thermal and Non-Thermal Plasmas 4 1.4. Plasma Sources for Plasma Chemistry: Gas Discharges 5 1 .5. Fundamentals of Plasma Chemistry: Major Components of Chemically Active Plasma and Mechanisms of Plasma-Chemical Processes 8 1 .6. Applied Plasma Chemistry 9 1 .7. Plasma as a High-Tech Magic Wand of Modern Technology 1 0 2 Elementary Plasma-Chemical Reactions 1 2 2. 1 . Ionización Processes 1 2 2.1.1. Elementary Charged Particles in Plasma 1 2 2. 1 .2. Elastic and Inelastic Collisions and Their Fundamental Parameters 1 3 2. 1 .3. Classification of lonization Processes 1 4 2. 1 .4. Elastic Scattering and Energy Transfer in Collisions of Charged Particles: Coulomb Collisions 1 5 2. 1 .5. Direct lonization by Electron Impact: Thomson Formula 1 6 2. 1 .6. Specific Features of lonization of Molecules by Electron Impact: Frank-Condon Principle and Dissociative lonization 1 7 2. 1 .7. Stepwise lonization by Electron Impact 1 8 2. 1 .8. lonization by High-Energy Electrons and Electron Beams: Bethe-Bloch Formula 20 2. 1 .9. Photo-lonization Processes 20 2. 1 .10. lonization in Collisions of Heavy Particles: Adiabatic Principle and Massey Parameter 2 1 2. 1 . 11 . Penning lonization Effect and Associative lonization 2 1 2.2. Elementary Plasma-Chemical Reactions of Positive Ions 22 2.2. 1 . Different Mechanisms of Electron-Ion Recombination in Plasma 22 VII Contents 2.2.2. Dissociative Electron—Ion Recombination and Possible Preliminary Stage of Ion Conversion 23 2.2.3. Three-Body and Radiative Electron-Ion Recombination Mechanisms 25 2.2.4. Ion-Molecular Reactions, Ion-Molecular Polarization Collisions, and the Langevin Rate Coefficient 26 2.2.5. Ion-Atomic Charge Transfer Processes and Resonant Charge Transfer 28 2.2.6. Non-Resonant Charge Transfer Processes and Ion-Molecular Chemical Reactions of Positive and Negative Ions 29 2.3. Elementary Plasma-Chemical Reactions Involving Negative Ions 31 2.3. 1 . Dissociative Electron Attachment to Molecules as a Major Mechanism of Negative Ion Formation in Electronegative Molecular Gases 31 2.3.2. Three-Body Electron Attachment and Other Mechanisms of Formation of Negative Ions 33 2.3.3. Destruction of Negative Ions: Associative Detachment, Electron Impact Detachment, and Detachment in Collisions with Excited Particles 35 2.3.4. Recombination of Negative and Positive Ions 37 2.3.5. Ion-Ion Recombination in Binary Collisions 38 2.3.6. Three-Body Ion-Ion Recombination: Thomson s Theory and Langevin Model 39 2.4. Electron Emission and Heterogeneous lonization Processes 42 2.4. 1 . Thermionic Emission: Sommerfeld Formula and Schottky Effect 42 2.4.2. Field Emission of Electrons in Strong Electric Fields: Fowler-Nordheim Formula and Thermionic Field Emission 43 2.4.3. Secondary Electron Emission 45 2.4.4. Photo-lonization of Aerosols: Monochromatic Radiation 46 2.4.5. Photo-lonization of Aerosols: Continuous-Spectrum Radiation 49 2.4.6. Thermal lonization of Aerosols: Einbinder Formula 5 1 2.4.7. Space Distribution of Electrons and Electric Field Around a Thermally Ionized Macro-Particle 52 2.4.8. Electric Conductivity of Thermally Ionized Aerosols 53 2.5. Excitation and Dissociation of Neutral Particles in Ionized Gases 54 2.5.1. Vibrational Excitation of Molecules by Electron Impact 54 2.5.2. Rate Coefficients of Vibrational Excitation by Electron Impact: Semi-Empirical Fridman Approximation 56 2.5.3. Rotational Excitation of Molecules by Electron Impact 58 2.5.4. Electronic Excitation of Atoms and Molecules by Electron Impact 59 2.5.5. Dissociation of Molecules by Direct Electron Impact 61 2.5.6. Distribution of Electron Energy in Non-Thermal Discharges Between Different Channels of Excitation and lonization 63 viii Contents 2.6. Elementary Relaxation Processes of Energy Transfer Involving Vibrationally, Rotationally, and Electronically Excited Molecules 67 2.6.1. Vibrational-Translational (VT) Relaxation: Slow Adiabatic Elementary Process 67 2.6.2. Landau-Teller Formula for VT-Relaxation Rate Coefficients 69 2.6.3. Fast Non-Adiabatic Mechanisms of VT Relaxation 7 1 2.6.4. Vibrational Energy Transfer Between Molecules: Resonant W Relaxation 72 2.6.5. Non-Resonant W Exchange: Relaxation of Anharmonic Oscillators and Intermolecular W Relaxation 74 2.6.6. Rotational Relaxation Processes: Parker Formula 76 2.6.7. Relaxation of Electronically Excited Atoms and Molecules 76 2.7. Elementary Chemical Reactions of Excited Molecules: Fridman-Macheret a-Model 79 2.7. 1 . Rate Coefficient of Reactions of Excited Molecules 79 2.7.2. Efficiency a of Vibrational Energy in Overcoming Activation Energy of Chemical Reactions: Numerical Values and Classification Table 81 2.7.3. Fridman-Macheret a-Model 8 1 2.7.4. Efficiency of Vibrational Energy in Elementary Reactions Proceeding Through Intermediate Complexes: Synthesis of Lithium Hydride 83 2.7.5. Dissociation of Molecules in Non-Equilibrium Conditions with Essential Contribution of Translational Energy: Non-Equilibrium Dissociation Factor Z 86 2.7.6. Semi-Empirical Models of Non-Equilibrium Dissociation of Molecules Determined by Vibrational and Translational Temperatures 87 Problems and Concept Questions 89 Plasma-Chemical Kinetics, Thermodynamics, and Electrodynamics 92 3. 1 . Plasma Statistics and Thermodynamics, Chemical and lonization Equilibrium, and the Saha Equation 92 3.1.1. Statistical Distributions: Boltzmann Distribution Function 92 3. 1 .2. Equilibrium Statistical Distribution of Diatomic Molecules over Vibrational-Rotational States 93 3. 1 .3. Saha Equation for lonization Equilibrium in Thermal Plasma 94 3. 1 .4. Dissociation Equilibrium in Molecular Gases 94 3. 1 .5. Complete Thermodynamic Equilibrium (СТЕ) and Local Thermodynamic Equilibrium (LTE) in Plasma 95 3. 1 .6. Thermodynamic Functions of Quasi-Equilibrium Thermal Plasma Systems 95 3. 1 .7. Non-Equilibrium Statistics of Thermal and Non-Thermal Plasmas 97 3.1.8. Non-Equilibrium Statistics of Vibrationally Excited Molecules: Treanor Distribution 99 3.2. Electron Energy Distribution Functions (EEDFs) in Non-Thermal Plasma 100 3.2. 1 . Fokker-Planck Kinetic Equation for Determination of EEDF 1 00 ix Contents 3.2.2. Druyvesteyn Distribution, Margenau Distributions, and Other Specific EEDF ΙΟΙ 3.2.3. Effect of Electron-Molecular and Electron-Electron Collisions on EEDF 103 3.2.4. Relation Between Electron Temperature and the Reduced Electric Field 104 3.2.5. Isotropie and Anisotropie Parts of the Electron Distribution Functions: EEDF and Plasma Conductivity 1 04 3.3. Diffusion, Electric/Thermal Conductivity, and Radiation in Plasma 1 06 3.3. 1 . Electron Mobility, Plasma Conductivity, and Joule Heating 1 06 3.3.2. Plasma Conductivity in Crossed Electric and Magnetic Fields 107 3.3.3. Ion Energy and Ion Drift in Electric Field 109 3.3.4. Free Diffusion of Electrons and Ions; Continuity Equation; and Einstein Relation Between Diffusion Coefficient, Mobility, and Mean Energy 109 3.3.5. Ambipolar Diffusion and Debye Radius 1 10 3.3.6. Thermal Conductivity in Plasma 111 3.3.7. Non-Equilibrium Thermal Conductivity and Treanor Effect in Vibrational Energy Transfer 11 2 3.3.8. Plasma Emission and Absorption of Radiation in Continuous Spectrum and Unsold-Kramers Formula 11 2 3.3.9. Radiation Transfer in Plasma: Optically Thin and Optically Thick Plasmas 11 3 3.4. Kinetics of Vibrationally and Electronically Excited Molecules in Plasma: Effect of Hot Atoms 11 4 3.4. 1 . Fokker-Plank Kinetic Equation for Non-Equilibrium Vibrational Distribution Functions 11 4 3.4.2. VT and W Fluxes of Excited Molecules in Energy Space 11 5 3.4.3. Non-Equilibrium Vibrational Distribution Functions: Regime of Strong Excitation 11 7 3.4.4. Non-Equilibrium Vibrational Distribution Functions: Regime of Weak Excitation 11 9 3.4.5. Kinetics of Population of Electronically Excited States in Plasma 1 20 3.4.6. Non-Equilibrium Translational Energy Distribution Functions of Heavy Neutrals: Effect of Hot Atoms in Fast VT-Relaxation Processes 1 22 3.4.7. Generation of Hot Atoms in Chemical Reactions 123 3.5. Vibrational Kinetics of Gas Mixtures, Chemical Reactions, and Relaxation Processes 1 24 3.5. 1 . Kinetic Equation and Vibrational Distributions in Gas Mixtures: Treanor Isotopie Effect in Vibrational Kinetics 1 24 3.5.2. Reverse Isotopie Effect in Plasma-Chemical Kinetics 126 3.5.3. Macrokinetics of Chemical Reactions of Vibrationally Excited Molecules 1 29 3.5.4. Vibrational Energy Losses Due to VT Relaxation 1 3 1 3.5.5. Vibrational Energy Losses Due to Non-Resonance W Exchange 1 32 3.6. Energy Balance and Energy Efficiency of Plasma-Chemical Processes 1 32 Contents 3.6. 1 . Energy Efficiency of Quasi-Equilibrium and Non-Equilibrium Plasma-Chemical Processes 1 32 3.6.2. Energy Efficiency of Plasma-Chemical Processes Stimulated by Vibrational Excitation of Molecules 1 33 3.6.3. Energy Efficiency of Plasma-Chemical Processes Stimulated by Electronic Excitation and Dissociative Attachment 1 34 3.6.4. Energy Balance and Energy Efficiency of Plasma-Chemical Processes Stimulated by Vibrational Excitation of Molecules 134 3.6.5. Components of Total Energy Efficiency: Excitation, Relaxation, and Chemical Factors 1 36 3.6.6. Energy Efficiency of Quasi-Equilibrium Plasma-Chemical Systems: Absolute, Ideal, and Super-Ideal Quenching 1 37 3.6.7. Mass and Energy Transfer Equations in Multi-Component Quasi-Equilibrium Plasma-Chemical Systems 1 37 3.6.8. Transfer Phenomena Influence on Energy Efficiency of Plasma-Chemical Processes 1 39 3.7. Elements of Plasma Electrodynamics 140 3.7. 1 . Ideal and Non-Ideal Plasmas 1 40 3.7.2. Plasma Polarization: Debye Shielding of Electric Field in Plasma 141 3.7.3. Plasmas and Sheaths: Physics of DC Sheaths 142 3.7.4. High-Voltage Sheaths: Matrix and Child Law Sheath Models 144 3.7.5. Electrostatic Plasma Oscillations: Langmuir or Plasma Frequency 1 45 3.7.6. Penetration of Slow-Changing Fields into Plasma: Skin Effect in Plasma 146 3.7.7. Magneto-Hydrodynamics: Diffusion of Magnetic Field and Magnetic Field Frozen in Plasma 1 46 3.7.8. Magnetic Pressure: Plasma Equilibrium in Magnetic Field and Pinch Effect 147 3.7.9. Two-Fluid Magneto-Hydrodynamics: Generalized Ohm s Law 149 3.7.10. Plasma Diffusion Across Magnetic Field 149 3.7.1 1. Magneto-Hydrodynamic Behavior of Plasma: Alfven Velocity and Magnetic Reynolds Number 1 50 3.7. 1 2. High-Frequency Plasma Conductivity and Dielectric Permittivity 1 5 1 3.7. 1 3. Propagation of Electromagnetic Waves in Plasma 1 53 3.7. 1 4. Plasma Absorption and Reflection of Electromagnetic Waves: Bouguer Law. Critical Electron Density 1 54 Problems and Concept Questions 1 55 Electric Discharges in Plasma Chemistry 1 57 4. 1 . Fundamentals of Electric Breakdown, Streamer Processes, and Steady-State Regimes of Non-Equilibrium Electrical Discharges 1 57 4. 1 . 1 . Townsend Mechanism of Electric Breakdown and Paschen Curves 1 57 4. 1 .2. Spark Breakdown Mechanism: Streamer Concept 159 xi Contents 4. 1 .3. Meek Criterion of Streamer Formation: Streamer Propagation Models 1 63 4. 1 .4. Streamers and Microdischarges 1 64 4. 1 .5. Interaction of Streamers and Microdischarges 1 66 4. 1 .6. Monte Carlo Modeling of Interaction of Streamers and Microdischarges 1 67 4. 1 .7. Self-Organized Pattern of DBD Microdischarges due to Streamer Interaction 168 4. 1 .8. Steady-State Regimes of Non-Equilibrium Electric Discharges and General Regimes Controlled by Volume and Surface Recombination Processes 1 70 4. 1 .9. Discharge Regime Controlled by Electron-Ion Recombination 1 7 1 4. 1 . 1 0. Discharge Regime Controlled by Electron Attachment 1 72 4. 1 . 11 . Non-Thermal Discharge Regime Controlled by Charged-Particle Diffusion to the Walls: The Engel-Steenbeck Relation 1 72 4.2. Glow Discharges 1 75 4.2. 1 . General Structure and Configurations of Glow Discharges 1 75 4.2.2. Current-Voltage Characteristics of DC Discharges 177 4.2.3. Dark Discharge and Transition from Townsend Dark to Glow Discharge 1 78 4.2.4. Current-Voltage Characteristics of Cathode Layer: Normal Glow Discharge 1 79 4.2.5. Abnormal, Subnormal, and Obstructed Regimes of Glow Discharges 181 4.2.6. Positive Column of Glow Discharge 1 82 4.2.7. Hollow Cathode Glow Discharge 1 83 4.2.8. Other Specific Glow Discharge Plasma Sources 1 84 4.2.9. Energy Efficiency Peculiarities of Glow Discharge Application for Plasma-Chemical Processes 186 4.3. Arc Discharges 187 4.3. 1 . Classification and Current-Voltage Characteristics of Arc Discharges 187 4.3.2. Cathode and Anode Uyers of Arc Discharges 1 89 4.3.3. Cathode Spots in Arc Discharges 191 4.3.4. Positive Column of High-Pressure Arcs: Elenbaas-Heller Equation 1 93 4.3.5. Steenbeck-Raizer Channel Model of Positive Column 1 94 4.3.6. Steenbeck-Raizer Arc Channel Modeling of Plasma Temperature, Specific Power, and Electric Field in Positive Column 196 4.3.7. Configurations of Arc Discharges Applied in Plasma Chemistry and Plasma Processing 197 4.3.8. Gliding Arc Discharge 200 4.3.9. Equilibrium Phase of Gliding Arc, Its Critical Parameters, and Fast Equilibrium-to-Non-Equilibrium Transition 204 4.3.10. Gliding Arc Stability Analysis and Transitional and Non-Equilibrium Phases of the Discharge 205 XII Contents 4.3.1 1. Special Configurations of Gliding Arc Discharges: Gliding Arc Stabilized in Reverse Vortex (Tornado) Flow 207 4.4. Radiofrequency and Microwave Discharges in Plasma Chemistry 209 4.4. 1 . Generation of Thermal Plasma in Radiofrequency Discharges 209 4.4.2. Thermal Plasma Generation in Microwave and Optical Discharges 211 4.4.3. Non-Thermal Radiofrequency Discharges: Capacitive and Inductive Coupling of Plasma 2 1 5 4.4.4. Non-Thermal RF-CCP Discharges in Moderate Pressure Regimes 2 1 6 4.4.5. Low-Pressure Capacitively Coupled RF Discharges 2 1 9 4.4.6. RF Magnetron Discharges 222 4.4.7. Non-Thermal Inductively Coupled RF Discharges in Cylindrical Coil 224 4.4.8. Planar-Coil and Other Configurations of Non-Thermal Inductively Coupled RF Discharges 226 4.4.9. Non-Thermal Low-Pressure Microwave and Other Wave-Heated Discharges 229 4.4.10. Non-Equilibrium Plasma-Chemical Microwave Discharges of Moderate Pressure 23 1 4.5. Non-Thermal Atmospheric Pressure Discharges 233 4.5. 1 . Corona Discharges 233 4.5.2. Pulsed Corona Discharges 234 4.5.3. Dielectric Barrier Discharges 237 4.5.4. Special Modifications of DBD: Surface, Packed-Bed, and Ferroelectric Discharges 239 4.5.5. Spark Discharges 240 4.5.6. Atmospheric Pressure Glow Mode of DBD 241 4.5.7. APGs: Resistive Barrier Discharge 242 4.5.8. One-Atmosphere Uniform Glow Discharge Plasma as Another Modification of APG 243 4.5.9. Electronically Stabilized APG Discharges 244 4.5. 1 0. Atmospheric-Pressure Plasma Jets 245 4.6. Microdischarges 247 4.6. 1 . General Features of Microdischarges 247 4.6.2. Micro-Glow Discharge 248 4.6.3. Micro-Hollow-Cathode Discharge 251 4.6.4. Arrays of Microdischarges: Microdischarge Self-Organization and Structures 252 4.6.5. Kilohertz-Frequency-Range Microdischarges 254 4.6.6. RF Microdischarges 255 4.6.7. Microwave Microdischarges 257 Problems and Concept Questions 257 Inorganic Gas-Phase Plasma Decomposition Processes 259 5. 1 . COi . Dissociation in Plasma, Thermal, and Non-Thermal Mechanisms 259 5. 1 . 1 . Fundamental and Applied Aspects of the CO2 Plasma Chemistry 259 xiii Contents 5.1.2. Major Experimental Results on CO2: Dissociation in Different Plasma Systems and Energy Efficiency of the Process 260 5. 1 .3. Mechanisms of CO? Decomposition in Quasi-Equilibrium Thermal Plasma 262 5. 1 .4. CO2 Dissociation in Plasma, Stimulated by Vibrational Excitation of Molecules 263 5. 1 .5. CO2 Dissociation in Plasma by Means of Electronic Excitation of Molecules 265 5. 1 .6. CO2 Dissociation in Plasma by Means of Dissociative Attachment of Electrons 267 5.2. Physical Kinetics of CO2 Dissociation, Stimulated by Vibrational Excitation of the Molecules in Non-Equilibrium Plasma 268 5.2. 1 . Asymmetric and Symmetric CO2 Vibrational Modes 268 5.2.2. Contribution of Asymmetric and Symmetric CO2 Vibrational Modes into Plasma-Chemical Dissociation Process 269 5.2.3. Transition of Highly Vibrationally Excited CO2 Molecules into the Vibrational Quasi Continuum 27 1 5.2.4. One-Temperature Approximation of CO2 Dissociation Kinetics in Non-Thermal Plasma 273 5.2.5. Two-Temperature Approximation of CO2 Dissociation Kinetics in Non-Thermal Plasma 274 5.2.6. Elementary Reaction Rates of CO2 Decomposition, Stimulated in Plasma by Vibrational Excitation of the Molecules 275 5.3. Vibrational Kinetics and Energy Balance of Plasma-Chemical CO2 Dissociation 276 5.3. 1 . Two-Temperature Approach to Vibrational Kinetics and Energy Balance of CO2 Dissociation in Non-Equilibrium Plasma: Major Energy Balance and Dynamic Equations 276 5.3.2. Two-Temperature Approach to Vibrational Kinetics and Energy Balance of CO2 Dissociation in Non-Equilibrium Plasma: Additional Vibrational Kinetic Relations 277 5.3.3. Results of CO2 Dissociation Modeling in the Two-Temperature Approach to Vibrational Kinetics 279 5.3.4. One-Temperature Approach to Vibrational Kinetics and Energy Balance of CO2 Dissociation in Non-Equilibrium Plasma: Major Equations 280 5.3.5. Threshold Values of Vibrational Temperature, Specific Energy Input, and lonization Degree for Effective Stimulation of CO2 Dissociation by Vibrational Excitation of the Molecules 281 5.3.6. Characteristic Time Scales of CO2 Dissociation in Plasma Stimulated by Vibrational Excitation of the Molecules: VT-Relaxation Time 282 5.3.7. Flow Velocity and Compressibility Effects on Vibrational Relaxation Kinetics During Plasma-Chemical CO2 Dissociation: Maximum Linear Preheating Temperature 283 5.3.8. CO2 Dissociation in Active and Passive Discharge Zones: Discharge (reV) and After-Glow (rp) Residence Time 284 XIV Contents 5.3.9. lonízation Degree Regimes of the CO2 Dissociation Process in Non-Thermal Plasma 285 5.3.10. Energy Losses Related to Excitation of CO2 Dissociation Products: Hyperbolic Behavior of Energy Efficiency Dependence on Specific Energy Input 286 5.4. Energy Efficiency of CO2 Dissociation in Quasi-Equilibrium Plasma, and Non-Equilibrium Effects of Quenching Products of Thermal Dissociation 288 5.4. 1 . Ideal and Super-Ideal Modes of Quenching Products of CO2 Dissociation in Thermal Plasma 288 5.4.2. Kinetic Evolution of Thermal CO2 Dissociation Products During Quenching Phase 288 5.4.3. Energy Efficiency of CO2 Dissociation in Thermal Plasma Under Conditions of Ideal Quenching of Products 289 5.4.4. Vibrational-Translational Non-Equilibrium Effects of Quenching Products of Thermal CO2 Dissociation in Plasma: Super-Ideal Quenching Mode 290 5.4.5. Maximum Value of Energy Efficiency of CO2 Dissociation in Thermal Plasma with Super-Ideal Quenching of the Dissociation Products 29 1 5.4.6. Kinetic Calculations of Energy Efficiency of CO2 Dissociation in Thermal Plasma with Super-Ideal Quenching 29 1 5.4.7. Comparison of Thermal and Non-Thermal Plasma Approaches to CO2 Dissociation: Comments on Products (CO-O2) Oxidation and Explosion 292 5.5. Experimental Investigations of CO2 Dissociation in Different Discharge Systems 293 5.5. 1 . Experiments with Non-Equilibrium Microwave Discharges of Moderate Pressure, Discharges in Waveguide Perpendicular to Gas Flow Direction, and Microwave Plasma Parameters in CO2 293 5.5.2. Plasma-Chemical Experiments with Dissociation of CO2 in Non-Equilibrium Microwave Discharges of Moderate Pressure 295 5.5.3. Experimental Diagnostics of Plasma-Chemical Non-Equilibrium Microwave Discharges in Moderate-Pressure CCv. Plasma Measurements 296 5.5.4. Experimental Diagnostics of Plasma-Chemical Non-Equilibrium Microwave Discharges in Moderate-Pressure CO2: Temperature Measurements 297 5.5.5. CO2 Dissociation in Non-Equilibrium Radiofrequency Discharges: Experiments with Inductively Coupled Plasma 299 5.5.6. CO2 Dissociation in Non-Equilibrium Radiofrequency Discharges: Experiments with Capacitively Coupled Plasma 300 5.5.7. CO2 Dissociation in Non-Self-Sustained Atmospheric-Pressure Discharges Supported by High-Energy Electron Beams or UV Radiation 302 5.5.8. CO2 Dissociation in Different Types of Glow Discharges 302 xv Contents 5.5.9. CO2 Dissociation ¡η Other Non-Thermal and Thermal Discharges: Contribution of Vibrational and Electronic Excitation Mechanisms 304 5.6. CO2 Dissociation in Special Experimental Systems, Including Supersonic Stimulation and Plasma Radiolysis 304 5.6.1. Dissociation of CO2 in Supersonic Non-Equilibrium Discharges: Advantages and Gasdynamic Characteristics 304 5.6.2. Kinetics and Energy Balance of Non-Equilibrium Plasma-Chemical CO2 Dissociation in Supersonic Flow 306 5.6.3. Limitations of Specific Energy Input and CO2 Conversion Degree in Supersonic Plasma Related to Critical Heat Release and Choking the Flow 308 5.6.4. Experiments with Dissociation of CO2 in Non-Equilibrium Supersonic Microwave Discharges 308 5.6.5. Gasdynamic Stimulation of CO2 Dissociation in Supersonic Flow: Plasma Chemistry Without Electricity 309 5.6.6. Plasma Radiolysis of CO2 Provided by High-Current Relativistic Electron Beams 3 1 0 5.6.7. Plasma Radiolysis of CO2 in Tracks of Nuclear Fission Fragments 311 5.6.8. lonization Degree in Tracks of Nuclear Fission Fragments, Energy Efficiency of Plasma Radiolysis of CO2, and Plasma-Assisted Chemonuclear Reactors ЗІЗ 5.7. Complete CO2 Dissociation in Plasma with Production of Carbon and Oxygen 3 1 4 5.7.1. Complete Plasma-Chemical Dissociation of CO2: Specifics of the Process and Elementary Reaction Mechanism 3 1 4 5.7.2. Kinetics of CO Disproportioning Stimulated in Non-Equilibrium Plasma by Vibrational Excitation of Molecules 314 5.7.3. Experiments with Complete CO2 Dissociation in Microwave Discharges Operating in Conditions of Electron Cyclotron Resonance 3 1 6 5.7.4. Experiments with Complete CO2 Dissociation in Stationary Plasma-Beam Discharge 3 1 7 5.8. Dissociation of Water Vapor and Hydrogen Production in Plasma-Chemical Systems 3 1 8 5.8. 1 . Fundamental and Applied Aspects of H2O Plasma Chemistry 318 5.8.2. Kinetics of Dissociation of Water Vapor Stimulated in Non-Thermal Plasma by Vibrational Excitation of Water Molecules 319 5.8.3. Energy Efficiency of Dissociation of Water Vapor Stimulated in Non-Thermal Plasma by Vibrational Excitation 320 5.8.4. Contribution of Dissociative Attachment of Electrons into Decomposition of Water Vapor in Non-Thermal Plasma 322 5.8.5. Kinetic Analysis of the Chain Reaction of H2O Dissociation via Dissociative Attachment/Detachment Mechanism 324 xvi Contents 5.8.6. H2O Dissociation in Thermal Plasma and Quenching of the Dissociation Products: Absolute and Ideal Quenching Modes 325 5.8.7. Cooling Rate Influence on Kinetics of H2O Dissociation Products in Thermal Plasma: Super-Ideal Quenching Effect 326 5.8.8. Water Dissociation and H2 Production in Plasma-Chemical System CO2-H2O 328 5.8.9. CO-to-H2 Shift Reaction: Plasma Chemistry of CO-O2-H2O Mixture 330 5.9. Experimental Investigations of H2O Dissociation in Different Discharge Systems 33 1 5.9. 1 . Microwave Discharge in Water Vapor 33 1 5.9.2. Plasma-Chemical Experiments with Microwave Discharge in Water Vapor 332 5.9.3. Dissociation of Water Vapor in Glow Discharges 332 5.9.4. Dissociation of H2O with Production of H2 and H2O2 in Supersonic Microwave Discharges 334 5.9.5. Plasma Radiolysis of Water Vapor in Tracks of Nuclear Fission Fragments 335 5.9.6. Effect of Plasma Radiolysis on Radiation Yield of Hydrogen Production in Tracks of Nuclear Fission Fragments 336 5. 1 0. Inorganic Gas-Phase Plasma-Chemical Processes of Decomposition of Triatomic Molecules: NH3, SO2, and N2O 336 5. 1 0. 1 . Gas-Phase Plasma Decomposition Reactions in Multi-Phase Technologies 336 5.10.2. Dissociation of Ammonia in Non-Equilibrium Plasma: Mechanism of the Process in Glow Discharge 337 5. 1 0.3. Mechanism of Formation of Molecular Nitrogen and Hydrogen in Non-Equilibrium Plasma-Chemical Process of Ammonia Dissociation 338 5.10.4. Plasma Dissociation of Sulfur Dioxide 338 5.10.5. Destruction and Conversion of Nitrous Oxide in Non-Equilibrium Plasma 340 5. 11 . Non-Thermal and Thermal Plasma Dissociation of Diatomic Molecules 341 5. 11 . 1 . Plasma-Chemical Decomposition of Hydrogen Halides: Example of HBr Dissociation with Formation of Hydrogen and Bromine 34 1 5. 11 .2. Dissociation of HF, HCI, and HI in Plasma 343 5. 11 .3. Non-Thermal and Thermal Dissociation of Molecular Fluorine 344 5. 11 .4. Dissociation of Molecular Hydrogen in Non-Thermal and Thermal Plasma Systems 345 5. 11 .5. Dissociation of Molecular Nitrogen in Non-Thermal and Thermal Plasma Systems 347 5. 11 .6. Thermal Plasma Dissociation of Other Diatomic Molecules (O2. CI2, Br2) 347 Problems and Concept Questions 35 1 xvii Contents Gas-Phase Inorganic Synthesis in Plasma 355 6. 1. Plasma-Chemical Synthesis of Nitrogen Oxides from Air and Nitrogen-Oxygen Mixtures: Thermal and Non-Thermal Mechanisms 355 6. 1 . 1 . Fundamental and Applied Aspects of NO Synthesis in Air Plasma 355 6. 1 .2. Mechanisms of NO Synthesis Provided in Non-Thermal Plasma by Excitation of Neutral Molecules: Zeldovich Mechanism 356 6. 1 .3. Mechanisms of NO Synthesis Provided in Non-Thermal Plasma by Charged Particles 358 6. 1 .4. NO Synthesis in Thermal Plasma Systems 358 6. 1 .5. Energy Efficiency of Different Mechanisms of NO Synthesis in Thermal and Non-Thermal Discharge Systems 359 6.2. Elementary Reaction of NO Synthesis Stimulated by Vibrational Excitation of Molecular Nitrogen 36 1 6.2. 1 . Limiting Elementary Reaction of Zeldovich Mechanism: Adiabatic and Non-Adiabatic Channels of NO Synthesis 36 1 6.2.2. Electronically Adiabatic Channel of NO Synthesis О + N2 -*■ NO + N Stimulated by Vibrational Excitation of Molecular Nitrogen 361 6.2.3. Electronically Non-Adiabatic Channel of NO Synthesis (O + N2 -> NO + N): Stages of the Elementary Process and Method of Vibronic Terms 363 6.2.4. Transition Probability Between Vibronic Terms Corresponding to Formation of Intermediate ^О*( Σ+) Complex 364 6.2.5. Probability of Formation of Intermediate ^О*( Σ+) Complex in Electronically Non-Adiabatic Channel of NO Synthesis 365 6.2.6. Decay of Intermediate Complex Ν2θ*( Σ+): Second Stage of Electronically Non-Adiabatic Channel of NO Synthesis 366 6.2.7. Total Probability of Electronically Non-Adiabatic Channel of NO Synthesis (O + N2 -> NO + N) 367 6.3. Kinetics and Energy Balance of Plasma-Chemical NO Synthesis Stimulated in Air and O2-N2 Mixtures by Vibrational Excitation 367 6.3. 1 . Rate Coefficient of Reaction О + N2 ->· NO -I- N Stimulated in Non-Equilibrium Plasma by Vibrational Excitation of Nitrogen Molecules 367 6.3.2. Energy Balance of Plasma-Chemical NO Synthesis: Zeldovich Mechanism Stimulated by Vibrational Excitation 368 6.3.3. Macro-Kinetics of Plasma-Chemical NO Synthesis: Time Evolution of Vibrational Temperature 369 6.3.4. Energy Efficiency of Plasma-Chemical NO Synthesis: Excitation and Relaxation Factors 370 6.3.5. Energy Efficiency of Plasma-Chemical NO Synthesis: Chemical Factor 371 6.3.6. Stability of Products of Plasma-Chemical Synthesis to Reverse Reactions in Active Zone of Non-Thermal Plasma 37 1 XVIII Contents 6.3.7. Effect of Hot Nitrogen Atoms on Yield of NO Synthesis in Non-Equilibrium Plasma in Air and Nitrogen-Oxygen Mixtures 372 6.3.8. Stability of Products of Plasma-Chemical NO Synthesis to Reverse Reactions Outside of the Discharge Zone 373 6.4. Experimental Investigations of NO Synthesis from Air and N2-O2 Mixtures in Different Discharges 374 6.4. 1 . Non-Equilibrium Microwave Discharge in Magnetic Field Operating in Conditions of Electron Cyclotron Resonance 374 6.4.2. Evolution of Vibrational Temperature of Nitrogen Molecules in Non-Equilibrium ECR: Microwave Discharge During Plasma-Chemical NO Synthesis 376 6.4.3. NO Synthesis in the Non-Equilibrium ECR Microwave Discharge 377 6.4.4. NO Synthesis in Non-Self-Sustained Discharges Supported by Relativistic Electron Beams 378 6.4.5. Experiments with NO Synthesis from Air in Stationary Non-Equilibrium Plasma-Beam Discharge 379 6.4.6. Experiments with NO Synthesis from N2 and O2 in Thermal Plasma of Arc Discharges 380 6.4.7. General Schematic and Parameters of Industrial Plasma-Chemical Technology of NO Synthesis from Air 38 1 6.5. Plasma-Chemical Ozone Generation: Mechanisms and Kinetics 382 6.5. 1 . Ozone Production as a Large-Scale Industrial Application of Non-Thermal Atmospheric-Pressure Plasma 382 6.5.2. Energy Cost and Energy Efficiency of Plasma-Chemical Production of Ozone in Some Experimental and Industrial Systems 383 6.5.3. Plasma-Chemical Ozone Formation in Oxygen 383 6.5.4. Optimum DBD Microdischarge Strength and Maximization of Energy Efficiency of Ozone Production in Oxygen Plasma 385 6.5.5. Plasma-Chemical Ozone Generation in Air 386 6.5.6. Discharge Poisoning Effect During Ozone Generation in Air Plasma 387 6.5.7. Temperature Effect on Plasma-Chemical Generation and Stability of Ozone 388 6.5.8. Negative Effect of Water Vapor on Plasma-Chemical Ozone Synthesis 389 6.5.9. Effect of Hydrogen, Hydrocarbons, and Other Admixtures on Plasma-Chemical Ozone Synthesis 390 6.6. Experimental and Industrial Plasma-Chemical Ozone Generators 392 6.6.1. Synthesis of Ozone in Dielectric Barrier Discharges as the Oldest and Still Most Successful Approach to Ozone Generation 392 6.6.2. Tubular DBD Ozone Generators and Urge Ozone Production Installations 392 6.6.3. Planar and Surface Discharge Configurations of DBD Ozone Generators 394 6.6.4. Synthesis of Ozone in Pulsed Corona Discharges 395 XIX Contents 6.6.5. Peculiarities of Ozone Synthesis in Pulsed Corona with Respect to DBD 396 6.6.6. Possible Specific Contribution of Vibrational Excitation of Molecules to Ozone Synthesis in Pulsed Corona Discharges 397 6.7. Synthesis of KrF2 and Other Aggressive Fluorine Oxidizers 399 6.7. 1 . Plasma-Chemical Gas-Phase Synthesis of KrF2 and Mechanism of Surface Stabilization of Reaction Products 399 6.7.2. Physical Kinetics of KrF2 Synthesis in Krypton Matrix 400 6.7.3. Synthesis of KrF2 in Glow Discharges, Barrier Discharges, and Photo-Chemical Systems 40 1 6.7.4. Synthesis of KrF2 in Non-Equilibrium Microwave Discharge in Magnetic Field 402 6.7.5. Plasma F2 Dissociation as the First Step in Synthesis of Aggressive Fluorine Oxidizers 402 6.7.6. Plasma-Chemical Synthesis of O2F2 and Other Oxygen Fluorides 403 6.7.7. Plasma-Chemical Synthesis of NF3 and Other Nitrogen Fluorides 404 6.7.8. Plasma-Chemical Synthesis of Xenon Fluorides and Other Fluorine Oxidizers 405 6.8. Plasma-Chemical Synthesis of Hydrazine (N^4), Ammonia (NH3), Nitrides of Phosphorus, and Some Other Inorganic Compounds 406 6.8.1. Direct Plasma-Chemical Hydrazine (N2H4) Synthesis from Nitrogen and Hydrogen in Non-Equilibrium Discharges 406 6.8.2. Hydrazine (N2H^) Synthesis from N2-H2 Mixture in Non-Self-Sustained Stationary Discharge Supported by Electron Beam 407 6.8.3. Kinetics of Hydrazine (N2H4) Synthesis from N2-H2 Mixture in Non-Thermal Plasma Conditions 407 6.8.4. Synthesis of Ammonia in DBD and Glow Discharges 408 6.8.5. Plasma-Chemical Synthesis of Nitrides of Phosphorus 409 6.8.6. Sulfur Gasification by Carbon Dioxide in Non-Thermal and Thermal Plasmas 409 6.8.7. CN and NO Synthesis in CO-N2 Plasma 4 1 2 6.8.8. Gas-Phase Synthesis Related to Plasma-Chemical Oxidation of HCI and SO2 413 Problems and Concept Questions 414 Plasma Synthesis, Treatment, and Processing of Inorganic Materials, and Plasma Metallurgy 4 1 7 7. 1 . Plasma Reduction of Oxides of Metals and Other Elements 4 1 7 7. 1 . 1. Thermal Plasma Reduction of Iron Ore, Iron Production from Oxides Using Hydrogen and Hydrocarbons, and Plasma-Chemical Steel Manufacturing 417 7. 1 .2. Productivity and Energy Efficiency of Thermal Plasma Reduction of Iron Ore 4 1 9 7.1.3. Hydrogen Reduction of Refractory Metal Oxides in Thermal Plasma and Plasma Metallurgy of Tungsten and Molybdenum 420 xx Contents 7. 1 .4. Thermal Plasma Reduction of Oxides of Aluminum and Other Inorganic Elements 423 7. 1 .5. Reduction of Metal Oxides and Production of Metals Using Non-Thermal Hydrogen Plasma 425 7. 1 .6. Non-Equilibrium Surface Heating and Evaporation Effect in Heterogeneous Plasma-Chemical Processes in Non-Thermal Discharges 426 7. 1 .7. Non-Equilibrium Surface Heating and Evaporation in Plasma Treatment of Thin Layers of Flat Surfaces: Effect of Short Pulses 427 7.2. Production of Metals and Other Elements by Carbothermic Reduction and Direct Decomposition of Their Oxides in Thermal Plasma 429 7.2. 1 . Carbothermic Reduction of Elements from Their Oxides 429 7.2.2. Production of Pure Metallic Uranium by Carbothermic Plasma-Chemical Reduction of Uranium Oxides 429 7.2.3. Production of Niobium by Carbothermic Plasma-Chemical Reduction of Niobium Oxides 430 7.2.4. Double-Stage Carbothermic Thermal Plasma Reduction of Rare and Refractory Metals from Their Oxides 430 7.2.5. Carbothermic Reduction of Iron from Iron Titanium Oxide Concentrates in a Thermal Plasma Fluidized Bed 43 1 7.2.6. Production of Silicon Monoxide by S1O2 Decomposition in Thermal Plasma 432 7.2.7. Experiments with S1O2 Reduction to Pure Silicon Monoxide in High-Temperature Radiofrequency ICP Discharges 433 7.2.8. Reduction of Aluminum by Direct Thermal Plasma Decomposition of Alumina 434 7.2.9. Reduction of Vanadium by Direct Plasma Decomposition of Its Oxides, V2O5 and V2O3 436 7.2. 1 0. Reduction of Indium and Germanium by Direct Plasma Decomposition of Their Oxides 439 7.3. Hydrogen Plasma Reduction of Metals and Other Elements from Their Halides 440 7.3. 1 . Using Halides for Production of Metals and Other Elements from Their Compounds 440 7.3.2. Plasma-Chemical Production of Boron: Thermal Plasma Reduction of BCI3 with Hydrogen 44 1 7.3.3. Hydrogen Reduction of Niobium from Its Pentachloride (N1CI5) in Thermal Plasma 442 7.3.4. Hydrogen Reduction of Uranium from Its Hexafluoride (UFb) in Thermal Plasma 442 7.3.5. Hydrogen Reduction of Tantalum (Ta), Molybdenum (Mo), Tungsten (W), Zirconium (Zr), and Hafnium (Hf) from Their Chlorides in Thermal Plasma 443 7.3.6. Hydrogen Reduction of Titanium (Ti), Germanium (Ge), and Silicon (Si) from Their Tetrachlorides in Thermal Plasma 445 7.3.7. Thermal Plasma Reduction of Some Other Halides with Hydrogen: Plasma Production of Intermetallic Compounds 446 XXI Contents 7.3.8. Hydrogen Reduction of Halides in Non-Thermal Plasma 448 7.4. Direct Decomposition of Halides in Thermal and Non-Thermal Plasma 448 7.4. 1 . Direct Decomposition of Halides and Production of Metals in Plasma 448 7.4.2. Direct UF6 Decomposition in Thermal Plasma: Requirements for Effective Product Quenching 449 7.4.3. Direct Decomposition of Halides of Some Alkali and Alkaline Earth Metals in Thermal Plasma 45 1 7.4.4. Direct Thermal Plasma Decomposition of Halides of Aluminum, Silicon, Arsenic, and Some Other Elements of Groups 3, 4, and 5 457 7.4.5. Direct Thermal Plasma Decomposition of Halides of Titanium (Ti), Zirconium (Zr), Hafnium (Hf), Vanadium (V), and Niobium (Nb) 461 7.4.6. Direct Decomposition of Halides of Iron (Fe), Cobalt (Co), Nickel (Ni), and Other Transition Metals in Thermal Plasma 465 7.4.7. Direct Decomposition of Halides and Reduction of Metals in Non-Thermal Plasma 469 7.4.8. Kinetics of Dissociation of Metal Halides in Non-Thermal Plasma: Distribution of Halides over Oxidation Degrees 470 7.4.9. Heterogeneous Stabilization of Products During Direct Decomposition of Metal Halides in Non-Thermal Plasma: Application of Plasma Centrifuges for Product Quenching 472 7.5. Plasma-Chemical Synthesis of Nitrides and Carbides of Inorganic Materials 472 7.5. 1 . Plasma-Chemical Synthesis of Metal Nitrides from Elements: Gas-Phase and Heterogeneous Reaction Mechanisms 472 7.5.2. Synthesis of Nitrides of Titanium and Other Elements by Plasma-Chemical Conversion of Their Chlorides 473 7.5.3. Synthesis of Silicon Nitride (S13N4) and Oxynitrides by Non-Thermal Plasma Conversion of Silane (S1H4) 474 7.5.4. Production of Metal Carbides by Solid-Phase Synthesis in Thermal Plasma of Inert Gases 475 7.5.5. Synthesis of Metal Carbides by Reaction of Solid Metal Oxides with Gaseous Hydrocarbons in Thermal Plasma 475 7.5.6. Gas-Phase Synthesis of Carbides in Plasma-Chemical Reactions of Halides with Hydrocarbons 475 7.5.7. Conversion of Solid Oxides into Carbides Using Gaseous Hydrocarbons Inside of RF-ICP Thermal Plasma Discharge and Some Other Plasma Technologies for Carbide Synthesis 477 7.6. Plasma-Chemical Production of Inorganic Oxides by Thermal Decomposition of Minerals, Aqueous Solutions, and Conversion Processes 477 7.6. 1 . Plasma Production of Zirconia (ΖγΟσ) by Decomposition of Zircon Sand (ZrSiO4) 477 7.6.2. Plasma Production of Manganese Oxide (MnO) by Decomposition of Rhodonite (MnSiO3) 478 XXII Contents 7.6.3. Plasma-Chemical Extraction of Nickel from Serpentine Minerals 482 7.6.4. Production of Uranium Oxide (U3O8) by Thermal Plasma Decomposition of Uranyl Nitrate (UC>2(NO3)2) Aqueous Solutions 482 7.6.5. Production of Magnesium Oxide (MgO) by Thermal Plasma Decomposition of Aqueous Solution or Melt of Magnesium Nitrate (Mg(NO3)2) 483 7.6.6. Plasma-Chemical Production of Oxide Powders for Synthesis of High-Temperature Superconducting Composites 483 7.6.7. Production of Uranium Oxide (U3O8) by Thermal Plasma Conversion of Uranium Hexafluoride (UF6) with Water Vapor 484 7.6.8. Conversion of Silicon Tetrafluoride (S1F4) with Water Vapor into Silica (S1O2) and HF in Thermal Plasma 484 7.6.9. Production of Pigment Titanium Dioxide (T1O2) by Thermal Plasma Conversion of Titanium Tetrachloride (ТіСЦ) in Oxygen 485 7.6.10. Thermal Plasma Conversion of Halides in Production of Individual and Mixed Oxides of Chromium, Aluminum, and Titanium 486 7.6. 11 . Thermal Plasma Treatment of Phosphates: Tricalcium Phosphate (СЗДРО^і) and Fluoroapatite (CasF(PO4)3) 487 7.6. 1 2. Oxidation of Phosphorus and Production of Phosphorus Oxides in Air Plasma 488 7.7. Plasma-Chemical Production of Hydrides, Borides, Carbonyls, and Other Compounds of Inorganic Materials 488 7.7. 1 . Production of Hydrides in Thermal and Non-Thermal Plasma 488 7.7.2. Non-Thermal Plasma Mechanisms of Hydride Formation by Hydrogen Gasification of Elements and by Hydrogénation of Thin Films 489 7.7.3. Synthesis of Metal Carbonyls in Non-Thermal Plasma: Effect of Vibrational Excitation of CO Molecules on Carbonyl Synthesis 490 7.7.4. Plasma-Chemical Synthesis of Borides of Inorganic Materials 492 7.7.5. Synthesis of Intermetallic Compounds in Thermal Plasma 493 7.8. Plasma Cutting, Welding, Melting, and Other High-Temperature Inorganic Material Processing Technologies 493 7.8.1. Plasma Cutting Technology 493 7.8.2. Plasma Welding Technology 494 7.8.3. About Plasma Melting and Remelting of Metals 495 7.8.4. Plasma Spheroidization and Densification of Powders 495 Problems and Concept Questions 496 Plasma-Surface Processing of Inorganic Materials: Micro- and Nano-Technologies 499 8. 1. Thermal Plasma Spraying 499 8. 1 . 1 . Plasma Spraying as a Thermal Spray Technology 499 XXIII 8. .2. 8. .3. 8. .4. 8. .5. 8. .6. 8. 1.7. Contents DC-Arc Plasma Spray: Air Plasma Spray 500 DC-Arc Plasma Spray: VPS, LPPS, CAPS, SPS, UPS, and Other Specific Spray Approaches 50 1 Radiofrequency Plasma Spray 502 Thermal Plasma Spraying of Monolithic Materials 503 Thermal Plasma Spraying of Composite Materials 505 Thermal Spray Technologies: Reactive Plasma Spray Forming 507 8. 1 .8. Thermal Plasma Spraying of Functionally Gradient Materials 508 8. 1 .9. Thermal Plasma Spray Modeling 5 1 0 8.2. Plasma-Chemical Etching: Mechanisms and Kinetics 510 8.2. 1 . Main Principles of Plasma Etching as Part of Integrated Circuit Fabrication Technology 510 8.2.2. Etch Rate, Anisotropy, Selectivity, and Other Plasma Etch Requirements 5 11 8.2.3. Basic Plasma Etch Processes: Sputtering 514 8.2.4. Basic Plasma Etch Processes: Pure Chemical Etching 5 1 5 8.2.5. Basic Plasma Etch Processes: Ion Energy-Driven Etching 516 8.2.6. Basic Plasma Etch Processes: Ion-Enhanced Inhibitor Etching 5 1 6 8.2.7. Surface Kinetics of Etching Processes; Kinetics of Ion Energy-Driven Etching 5 1 7 8.2.8. Discharges Applied for Plasma Etching: RF-CCP Sources, RF Diodes and Triodes, and MERIEs 5 1 9 8.2.9. Discharges Applied for Plasma Etching: High-Density Plasma Sources 520 8.2.10. Discharge Kinetics in Etching Processes: Ion Density and Ion Flux 520 8.2.1 1. Discharge Kinetics in Etching Processes: Density and Flux of Neutral Etchants 52 1 8.3. Specific Plasma-Chemical Etching Processes 523 8.3. 1 . Gas Composition in Plasma Etching Processes: Etchants-to-Unsaturates Flux Ratio 523 8.3.2. Pure Chemical F-Atom Etching of Silicon: Flamm Formulas and Doping Effect 523 8.3.3. Ion Energy-Driven F-Atom Etching Process: Main Etching Mechanisms 524 8.3.4. Plasma Etching of Silicon in CF4 Discharges: Kinetics of Fluorine Atoms 525 8.3.5. Plasma Etching of Silicon in CF< Discharges: Kinetics of CFX Radicals and Competition Between Etching and Carbon Deposition 526 8.3.6. Plasma Etching of Silicon by CI Atoms 528 8.3.7. Plasma Etching of SiO2 by F Atoms and CFX Radicals 529 8.3.8. ñasma Etching of Silicon Nitride (Si3N4) 529 8.3.9. Plasma Etching of Aluminum 529 8.3. 1 0. Plasma Etching of Photoresist 53О 8.3. 11 . Plasma Etching of Refraaory Metals and Semiconductors 530 8.4. Plasma Cleaning of CVD and Etching Reactors in Micro-Electronics and Other Plasma Cleaning Processes 53 1 xxiv Contents 8.4. 1 . In Situ Plasma Cleaning in Micro-Electronics and Related Environmental Issues 53 1 8.4.2. Remote Plasma Cleaning Technology in Microelectronics: Choice of Cleaning Feedstock Gas 532 8.4.3. Kinetics of F-Atom Generation from NF3, CF4, and C2F4 in Remote Plasma Sources 533 8.4.4. Surface and Volume Recombination of F Atoms in Transport Tube 535 8.4.5. Effectiveness of F Atom Transportation from Remote Plasma Source 538 8.4.6. Other Plasma Cleaning Processes: Passive Plasma Cleaning 539 8.4.7. Other Plasma Cleaning Processes: Active Plasma Cleaning 540 8.4.8. Wettability Improvement of Metallic Surfaces by Active and Passive Plasma Cleaning 541 8.5. Plasma Deposition Processes: Plasma-Enhanced Chemical Vapor Deposition and Sputtering Deposition 54 1 8.5. 1 . Plasma-Enhanced Chemical Vapor Deposition: General Principles 541 8.5.2. PECVD of Thin Films of Amorphous Silicon 542 8.5.3. Kinetics of Amorphous Silicon Film Deposition in Silane (SiH4) Discharges 543 8.5.4. Plasma Processes of Silicon Oxide (SÍO2) Film Growth: Direct Silicon Oxidation 545 8.5.5. Plasma Processes of Silicon Oxide (S1O2) Film Growth: PECVD from Silane-Oxygen Feedstock Mixtures and Conformai and Non-Conformal Deposition Within Trenches 545 8.5.6. Plasma Processes of Silicon Oxide (S1O2) Film Growth: PECVD from ТЕОЅ-Ог Feed-Gas Mixtures 547 8.5.7. PECVD Process of Silicon Nitride (Si3 N4) 547 8.5.8. Sputter Deposition Processes: General Principles 548 8.5.9. Physical Sputter Deposition 548 8.5. 1 0. Reactive Sputter Deposition Processes 549 8.5. 11 . Kinetics of Reactive Sputter Deposition: Hysteresis Effect 550 8.6. Ion Implantation Processes: Ion-Beam Implantation and Plasma-Immersion Ion Implantation 55 1 8.6. 1 . Ion-Beam Implantation 55 1 8.6.2. Plasma-Immersion Ion Implantation: General Principles 552 8.6.3. Dynamics of Sheath Evolution in Plasma-Immersion Ion Implantation: From Matrix Sheath to Child Law Sheath 553 8.6.4. Time Evolution of Implantation Current in PHI Systems 555 8.6.5. Pill Applications for Processing Semiconductor Materials 556 8.6.6. Pill Applications for Modifying Metallurgical Surfaces: Plasma Source Ion Implantation 557 8.7. Microarc (Electrolytic-Spark) Oxidation Coating and Other Microdischarge Surface Processing Systems 557 8.7.1. Microarc (Electrolytic-Spark) Oxidation Coating: General Features 557 8.7.2. Major Characteristics of the Microarc (Electrolytic-Spark) Oxidation Process 558 xxv Contents 8.7.3. Mechanism of Microarc (Electrolytic-Spark) Oxidation Coating of Aluminum in Sulfuric Acid 559 8.7.4. Breakdown of Oxide Film and Starting Microarc Discharge 560 8.7.5. Microarc Discharge Plasma Chemistry of Oxide Coating Deposition on Aluminum in Concentrated Sulfuric Acid Electrolyte 562 8.7.6. Direct Micropatterning and Microfabrication in Atmospheric-Pressure Microdischarges 563 8.7.7. Microetching, Microdeposition, and Microsurface Modification by Atmospheric-Pressure Microplasma Discharges 564 8.8. Plasma Nanotechnologies: Nanoparticles and Dusty Plasmas 566 8.8. 1 . Nanoparticles in Plasma: Kinetics of Dusty Plasma Formation in Low-Pressure Silane Discharges 566 8.8.2. Formation of Nanoparticles in Silane: Plasma Chemistry of Birth and Catastrophic Evolution 567 8.8.3. Critical Phenomena in Dusty Plasma Kinetics: Nucleation of Nanoparticles, Winchester Mechanism, and Growth of First Generation of Negative Ion Clusters 570 8.8.4. Critical Size of Primary Nanoparticles in Silane Plasma 572 8.8.5. Critical Phenomenon of Neutral-Particle Trapping in Silane Plasma 573 8.8.6. Critical Phenomenon of Super-Small Nanoparticle Coagulation 575 8.8.7. Critical Change of Plasma Parameters due to Formation of Nanoparticles: α—γ Transition 577 8.8.8. Other Processes of Plasma Production of Nanoparticles: Synthesis of Aluminum Nanopowder and Luminescent Silicon Quantum Dots 579 8.8.9. Plasma Synthesis of Nanocomposite Particles 580 8.9. Plasma Nanotechnologies: Synthesis of Fullerenes and Carbon Nanotubes 58 1 8.9. 1 . Highly Organized Carbon Nanostructures: Fullerenes and Carbon Nanotubes 58 1 8.9.2. Plasma Synthesis of Fullerenes 583 8.9.3. Plasma Synthesis of Endohedral Fullerenes 583 8.9.4. Plasma Synthesis of Carbon Nanotubes by Dispersion of Thermal Arc Electrodes 584 8.9.5. Plasma Synthesis of Carbon Nanotubes by Dissociation of Carbon Compounds 584 8.9.6. Surface Modification of Carbon Nanotubes by RF ñasma 585 Problems and Concept Questions 586 9 Organic and Polymer Plasma Chemistry 589 9.1. Thermal Plasma Pyrolysis of Methane and Other Hydrocarbons: Production of Acetylene and Ethylene 589 9. 1 . 1 . Kinetics of Thermal Plasma Pyrolysis of Methane and Other Hydrocarbons: The Kassel Mechanism 589 9. 1 .2. Kinetics of Double-Step ñasma Pyrolysis of Hydrocarbons 59 1 XXVI Contents 9. 1 .3. Electric Cracking of Natural Gas with Production of Acetylene-Hydrogen or Acetylene-Ethylene-Hydrogen Mixtures 59 1 9. 1 .4. Other Processes and Regimes of Hydrocarbon Conversion in Thermal Plasma 592 9. 1 .5. Some Chemical Engineering Aspects of Plasma Pyrolysis of Hydrocarbons 595 9. 1 .6. Production of Vinyl Chloride as an Example of Technology Based on Thermal Plasma Pyrolysis of Hydrocarbons 596 9. 1 .7. Plasma Pyrolysis of Hydrocarbons with Production of Soot and Hydrogen 597 9. 1 .8. Thermal Plasma Production of Acetylene by Carbon Vapor Reaction with Hydrogen or Methane 598 9.2. Conversion of Methane into Acetylene and Other Processes of Gas-Phase Conversion of Hydrocarbons in Non-Thermal Plasmas 598 9.2. 1 . Energy Efficiency of CH4 Conversion into Acetylene in Thermal and Non-Thermal Plasmas 598 9.2.2. High-Efficiency CH4 Conversion into C2H2 in Non-Thermal Moderate-Pressure Microwave Discharges 598 9.2.3. Limits of Quasi-Equilibrium Kassel Kinetics for Plasma Conversion of CH4 into C2H2 600 9.2.4. Contribution of Vibrational Excitation to Methane Conversion into Acetylene in Non-Equilibrium Discharge Conditions 601 9.2.5. Non-Equilibrium Kinetics of Methane Conversion into Acetylene Stimulated by Vibrational Excitation 602 9.2.6. Other Processes of Decomposition, Elimination, and Isomerization of Hydrocarbons in Non-Equilibrium Plasma: Plasma Catalysis 603 9.3. Plasma Synthesis and Conversion of Organic Nitrogen Compounds 604 9.3. 1 . Synthesis of Dicyanogen (C2N2) from Carbon and Nitrogen in Thermal Plasma 604 9.3.2. Co-Production of Hydrogen Cyanide (HCN) and Acetylene (C2H2) from Methane and Nitrogen in Thermal Plasma Systems 605 9.3.3. Hydrogen Cyanide (HCN) Production from Methane and Nitrogen in Non-Thermal Plasma 606 9.3.4. Production of HCN and H2 in CH4-NH3 Mixture in Thermal and Non-Thermal Plasmas 608 9.3.5. Thermal and Non-Thermal Plasma Conversion Processes in CO-N2 Mixture 609 9.3.6. Other Non-Equilibrium Plasma Processes of Organic Nitrogen Compounds Synthesis 610 9.4. Organic Plasma Chemistry of Chlorine and Fluorine Compounds 6 11 9.4. 1 . Thermal Plasma Synthesis of Reactive Mixtures for Production of Vinyl Chloride 6 11 9.4.2. Thermal Plasma Pyrolysis of Dichloroethane, Butyl Chloride, Hexachlorane, and Other Organic Chlorine Compounds for Further Synthesis of Vinyl Chloride 6 1 2 9.4.3. Thermal Plasma Pyrolysis of Organic Fluorine Compounds 6 1 3 XXVII Contents 9.4.4. Pyrolysis of Organic Fluorine Compounds in Thermal Plasma of Nitrogen: Synthesis of Nitrogen-Containing Fluorocarbons 9.4.5. Thermal Plasma Pyrolysis of Chlorofluorocarbons 6 1 4 9.4.6. Non-Thermal Plasma Conversion of CFCs and Other Plasma Processes with Halogen-Containing Organic Compounds 616 9.5. Plasma Synthesis of Aldehydes, Alcohols, Organic Acids, and Other Oxygen-Containing Organic Compounds 617 9.5. 1 . Non-Thermal Plasma Direct Synthesis of Methanol from Methane and Carbon Dioxide 6 1 7 9.5.2. Non-Thermal Plasma Direct Synthesis of Methanol from Methane and Water Vapor 6 1 7 9.5.3. Production of Formaldehyde (CH2O) by CH4 Oxidation in Thermal and Non-Thermal Plasmas 618 9.5.4. Non-Thermal Plasma Oxidation of Methane and Other Hydrocarbons with Production of Methanol and Other Organic Compounds 619 9.5.5. Non-Thermal Plasma Synthesis of Aldehydes, Alcohols, and Organic Acids in Mixtures of Carbon Oxides with Hydrogen: Organic Synthesis in CO2-H2O Mixture 620 9.5.6. Non-Thermal Plasma Production of Methane and Acetylene from Syngas (CO-H2) 621 9.6. Plasma-Chemical Polymerization of Hydrocarbons: Formation of Thin Polymer Films 622 9.6. 1 . General Features of Plasma Polymerization 622 9.6.2. General Aspects of Mechanisms and Kinetics of Plasma Polymerization 622 9.6.3. Initiation of Polymerization by Dissociation of Hydrocarbons in Plasma Volume 623 9.6.4. Heterogeneous Mechanisms of Plasma-Chemical Polymerization of С 1 /C2 Hydrocarbons 625 9.6.5. Plasma-Initiated Chain Polymerization: Mechanisms of Plasma Polymerization of Methyl Methacrylate 625 9.6.6. Plasma-Initiated Graft Polymerization 626 9.6.7. Formation of Polymer Macroparticles in Volume of Non-Thermal Plasma in Hydrocarbons 627 9.6.8. Plasma-Chemical Reactors for Deposition of Thin Polymer Films 628 9.6.9. Some Specific Properties of Plasma-Polymerized Films 628 9.6.10. Electric Properties of Plasma-Polymerized Films 630 9.6.1 1. Some Specific Applications of Plasma-Polymerized Film Deposition 63 1 9.7. Interaction of Non-Thermal Plasma with Polymer Surfaces: Fundamentals of Plasma Modification of Polymers 632 9.7. 1 . Plasma Treatment of Polymer Surfaces 632 9.7.2. Major Initial Chemical Products Created on Polymer Surfaces During Their Interaction with Non-Thermal Plasma 633 xxviii Contents 9.7.3. Kinetics of Formation of Main Chemical Products in Process of Polyethylene Treatment in Pulsed RF Discharges 634 9.7.4. Kinetics of Polyethylene Treatment in Continuous RF Discharge 636 9.7.5. Non-Thermal Plasma Etching of Polymer Materials 636 9.7.6. Contribution of Electrons and Ultraviolet Radiation in the Chemical Effect of Plasma Treatment of Polymer Materials 637 9.7.7. Interaction of Atoms, Molecules, and Other Chemically Active Heavy Particles Generated in Non-Thermal Plasma with Polymer Materials: Plasma-Chemical Oxidation of Polymer Surfaces 638 9.7.8. Plasma-Chemical Nitrogenation of Polymer Surfaces 639 9.7.9. Plasma-Chemical Fluorination of Polymer Surfaces 640 9.7. 1 0. Synergetic Effect of Plasma-Generated Active Atomic/Molecular Particles and UV Radiation During Plasma Interaction with Polymers 640 9.7. 11 . Aging Effect in Plasma-Treated Polymers 64 1 9.8. Applications of Plasma Modification of Polymer Surfaces 64 1 9.8. 1 . Plasma Modification of Wettability of Polymer Surfaces 64 1 9.8.2. Plasma Enhancement of Adhesion of Polymer Surfaces: Metallization of Polymer Surfaces 643 9.8.3. Plasma Modification of Polymer Fibers and Polymer Membranes 645 9.8.4. Plasma Treatment of Textile Fibers: Treatment of Wool 645 9.8.5. Plasma Treatment of Textile Fibers: Treatment of Cotton and Synthetic Textiles and the Lotus Effect 648 9.8.6. Specific Conditions and Results of Non-Thermal Plasma Treatment of Textiles 649 9.8.7. Plasma-Chemical Processes for Final Fabric Treatment 649 9.8.8. Plasma-Chemical Treatment of Plastics, Rubber Materials, and Special Polymer Films 654 9.9. Plasma Modification of Gas-Separating Polymer Membranes 655 9.9. 1 . Application of Polymer Membranes for Gas Separation: Enhancement of Polymer Membrane Selectivity by Plasma Polymerization and by Plasma Modification of Polymer Surfaces 655 9.9.2. Microwave Plasma System for Surface Modification of Gas-Separating Polymer Membranes 656 9.9.3. Influence of Non-Thermal Discharge Treatment Parameters on Permeability of Plasma-Modified Gas-Separating Polymer Membranes 657 9.9.4. Plasma Enhancement of Selectivity of Gas-Separating Polymer Membranes 659 9.9.5. Chemical and Structural Modification of Surface Layers of Gas-Separating Polymer Membranes by Microwave Plasma Treatment 66 1 9.9.6. Theoretical Model of Modification of Polymer Membrane Surfaces in After-Glow of Oxygen-Containing Plasma of Non-Polymerizing Gases: Lame Equation 662 XXIX Contents 9.9.7. Elasticity/Electrostatics Similarity Approach to Permeability of Plasma-Treated Polymer Membranes 663 9.9.8. Effect of Cross-Link s Mobility and Clusterization on Permeability of Plasma-Treated Polymer Membranes 664 9.9.9. Modeling of Selectivity of Plasma-Treated Gas-Separating Polymer Membranes 666 9.9.10. Effect of Initial Membrane Porosity on Selectivity of Plasma-Treated Gas-Separating Polymer Membranes 667 9. 1 0. Plasma-Chemical Synthesis of Diamond Films 668 9. 1 0. 1 . General Features of Diamond-Film Production and Deposition in Plasma 668 9. 1 0.2. Different Discharge Systems Applied for Synthesis of Diamond Films 669 9. 1 0.3. Non-Equilibrium Discharge Conditions and Gas-Phase Plasma-Chemical Processes in the Systems Applied for Synthesis of Diamond Films 67 1 9.10.4. Surface Chemical Processes of Diamond-Film Growth in Plasma 672 9. 1 0.5. Kinetics of Diamond-Film Growth 673 Problems and Concept Questions 674 10 Plasma-Chemical Fuel Conversion and Hydrogen Production 676 1 0. 1 . Plasma-Chemical Conversion of Methane, Ethane, Propane, and Natural Gas into Syngas (СО-Нг) and Other Hydrogen-Rich Mixtures 676 1 0.1. 1. General Features of Plasma-Assisted Production of Hydrogen from Hydrocarbons: Plasma Catalysis 676 10.1.2. Syngas Production by Partial Oxidation of Methane in Different Non-Equilibrium Plasma Discharges, Application of Gliding Arc Stabilized in Reverse Vortex (Tornado) Flow 678 10. 1 .3. Plasma Catalysis for Syngas Production by Partial Oxidation of Methane in Non-Equilibrium Gliding Arc Stabilized in Reverse Vortex (Tornado) Flow 68 1 10.1.4. Non-Equilibrium Plasma-Catalytic Syngas Production from Mixtures of Methane with Water Vapor 683 10.1.5. Non-Equilibrium Plasma-Chemical Syngas Production from Mixtures of Methane with Carbon Dioxide 685 10.1.6. Plasma-Catalytic Direct Decomposition (Pyrolysis) of Ethane in Atmospheric-Pressure Microwave Discharges 687 10.1.7. Plasma Catalysis in the Process of Hydrogen Production by Direct Decomposition (Pyrolysis) of Methane 688 10.1.8. Mechanism of Plasma Catalysis of Direct CH4 Decomposition in Non-Equilibrium Discharges 689 10.1.9. Plasma-Chemical Conversion of Propane, Propane-Butane Mixtures, and Other Gaseous Hydrocarbons to Syngas and Other Hydrogen-Rich Mixtures $90 xxx Contents 1 0.2. Plasma-Chemical Reforming of Liquid Fuels into Syngas (CO-H2): On-Board Generation of Hydrogen-Rich Gases for Internal Combustion Engine Vehicles 692 1 0.2. 1 . Specific Applications of Plasma-Chemical Reforming of Liquid Automotive Fuels: On-Board Generation of Hydrogen-Rich Gases 692 1 0.2.2. Plasma-Catalytic Steam Conversion and Partial Oxidation of Kerosene for Syngas Production 693 1 0.2.3. Plasma-Catalytic Conversion of Ethanol with Production of Syngas 694 10.2.4. Plasma-Stimulated Reforming of Diesel Fuel and Diesel Oils into Syngas 697 10.2.5. Plasma-Stimulated Reforming of Gasoline into Syngas 698 1 0.2.6. Plasma-Stimulated Reforming of Aviation Fuels into Syngas 698 1 0.2.7. Plasma-Stimulated Partial Oxidation Reforming of Renewable Biomass: Biodiesel 699 10.2.8. Plasma-Stimulated Partial Oxidation Reforming of Bio-Oils and Other Renewable Biomass into Syngas 700 10.3. Combined Plasma-Catalytic Production of Hydrogen by Partial Oxidation of Hydrocarbon Fuels 70 1 1 0.3. 1 . Combined Plasma-Catalytic Approach Versus Plasma Catalysis in Processes of Hydrogen Production by Partial Oxidation of Hydrocarbons 70 1 10.3.2. Pulsed-Corona-Based Combined Plasma-Catalytic System for Reforming of Hydrocarbon Fuel and Production of Hydrogen-Rich Gases 702 1 0.3.3. Catalytic Partial Oxidation Reforming of Isooctane 703 10.3.4. Partial Oxidation Reforming of Isooctane Stimulated by Non-Equilibrium Atmospheric-Pressure Pulsed Corona Discharge 703 1 0.3.5. Reforming of Isooctane and Hydrogen Production in Pulsed-Corona-Based Combined Plasma-Catalytic System 704 10.3.6. Comparison of Isooctane Reforming in Plasma Preprocessing and Plasma Postprocessing Configurations of the Combined Plasma-Catalytic System 706 10.4. Plasma-Chemical Conversion of Coal: Mechanisms, Kinetics, and Thermodynamics 707 10.4.1. Coal and Its Composition, Structure, and Conversion to Other Fuels 707 1 0.4.2. Thermal Conversion of Coal 708 10.4.3. Transformations of Sulfur-Containing Compounds During Thermal Conversion of Coal 7 1 0 10.4.4. Transformations of Nitrogen-Containing Compounds During Thermal Conversion of Coal 7 11 10.4.5. Thermodynamic Analysis of Coal Conversion in Thermal Plasma 711 10.4.6. Kinetic Phases of Coal Conversion in Thermal Plasma 712 XXXI Contents 10.4.7. Kinetic Analysis of Thermal Plasma Conversion of Coal: Kinetic Features of the Major Phases of Coal Conversion in Plasma 14 10.4.8. Coal Conversion in Non-Thermal Plasma 715 1 0.5. Thermal and Non-Thermal Plasma-Chemical Systems for Coal Conversion 716 1 0.5. 1 · General Characteristics of Coal Conversion in Thermal Plasma Jets 716 10.5.2. Thermal Plasma Jet Pyrolysis of Coal in Argon, Hydrogen, and Their Mixtures: Plasma Jet Production of Acetylene from Coal 716 10.53. Heating of Coal Particles and Acetylene Quenching During Pyrolysis of Coal in Argon and Hydrogen Plasma Jets 719 1 0.5.4- Pyrolysis of Coal in Thermal Nitrogen Plasma Jet with Co-Production of Acetylene and Hydrogen Cyanide 72 1 1 0.5.5. Coal Gasification in a Thermal Plasma Jet of Water Vapor 72 1 10.5.6. Coal Gasification by H2O and Syngas Production in Thermal Plasma Jets: Application of Steam Plasma Jets and Plasma Jets of Other Gases 722 1 0.5.7. Coal Gasification in Steam-Oxygen and Air Plasma Jets 724 1 0.5.8. Conversion of Coal Directly in Electric Arcs 724 10.5.9. Direct Pyrolysis of Coal with Production of Acetylene (C2H2) in Arc Plasma of Argon and Hydrogen 724 1 0.5. 1 0. Direct Gasification of Coal with Production of Syngas (H2-CO) in Electric Arc Plasma of Water Vapor 725 10.5.1 1. Coal Conversion in Non-Equilibrium Plasma of Microwave Discharges 726 1 0.5. 1 2. Coal Conversion in Non-Equilibrium Microwave Discharges Containing Water Vapor or Nitrogen 728 10.5.13. Coal Conversion in Low-Pressure Glow and Other Strongly Non-Equilibrium Non-Thermal Discharges 730 10.5.14. Plasma-Chemical Coal Conversion in Corona and Dielectric Barrier Discharges 73 1 1 0.6. Energy and Hydrogen Production from Hydrocarbons with Carbon Bonding in Solid Suboxides and without CO2 Emission 732 1 0.6. 1 . Highly Ecological Hydrogen Production by Partial Oxidation of Hydrocarbons without CO2 Emission: Plasma Generation of Carbon Suboxides 732 10.6.2. Thermodynamics of the Conversion of Hydrocarbons into Hydrogen with Production of Carbon Suboxides and without CO2 Emission 732 1 0.6.3. Plasma-Chemical Conversion of Methane and Coal into Carbon Suboxide 734 10.6.4. Mechanochemical Mechanism of Partial Oxidation of Coal with Formation of Suboxides 735 10.6.5. Kinetics of Mechanochemical Partial Oxidation of Coal to Carbon Suboxides 736 і 0.6.6. Biomass Conversion into Hydrogen with the Production of Carbon Suboxides and Without CO2 Emission 737 xxxii Contents 10.7. Hydrogen Sulfide Decomposition in Plasma with Production of Hydrogen and Sulfur: Technological Aspects of Plasma-Chemical Hydrogen Production 738 1 0.7. 1 . H2S Dissociation in Plasma with Production of Hydrogen and Elemental Sulfur and Its Industrial Applications 738 10.7.2. Application of Microwave, Radiofrequency, and Arc Discharges for H2S Dissociation with Production of Hydrogen and Elemental Sulfur 740 10.7.3. Technological Aspects of Plasma-Chemical Dissociation of Hydrogen Sulfide with Production of Hydrogen and Elemental Sulfur 74 1 1 0.7.4. Kinetics of H2S Decomposition in Plasma 744 10.7.5. Non-Equilibrium Clusterization in a Centrifugal Field and Its Effect on H2S Decomposition in Plasma with Production of Hydrogen and Condensed-Phase Elemental Sulfur 745 10.7.6. Influence of the Centrifugal Field on Average Cluster Sizes: Centrifugal Effect Criterion for Energy Efficiency of H2S Decomposition in Plasma 748 10.7.7. Effect of Additives (CO2, Ог, and Hydrocarbons) on Plasma-Chemical Decomposition of H2S 749 1 0.7.8. Technological Aspects of H2 Production from Water in Double-Step and Multi-Step Plasma-Chemical Cycles 75 1 Problems and Concept Questions 753 11 Plasma Chemistry in Energy Systems and Environmental Control 755 I I.I. Plasma Ignition and Stabilization of Flames 755 I I.I.I. General Features of Plasma-Assisted Ignition and Combustion 755 11.1 .2. Experiments with Plasma Ignition of Supersonic Flows 757 11 . 1 .3. Non-Equilibrium Plasma Ignition of Fast and Transonic Flows: Low-Temperature Fuel Oxidation Versus Ignition 758 11 . 1 .4. Plasma Sustaining of Combustion in Low-Speed Gas Flows 760 11 . 1 .5. Kinetic Features of Plasma-Assisted Ignition and Combustion 76 1 11 . 1 .6. Combined Non-Thermal/Quasi-Thermal Mechanism of Flame Ignition and Stabilization: Zebra Ignition and Application of Non-Equilibrium Magnetic Gliding Arc Discharges 763 11 . 1 .7. Magnetic Gliding Arc Discharge Ignition of Counterflow Flame 765 11 . 1 .8. Plasma Ignition and Stabilization of Combustion of Pulverized Coal: Application for Boiler Furnaces 768 11 .2. Mechanisms and Kinetics of Plasma-Stimulated Combustion 770 11 .2. 1 . Contribution of Different Plasma-Generated Chemically Active Species in Non-Equilibrium Plasma Ignition and Stabilization of Flames 770 11 .2.2. Numerical Analysis of Contribution of Plasma-Generated Radicals to Stimulate Ignition 770 xxxiii Contents 11 .2.3. Possibility of Plasma-Stimulated Ignition Below the Auto-Ignition Limit: Conventional Kinetic Mechanisms of Explosion of Hydrogen and Hydrocarbons 77 1 11 .2.4. Plasma Ignition in Н^-Ог-Не Mixtures 773 I 1.2.5. Plasma Ignition in Hydrocarbon-Air Mixtures 774 11 .2.6. Analysis of Subthreshold Plasma Ignition Initiated Thermally: The Bootstrap Effect 775 11 .2.7. Subthreshold Ignition Initiated by Plasma-Generated Radicals 776 1 1.2.8. Subthreshold Ignition Initiated by Plasma-Generated Excited Species 778 11 .2.9. Contribution of Plasma-Excited Molecules into Suppressing HO2 Formation During Subthreshold Plasma Ignition of Hydrogen 779 1 1.2.10. Subthreshold Plasma Ignition of Hydrogen Stimulated by Excited Molecules Through Dissociation of HO2 78 1 11 .2. 11 . Subthreshold Plasma Ignition of Ethylene Stimulated by Excited Molecules Effect of NO 783 11 .2. 1 2. Contribution of Ions in the Subthreshold Plasma Ignition 784 11 .2. 1 3. Energy Efficiency of Plasma-Assisted Combustion in Ram/Scramjet Engines 785 1 1.3. Ion and Plasma Thrusters 787 1 1.3.1. General Features of Electric Propulsion: Ion and Plasma Thrusters 787 1 1.3.2. Optimal Specific Impulse of an Electric Rocket Engine 788 1 1.3.3. Electric Rocket Engines Based on Ion Thrusters 789 1 1.3.4. Classification of Plasma Thrusters: Electrothermal Plasma Thrusters 79Q 11 .3.5. Electrostatic Plasma Thrusters 79 1 1 1.3.6. Magneto-Plasma-Dynamic Thrusters 791 11 .3.7. Pulsed Plasma Thrusters 792 11 .4. Plasma Applications in High-Speed Aerodynamics 792 11 .4. 1 . Plasma Interaction with High-Speed Flows and Shocks 792 11 .4.2. Plasma Effects on Shockwave Strutture and Velocity 793 11 .4.3. Plasma Aerodynamic Effects in Ballistic Range Tests 793 11 .4.4. Global Thermal Effects: Diffuse Discharges 795 1 1-4.5. High-Speed Aerodynamic Effects of Filamentary Discharges 795 1 1.4.6. Aerodynamic Effects of Surface and Dielectric Barrier D.scharges: Aerodynamic Plasma Actuators 797 14.7. Plasma Application for Inlet Shock Control: Magneto-Hydrodynamics in Flow Control and Power Extraction 798 11 ς μ 4 8 Pl ľ,™ Jet lnieCtion in HiSh-SFx*d Aerodynamics 799 1 1.5. Magneto-Hydrodynamic Generators and Other Plasma Systems of Power Electronics 799 1 1.5.1. Plasma Power Electronics 799 1.5.2. Plasma MHD Generators in Power Electronics: Different Types of MHD Generators 800 1.5.3. Major Electric and Thermodynamic Characteristics of MHD Generators 30, xxxiv Contents 1 1.5.4. Electric Conductivity of Working Fluid in Plasma MHD Generators 802 11 .5.5. Plasma Thermionic Converters of Thermal Energy into Electricity: Plasma Chemistry of Cesium 803 11 .5.6. Gas-Discharge Commutation Devices 804 11 .6. Plasma Chemistry in Lasers and Light Sources 804 11 .6. 1 . Classification of Lasers: Inversion Mechanisms in Gas and Plasma Lasers and Users on Self-Limited Transitions 804 11 .6.2. Pulse-Periodic Self-Limited Lasers on Metal Vapors and on Molecular Transitions 805 1 1.6.3. Quasi-Stationary Inversion in Collisional Gas-Discharge Lasers: Excitation by Long-Lifetime Particles and Radiative Deactivation 806 11 .6.4. Ionic Gas-Discharge Lasers of Low Pressure: Argon and Не -Ne Lasers 806 1 1.6.5. Inversion Mechanisms in Plasma Recombination Regime: Plasma Lasers 807 11 .6.6. Plasma Lasers Using Electronic Transitions: He-Cd, He-Zn, He-Sr, and Penning Users 807 1 1.6.7. Plasma Users Based on Atomic Transitions of Xe and on Transitions of Multi-Charged Ions 808 11 .6.8. Excimer Lasers 809 11 .6.9. Gas-Discharge Users Using Vibrational-Rotational Transitions: CO2 Users 8 1 0 11 .6. 1 0. Gas-Discharge Users Using Vibrational-Rotational Transitions: CO Users 81 1 11 .6. 11 . Plasma Stimulation of Chemical Users 8 11 11 .6. 1 2. Energy Efficiency of Chemical Users: Chemical Users with Excitation Transfer 8 1 2 11 .6. 1 3. Plasma Sources of Radiation with High Spectral Brightness 8 1 4 11 .6. 1 4. Mercury-Containing and Mercury-Free Plasma Umps 8 1 5 11 .6. 1 5. Plasma Display Panels and Plasma TV 816 1 1.7. Non-Thermal Plasma in Environmental Control: Cleaning Exhaust Gas of SO2 and NOX 8 1 7 11 .7. 1 . Industrial SO2 Emissions and Plasma Effectiveness of Cleaning Them 8 1 7 11 .7.2. Plasma-Chemical SO2 Oxidation to SO3 in Air and Exhaust Gas Cleaning Using Relativistic Electron Beams 818 11 .7.3. SO2 Oxidation in Air to SO3 Using Continuous and Pulsed Corona Discharges 8 1 9 1 1.7.4. Plasma-Stimulated Liquid-Phase Chain Oxidation of SO2 in Droplets 820 11 .7.5. Plasma-Catalytic Chain Oxidation of SO2 in Clusters 822 11 .7.6. Simplified Mechanism and Energy Balance of the Plasma-Catalytic Chain Oxidation of SO2 in Clusters 823 11 .7.7. Plasma-Stimulated Combined Oxidation of NOX and SO2 in Air: Simultaneous Industrial Exhaust Gas Cleaning of Nitrogen and Sulfur Oxides 824 xxxv Contents I 1 .7.8. Plasma-Assisted After Treatment of Automotive Exhaust: Kinetic Mechanism of Double-Stage Plasma-Catalytic NOX and Hydrocarbon Remediation 825 11 .7.9. Plasma-Assisted Catalytic Reduction of NOX in Automotive Exhaust Using Pulsed Corona Discharge: Cleaning of Diesel Engine Exhaust 827 1 1.8. Non-Thermal Plasma Treatment of Volatile Organic Compound Emissions, and Some Other Plasma-Ecological Technologies 830 11 .8. 1 . General Features of the Non-Thermal Plasma Treatment of Volatile Organic Compound Emissions 830 11 .8.2. Mechanisms and Energy Balance of the Non-Thermal Plasma Treatment of VOC Emissions: Treatment of Exhaust Gases from Paper Mills and Wood Processing Plants 830 1 1.8.3. Removal of Acetone and Methanol from Air Using Pulsed Corona Discharge 832 11 .8.4. Removal of Dimethyl Sulfide from Air Using Pulsed Corona Discharge 833 11 .8.5. Removal of a-Pinene from Air Using Pulsed Corona Discharge; Plasma Treatment of Exhaust Gas Mixtures 835 1 1.8.6. Treatment of Paper Mill Exhaust Gases Using Wet Pulsed Corona Discharge 836 1 1.8.7. Non-Thermal Plasma Control of Diluted Urge-Volume Emissions of Chlorine-Containing VOCs 839 1 1.8.8. Non-Thermal Plasma Removal of Elemental Mercury from Coal-Fired Power Plants and Other Industrial Offgases 843 11 .8.9. Mechanism of Non-Thermal Plasma Removal of Elemental Mercury from Exhaust Gases 844 1 1.8.10. Plasma Decomposition of Freons (Chlorofluorocarbons) and Other Waste Treatment Processes Organized in Thermal and Transitional Discharges 845 Problems and Concept Questions 846 12 Plasma Biology and Plasma Medicine 848 12.1. Non-Thermal Plasma Sterilization of Different Surfaces: Mechanisms of Plasma Sterilization 848 1 2. 1 . 1 . Application of Low-Pressure Plasma for Biological Sterilization 848 12.1.2. Inactivation of Micro-Organisms by Non-Equilibrium High-Pressure Plasma 850 1 2. 1 .3. Plasma Species and Factors Active for Sterilization: Direct Effect of Charged Particles 85 1 1 2. 1 .4. Plasma Species and Factors Active for Sterilization: Effects of Electric Fields, Particularly Related to Charged Plasma Particles 854 1 2. 1 .5. Plasma Species and Factors Active for Sterilization: Effect of Reactive Neutral Species 855 1 2. 1 .6. Plasma Species and Factors Active for Sterilization: Effects of Heat 858 xxxvi Contents 1 2. 1 .7. Plasma Species and Factors Active for Sterilization: Effect of Ultraviolet Radiation 858 12.2. Effects of Atmospheric-Pressure Air Plasma on Bacteria and Cells: Direct Versus Indirect Treatment, Surface Versus In-Depth Treatment, and Apoptosis Versus Necrosis 859 1 2.2. 1 . Direct and Indirect Effects of Non-Thermal Plasma on Bacteria 859 1 2.2.2. Two Experiments Proving Higher Effectiveness of Direct Plasma Treatment of Bacteria 862 1 2.2.3. Surface Versus In-Depth Plasma Sterilization: Penetration of DBD Treatment into Fluid for Biomedical Applications 863 12.2.4. Apoptosis Versus Necrosis in Plasma Treatment of Cells: Sublethal Plasma Treatment Effects 865 1 2.3. Non-Thermal Plasma Sterilization of Air Streams: Kinetics of Plasma Inactivation of Biological Micro-Organisms 866 12.3.1. General Features of Plasma Inactivation of Airborne Bacteria 866 12.3.2. Pathogen Detection and Remediation Facility for Plasma Sterilization of Air Streams 867 12.3.3. Special DBD Configuration - the Dielectric Barrier Grating Discharge - Applied in PDRF for Plasma Sterilization of Air Streams 869 1 2.3.4. Rapid and Direct Plasma Deactivation of Airborne Bacteria in the PDRF 870 1 2.3.5. Phenomenological Kinetic Model of Non-Thermal Plasma Sterilization of Air Streams 87 1 1 2.3.6. Kinetics and Mechanisms of Rapid Plasma Deactivation of Airborne Bacteria in the PDRF 872 1 2.4. Plasma Cleaning and Sterilization of Water: Special Discharges in Liquid Water Applied for Its Cleaning and Sterilization 874 1 2.4. 1 . Needs and General Features of Plasma Water Treatment: Water Disinfection Using UV Radiation, Ozone, or Pulsed Electric Fields 874 1 2.4.2. Electrical Discharges in Water 875 12.4.3. Mechanisms and Characteristics of Plasma Discharges in Water 876 12.4.4. Physical Kinetics of Water Breakdown 878 1 2.4.5. Experimental Applications of Pulsed Plasma Discharges for Water Treatment 879 12.4.6. Energy-Effective Water Treatment Using Pulsed Spark Discharges 880 1 2.5. Plasma-Assisted Tissue Engineering 882 1 2.5. 1 . Plasma-Assisted Regulation of Biological Properties of Medical Polymer Materials 882 12.5.2. Plasma-Assisted Attachment and Proliferation of Bone Cells on Polymer Scaffolds 884 12.5.3. DBD Plasma Effect on Attachment and Proliferation of Osteoblasts Cultured over Poly-e-Caprolactone Scaffolds 885 1 2.5.4. Controlling of Stem Cell Behavior on Non-Thermal Plasma Modified Polymer Surfaces 887 XXXVII Contents 12.5.5. Plasma-Assisted Bio-Active Liquid Microxerography, Plasma Bioprinter 888 1 2.6. Animal and Human Living Tissue Sterilization 888 1 2.6. 1 . Direct Plasma Medicine: Floating-Electrode Dielectric Barrier Discharge 888 12.6.2. Direct Plasma-Medical Sterilization of Living Tissue Using FE-DBD Plasma 889 12.6.3. Non-Damage (Toxicity) Analysis of Direct Plasma Treatment of Living Tissue 890 1 2.7. Non-Thermal Plasma-Assisted Blood Coagulation 892 1 2.7. 1 . General Features of Plasma-Assisted Blood Coagulation 892 1 2.7.2. Experiments with Non-Thermal Atmospheric-Pressure Plasma-Assisted In Vitro Blood Coagulation 892 12.7.3. In Vivo Blood Coagulation Using FE-DBD Plasma 893 1 2.7.4. Mechanisms of Non-Thermal Plasma-Assisted Blood Coagulation 894 1 2.8. Plasma-Assisted Wound Healing and Tissue Regeneration 896 1 2.8. 1 . Discharge Systems for Air-Plasma Surgery and Nitrogen Oxide (NO) Therapy 896 1 2.8.2. Medical Use of Plasma-Generated Exogenic NO 898 12.8.3. Experimental Investigations of NO Effect on Wound Healing and Inflammatory Processes 899 1 2.8.4. Clinical Aspects of Use of Air Plasma and Exogenic NO in Treatment of Wound Pathologies 900 1 2.8.5. Air Plasma and Exogenic NO in Treatment of Inflammatory and Destructive Illnesses 904 1 2.9. Non-Thermal Plasma Treatment of Skin Diseases 906 1 2.9. 1 . Non-Thermal Plasma Treatment of Melanoma Skin Cancer 906 1 2.9.2. Non-Thermal Plasma Treatment of Cutaneous Leishmaniasis 908 1 2.9.3. Non-Equilibrium Plasma Treatment of Corneal Infections 9 1 0 1 2.9.4. Remarks on the Non-Thermal Plasma-Medical Treatment of Skin 911 Problems and Concept Questions 9 1 2 References 9 1 5 Index 963 XXXVIII
any_adam_object 1
author Fridman, Alexander A. 1953-
author_GND (DE-588)1053135238
author_facet Fridman, Alexander A. 1953-
author_role aut
author_sort Fridman, Alexander A. 1953-
author_variant a a f aa aaf
building Verbundindex
bvnumber BV040546166
callnumber-first Q - Science
callnumber-label QD581
callnumber-raw QD581
callnumber-search QD581
callnumber-sort QD 3581
callnumber-subject QD - Chemistry
classification_rvk UR 8000
VE 5850
ctrlnum (OCoLC)820399456
(DE-599)BVBBV040546166
dewey-full 541/.0424
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 541 - Physical chemistry
dewey-raw 541/.0424
dewey-search 541/.0424
dewey-sort 3541 3424
dewey-tens 540 - Chemistry and allied sciences
discipline Chemie / Pharmazie
Physik
edition 1. paperback ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01827nam a2200433zc 4500</leader><controlfield tag="001">BV040546166</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150408 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">121116s2012 xxkad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2008298230</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107684935</subfield><subfield code="c">pbk.</subfield><subfield code="9">978-1-107-68493-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521847353</subfield><subfield code="c">hbk.</subfield><subfield code="9">978-0-521-84735-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)820399456</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040546166</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD581</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">541/.0424</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UR 8000</subfield><subfield code="0">(DE-625)146642:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 5850</subfield><subfield code="0">(DE-625)147126:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fridman, Alexander A.</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1053135238</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Plasma chemistry</subfield><subfield code="c">Alexander Fridman</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. paperback ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XLII, 978 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 915-961) and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasma chemistry</subfield><subfield code="v">Textbooks</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Plasmachemie</subfield><subfield code="0">(DE-588)4254737-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Plasmachemie</subfield><subfield code="0">(DE-588)4254737-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=025391978&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=025391978&amp;sequence=000004&amp;line_number=0002&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025391978</subfield></datafield></record></collection>
id DE-604.BV040546166
illustrated Illustrated
indexdate 2024-07-10T00:26:12Z
institution BVB
isbn 9781107684935
9780521847353
language English
lccn 2008298230
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-025391978
oclc_num 820399456
open_access_boolean
owner DE-703
DE-11
DE-83
DE-29T
DE-634
owner_facet DE-703
DE-11
DE-83
DE-29T
DE-634
physical XLII, 978 S. Ill., graph. Darst.
publishDate 2012
publishDateSearch 2012
publishDateSort 2012
publisher Cambridge Univ. Press
record_format marc
spelling Fridman, Alexander A. 1953- Verfasser (DE-588)1053135238 aut
Plasma chemistry Alexander Fridman
1. paperback ed.
Cambridge [u.a.] Cambridge Univ. Press 2012
XLII, 978 S. Ill., graph. Darst.
txt rdacontent
n rdamedia
nc rdacarrier
Includes bibliographical references (p. 915-961) and index
Plasma chemistry Textbooks
Plasmachemie (DE-588)4254737-4 gnd rswk-swf
Plasmachemie (DE-588)4254737-4 s
DE-604
Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025391978&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Klappentext
Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025391978&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
spellingShingle Fridman, Alexander A. 1953-
Plasma chemistry
Plasma chemistry Textbooks
Plasmachemie (DE-588)4254737-4 gnd
subject_GND (DE-588)4254737-4
title Plasma chemistry
title_auth Plasma chemistry
title_exact_search Plasma chemistry
title_full Plasma chemistry Alexander Fridman
title_fullStr Plasma chemistry Alexander Fridman
title_full_unstemmed Plasma chemistry Alexander Fridman
title_short Plasma chemistry
title_sort plasma chemistry
topic Plasma chemistry Textbooks
Plasmachemie (DE-588)4254737-4 gnd
topic_facet Plasma chemistry Textbooks
Plasmachemie
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025391978&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025391978&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT fridmanalexandera plasmachemistry