General uncertainty relations and sparse signal recovery

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Kuppinger, Patrick Rudolf Emil (VerfasserIn)
Format: Abschlussarbeit Buch
Sprache:English
Veröffentlicht: Konstanz Hartung-Gorre 2011
Ausgabe:1. ed.
Schriftenreihe:Series in communication theory 8
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV040491517
003 DE-604
005 20121114
007 t|
008 121018s2011 gw d||| m||| 00||| eng d
015 |a 11,N14  |2 dnb 
015 |a 12,A38  |2 dnb 
016 7 |a 1010783289  |2 DE-101 
020 |a 9783866283855  |c kart. : EUR 64.00 (DE), sfr 125.20 (freier Pr.)  |9 978-3-86628-385-5 
020 |a 3866283857  |9 3-86628-385-7 
024 3 |a 9783866283855 
035 |a (OCoLC)723484666 
035 |a (DE-599)DNB1010783289 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a gw  |c XA-DE-BW 
049 |a DE-473 
082 0 |a 003.54  |2 22/ger 
084 |a ST 125  |0 (DE-625)143586:  |2 rvk 
084 |a 000  |2 sdnb 
100 1 |a Kuppinger, Patrick Rudolf Emil  |e Verfasser  |4 aut 
245 1 0 |a General uncertainty relations and sparse signal recovery  |c Patrick Rudolf Emil Kuppinger 
250 |a 1. ed. 
264 1 |a Konstanz  |b Hartung-Gorre  |c 2011 
300 |a XVIII, 172 S.  |b graph. Darst.  |c 21 cm 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Series in communication theory  |v 8 
502 |a Zugl.: Zürich, Techn. Hochsch., Diss., 2011 
650 0 7 |a Schwach besetzte Matrix  |0 (DE-588)4056053-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Lineares Gleichungssystem  |0 (DE-588)4035826-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Abtasttheorem  |0 (DE-588)4258507-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Signalregenerierung  |0 (DE-588)4181274-8  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)4113937-9  |a Hochschulschrift  |2 gnd-content 
689 0 0 |a Signalregenerierung  |0 (DE-588)4181274-8  |D s 
689 0 1 |a Abtasttheorem  |0 (DE-588)4258507-7  |D s 
689 0 2 |a Lineares Gleichungssystem  |0 (DE-588)4035826-4  |D s 
689 0 3 |a Schwach besetzte Matrix  |0 (DE-588)4056053-3  |D s 
689 0 |5 DE-604 
830 0 |a Series in communication theory  |v 8  |w (DE-604)BV035738068  |9 8 
856 4 2 |m DNB Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025338500&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-025338500 

Datensatz im Suchindex

_version_ 1819684983815536640
adam_text IMAGE 1 CONTENTS ACKNOWLEDGMENTS XIII 1. INTRODUCTION 1 1.1. UNCERTAINTY RELATIONS AND SPARSITY THRESHOLDS . . .. 2 1.2. OUTLINE AND CONTRIBUTIONS 6 I PAIRS OF DICTIONARIES 11 2. UNCERTAINTY RELATIONS FOR PAIRS OF DICTIONARIES 13 2.1. COHERENCE MEASURES 15 2.2. BRIEF REVIEW OF KNOWN UNCERTAINTY RELATIONS 17 2.3. A GENERAL UNCERTAINTY RELATION 18 2.4. TIGHTNESS OF THE UNCERTAINTY RELATION FOR GENERAL DIC- TIONARIES 20 2.5. TECHNICAL RESULTS 21 2.5.1. PROOF OF THEOREM 2.1 21 3. RECOVERY GUARANTEES FOR CONCATENATIONS OF DICTIONARIES 25 3.1. RECOVERY METHODS 28 3.1.1. THE (P0) PROBLEM 28 3.1.2. BASIS PURSUIT 29 3.1.3. (ORTHOGONAL) MATCHING PURSUIT 29 3.2. DETERMINISTIC RECOVERY GUARANTEES 31 3.2.1. BRIEF REVIEW OF RELEVANT PREVIOUS RESULTS . . . 31 XV BIBLIOGRAFISCHE INFORMATIONEN HTTP://D-NB.INFO/1010783289 DIGITALISIERT DURCH IMAGE 2 CONTENTS 3.2.2. UNIQUENESS OF (PO) 33 3.2.3. RECOVERY GUARANTEES FOR BP AND OMP 37 3.2.4. OBSERVATIONS 40 3.3. PROBABILISTIC RECOVERY GUARANTEES 41 3.3.1. BRIEF REVIEW OF RELEVANT PREVIOUS RESULTS . . . 41 3.3.2. ROBUST SPARSITY THRESHOLDS 43 3.3.3. INTERPRETATION OF THE RESULTS 45 3.4. TECHNICAL RESULTS 49 3.4.1. PROOF OF THEOREM 3.2 49 3.4.2. PROOF OF THEOREM 3.3 52 3.4.3. PROOF OF COROLLARY 3.4 56 3.4.4. PROOF OF LEMMA 3.7 58 4. RECOVERY OF SPARSELY CORRUPTED SIGNALS 63 4.1. BRIEF REVIEW OF PREVIOUS RESULTS 66 4.1.1. RECOVERY IN THE PRESENCE OF UNSTRUCTURED NOISE 66 4.1.2. RECOVERY IN THE PRESENCE OF STRUCTURED NOISE . 67 4.2. DETERMINISTIC RECOVERY GUARANTEES 69 4.2.1. CASE I: KNOWLEDGE OF X AND E 69 4.2.2. CASE II: EITHER X OR S IS KNOWN 71 4.2.3. CASE III: CARDINALITY OF X OR S KNOWN 76 4.2.4. CASE IV: NO KNOWLEDGE ABOUT THE SUPPORT SETS 77 4.3. OBSERVATIONS 78 4.3.1. TIGHTNESS OF THE RECOVERY GUARANTEES IN THE FOURIER-IDENTITY CASE 78 4.3.2. FACTOR OF TWO IN THE RECOVERY GUARANTEES . .. 81 4.3.3. TRADEOFF BETWEEN SIGNAL AND ERROR SPARSITY . . 82 4.4. NUMERICAL RESULTS 85 4.4.1. IMPACT OF SUPPORT-SET KNOWLEDGE ON THE RE- COVERY THRESHOLDS 85 4.4.2. INPAINTING EXAMPLE 89 4.5. TECHNICAL RESULTS 91 4.5.1. PROOF OF THEOREM 4.1 91 4.5.2. PROOF OF THEOREM 4.2 92 4.5.3. PROOF OF THEOREM 4.3 94 XVI IMAGE 3 CONTENTS 4.5.4. PROOF OF THEOREM 4.5 98 II BLOCK-SPARSE SIGNALS 103 5. UNCERTAINTY RELATIONS FOR BLOCK-SPARSE SIGNALS 105 5.1. COHERENCE MEASURES FOR THE BLOCK-SPARSE CASE . . .. 107 5.2. UNCERTAINTY RELATION 112 5.3. OBSERVATIONS 114 6. RECOVERY GUARANTEES FOR BLOCK-SPARSE SIGNALS 117 6.1. RECOVERY METHODS 118 6.1.1. THE BLOCK-(PO) PROBLEM 118 6.1.2. 2 /^I-OPTIMIZATION PROGRAM 119 6.1.3. BLOCK (ORTHOGONAL) MATCHING PURSUIT 120 6.2. BRIEF REVIEW OF PREVIOUS RESULTS 121 6.3. DETERMINISTIC RECOVERY GUARANTEES 122 6.3.1. UNIQUENESS OF BLOCK-(PO) 123 6.3.2. RECOVERY GUARANTEES FOR L-OPT AND BOMP . .. 123 6.3.3. RECOVERY GUARANTEES FOR BMP 125 6.3.4. OBSERVATIONS 125 6.3.5. NUMERICAL RESULTS 128 6.4. TECHNICAL RESULTS 131 6.4.1. PROOF OF THEOREM 6.2 134 6.4.2. PROOF OF THEOREM 6.3 FOR BOMP 135 6.4.3. PROOF OF THEOREM 6.3 FOR L-OPT 136 6.4.4. PROOF OF THEOREM 6.4 138 6.4.5. PROOF OF THEOREM 6.5 140 7. CONCLUSION 143 7.1. IMPLICATIONS FOR PRACTICAL APPLICATIONS 144 7.2. OPEN PROBLEMS 145 A. ADDITIONAL TECHNICAL RESULTS 147 A.I. PART I 147 XVN IMAGE 4 CONTENTS A.1.1. THE SPARSITY THRESHOLD IN THEOREM 3.2 IM- PROVES ON THE THRESHOLD IN (3.7) 147 A.1.2. THE SPARSITY THRESHOLD IN COROLLARY 3.4 IM- PROVES ON THE THRESHOLD IN (3.7) 148 A.1.3. TROPP S (MO) AND (ML) MODEL 149 A.2. PART II 151 A.2.1. PROOF OF LEMMA 6.6 151 A.2.2. PROOF OF LEMMA 6.7 152 A.2.3. PROOF OF LEMMA 6.8 153 B. NOTATION 155 B.I. MISCELLANEOUS 155 B.2. LINEAR ALGEBRA 156 B.3. PROBABILITY AND STATISTICS 157 B.4. PAIRS OF DICTIONARIES 158 B.5. BLOCK-SPARSE SIGNALS 159 C. ACRONYMS AND ABBREVIATIONS 161 REFERENCES 163 XVM
any_adam_object 1
author Kuppinger, Patrick Rudolf Emil
author_facet Kuppinger, Patrick Rudolf Emil
author_role aut
author_sort Kuppinger, Patrick Rudolf Emil
author_variant p r e k pre prek
building Verbundindex
bvnumber BV040491517
classification_rvk ST 125
ctrlnum (OCoLC)723484666
(DE-599)DNB1010783289
dewey-full 003.54
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 003 - Systems
dewey-raw 003.54
dewey-search 003.54
dewey-sort 13.54
dewey-tens 000 - Computer science, information, general works
discipline Allgemeines
Informatik
edition 1. ed.
format Thesis
Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02178nam a2200541 cb4500</leader><controlfield tag="001">BV040491517</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20121114 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">121018s2011 gw d||| m||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">11,N14</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">12,A38</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1010783289</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783866283855</subfield><subfield code="c">kart. : EUR 64.00 (DE), sfr 125.20 (freier Pr.)</subfield><subfield code="9">978-3-86628-385-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3866283857</subfield><subfield code="9">3-86628-385-7</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783866283855</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)723484666</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1010783289</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-473</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">003.54</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 125</subfield><subfield code="0">(DE-625)143586:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">000</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kuppinger, Patrick Rudolf Emil</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">General uncertainty relations and sparse signal recovery</subfield><subfield code="c">Patrick Rudolf Emil Kuppinger</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Konstanz</subfield><subfield code="b">Hartung-Gorre</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 172 S.</subfield><subfield code="b">graph. Darst.</subfield><subfield code="c">21 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Series in communication theory</subfield><subfield code="v">8</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="a">Zugl.: Zürich, Techn. Hochsch., Diss., 2011</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schwach besetzte Matrix</subfield><subfield code="0">(DE-588)4056053-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineares Gleichungssystem</subfield><subfield code="0">(DE-588)4035826-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Abtasttheorem</subfield><subfield code="0">(DE-588)4258507-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Signalregenerierung</subfield><subfield code="0">(DE-588)4181274-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Signalregenerierung</subfield><subfield code="0">(DE-588)4181274-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Abtasttheorem</subfield><subfield code="0">(DE-588)4258507-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Lineares Gleichungssystem</subfield><subfield code="0">(DE-588)4035826-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Schwach besetzte Matrix</subfield><subfield code="0">(DE-588)4056053-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Series in communication theory</subfield><subfield code="v">8</subfield><subfield code="w">(DE-604)BV035738068</subfield><subfield code="9">8</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=025338500&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025338500</subfield></datafield></record></collection>
genre (DE-588)4113937-9 Hochschulschrift gnd-content
genre_facet Hochschulschrift
id DE-604.BV040491517
illustrated Illustrated
indexdate 2024-12-24T02:51:22Z
institution BVB
isbn 9783866283855
3866283857
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-025338500
oclc_num 723484666
open_access_boolean
owner DE-473
DE-BY-UBG
owner_facet DE-473
DE-BY-UBG
physical XVIII, 172 S. graph. Darst. 21 cm
publishDate 2011
publishDateSearch 2011
publishDateSort 2011
publisher Hartung-Gorre
record_format marc
series Series in communication theory
series2 Series in communication theory
spellingShingle Kuppinger, Patrick Rudolf Emil
General uncertainty relations and sparse signal recovery
Series in communication theory
Schwach besetzte Matrix (DE-588)4056053-3 gnd
Lineares Gleichungssystem (DE-588)4035826-4 gnd
Abtasttheorem (DE-588)4258507-7 gnd
Signalregenerierung (DE-588)4181274-8 gnd
subject_GND (DE-588)4056053-3
(DE-588)4035826-4
(DE-588)4258507-7
(DE-588)4181274-8
(DE-588)4113937-9
title General uncertainty relations and sparse signal recovery
title_auth General uncertainty relations and sparse signal recovery
title_exact_search General uncertainty relations and sparse signal recovery
title_full General uncertainty relations and sparse signal recovery Patrick Rudolf Emil Kuppinger
title_fullStr General uncertainty relations and sparse signal recovery Patrick Rudolf Emil Kuppinger
title_full_unstemmed General uncertainty relations and sparse signal recovery Patrick Rudolf Emil Kuppinger
title_short General uncertainty relations and sparse signal recovery
title_sort general uncertainty relations and sparse signal recovery
topic Schwach besetzte Matrix (DE-588)4056053-3 gnd
Lineares Gleichungssystem (DE-588)4035826-4 gnd
Abtasttheorem (DE-588)4258507-7 gnd
Signalregenerierung (DE-588)4181274-8 gnd
topic_facet Schwach besetzte Matrix
Lineares Gleichungssystem
Abtasttheorem
Signalregenerierung
Hochschulschrift
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025338500&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV035738068
work_keys_str_mv AT kuppingerpatrickrudolfemil generaluncertaintyrelationsandsparsesignalrecovery