Ensemble methods foundations and algorithms

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Zhou, Zhi-Hua (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Boca Raton, Fla. [u.a.] Chapman & Hall/CRC 2012
Schriftenreihe:Chapman & Hall/CRC Machine learning & pattern recognition series
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV040449607
003 DE-604
005 20201021
007 t
008 121001s2012 |||| |||| 00||| eng d
020 |a 9781439830031  |c hbk  |9 978-1-4398-3003-1 
035 |a (OCoLC)815939865 
035 |a (DE-599)HBZHT017135594 
040 |a DE-604  |b ger 
041 0 |a eng 
049 |a DE-473  |a DE-29  |a DE-523  |a DE-945  |a DE-703 
084 |a ST 300  |0 (DE-625)143650:  |2 rvk 
084 |a ST 302  |0 (DE-625)143652:  |2 rvk 
100 1 |a Zhou, Zhi-Hua  |e Verfasser  |0 (DE-588)133174131  |4 aut 
245 1 0 |a Ensemble methods  |b foundations and algorithms  |c Zhi-Hua Zhou 
264 1 |a Boca Raton, Fla. [u.a.]  |b Chapman & Hall/CRC  |c 2012 
300 |a XIV, 222 Seiten  |b Diagramme 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Chapman & Hall/CRC Machine learning & pattern recognition series 
500 |a Literaturverz. S. 187 - 218 
650 0 7 |a Stochastisches Modell  |0 (DE-588)4057633-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Maschinelles Lernen  |0 (DE-588)4193754-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Maschinelles Lernen  |0 (DE-588)4193754-5  |D s 
689 0 1 |a Stochastisches Modell  |0 (DE-588)4057633-4  |D s 
689 0 |5 DE-604 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-1-4398-3005-5 
856 4 2 |m Digitalisierung UB Bamberg  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025297292&sequence=000004&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-025297292 

Datensatz im Suchindex

DE-473_call_number 61/ST 302 GA 10609
DE-473_location 6
DE-BY-UBG_katkey 2902621
DE-BY-UBG_media_number 013901247433
_version_ 1811359994831962113
adam_text Contents Preface vii Notations ¡x 1 Introduction 1 1.1 Basic Concepts ........................... 1 1.2 Popular Learning Algorithms .................. З 1.2.1 Linear Discriminant Analysis .............. 3 1.2.2 Decision Trees ....................... 4 1.2.3 Neural Networks ..................... 6 1.2.4 Naïve Bayes Classifier ................... 8 1.2.5 fe-Nearest Neighbor .................... 9 1.2.6 Support Vector Machines and Kernel Methods .... 9 1.3 Evaluation and Comparison ................... 12 1.4 Ensemble Methods ....................... . 15 1.5 Applications of Ensemble Methods ............... 17 1.6 Further Readings ......................... 20 2 Boosting 23 2.1 A General Boosting Procedure .................. 23 2.2 The AdaBoost Algorithm ..................... 24 2.3 Illustrative Examples ....................... 28 2.4 Theoretical Issues ......................... 32 2.4.1 Initial Analysis ....................... 32 2.4.2 Margin Explanation .................... 32 2.4.3 Statistical View ...................... 35 2.5 Multiclass Extension ....................... 38 2.6 Noise Tolerance .......................... 41 2.7 Further Readings ......................... 44 3 Bagging 47 3.1 Two Ensemble Paradigms .................... 47 3.2 The Bagging Algorithm .......-.............. 48 3.3 Illustrative Examples ....................... 50 3.4 Theoretical Issues ..............·.......... 53 3.5 Random Tree Ensembles ..................... 57 3.5Л Random Forest ...................... 57 xii Contents 3.5.2 Spectram of Randomization............... 59 3.5.3 Random Tree Ensembles for Density Estimation ... 61 3.5.4 Random Tree Ensembles for Anomaly Detection ... 64 3.6 Further Readings ......................... 66 4 Combination Methods 67 4.1 Benefits of Combination ..................... 67 4.2 Averaging .............................. 68 4.2.1 Simple Averaging ..................... 68 4.2.2 Weighted Averaging .................... 70 4.3 Voting ................................ 71 4.3.1 MajorityVoting ...................... 72 4.3.2 Plurality Voting ...................... 73 4.3.3 Weighted Voting ...................... 74 4.3.4 SoftVoting ......................... 75 4.3.5 Theoretical Issues ..................... 77 4.4 Combining by Learning ...................... 83 4.4.1 Stacking .......................... 83 4.4.2 Infinite Ensemble ..................... 86 4.5 Other Combination Methods .................. 87 4.5.1 Algebraic Methods .................... 87 4.5.2 Behavior Knowledge Space Method. .......... 88 4.5.3 Decision Template Method ............... 89 4.6 Relevant Methods ......................... 89 4.6.1 Error-Correcting Output Codes ............. 90 4.6.2 Dynamic Classifier Selection .............. 93 4.6.3 Mixture of Experts ..................... 93 4.7 Further Readings ......................... 95 5 Diversity 99 5.1 Ensemble Diversity ........................ 99 5.2 Error Decomposition ....................... 100 5.2.1 Error-Ambiguity Decomposition ............ 100 5.2.2 Bias-Variance-Covariance Decomposition ....... 102 5.3 Diversity Measures ........................ 105 5.3.1 Pairwise Measures .................... 105 5.3.2 Non-Pairwise Measures ................. 106 5.3.3 Summary and Visualization ............... 109 5.3.4 Limitation of Diversity Measures ............ 110 5.4 Information Theoretic Diversity ................. Ill 5.4.1 Information Theory and Ensemble ........... Ш 5.4.2 Interaction Information Diversity ............ 112 5.4 J Multi-Information Diversity ............... 113 5.4.4 Estimation Method .................... 114 5.5 Diversity Generation ....................... 116 Contents xiii 5.6 Further Readings ......................... П8 6 Ensemble Pruning 119 6.1 What Is Ensemble Pruning .................... 119 6.2 Many Could Be Better Than All ................. 120 6.3 Categorization of Pruning Methods ............... 123 6.4 Ordering-Based Pruning ..................... 124 6.5 Clustering-Based Pruning .................... 127 6.6 Optimization-Based Pruning ................... 128 6.6.1 Heuristic Optimization Pruning ............. 128 6.6.2 Mathematical Programming Pruning .......... 129 6.6.3 Probabilistic Pruning ................... 131 6.7 Further Readings ......................... 133 7 Clustering Ensembles 135 7.1 Clustering ............................. 135 7.1.1 Clustering Methods .................... 135 7.1.2 Clustering Evaluation ................... 137 7.1.3 Why Clustering Ensembles ................ 139 7.2 Categorization of Clustering Ensemble Methods ....... 141 7.3 Similarity-Based Methods .................... 142 7.4 Graph-Based Methods ...................... 144 7.5 Relabeling-Based Methods .................... 147 7.6 Transformation-Based Methods ................. 152 7.7 Further Readings ......................... 155 8 Advanced Topics 157 8.1 Semi-Supervised Learning .................... 157 8.1.1 Usefulness of Unlabeled Data .............. 157 8.1.2 Semi-Supervised Learning with Ensembles ...... 159 8.2 ActiveLearning .......................... 163 8.2.1 Usefulness of Human Intervention ........... 163 8.2.2 Active Learning with Ensembles ............ 165 8.3 Cost-Sensitive Learning ...................... 166 8.3.1 Learning with Unequal Costs .............. 166 8.3.2 Ensemble Methods for Cost-Sensitive Learning . . . . 167 8.4 Class-Imbalance Learning .................... 171 8.4.1 Learning with Class Imbalance ............. 171 8.4.2 Performance Evaluation with Class Imbalance .... 172 8.4.3 Ensemble Methods for Class-Imbalance Learning . . 176 8.5 Improving Comprehensibfflty .................. 179 8.5.1 Reduction of Ensemble to Single Model ........ 179 8.5.2 Rule Extraction from Ensembles ............ 180 8.5.3 Visualization of Ensembles ............... 181 8.6 Future Directions of Ensembles ................. 182 xiv Contents 8.7 Further Readings ......................... 184 References 187 Index 219
any_adam_object 1
author Zhou, Zhi-Hua
author_GND (DE-588)133174131
author_facet Zhou, Zhi-Hua
author_role aut
author_sort Zhou, Zhi-Hua
author_variant z h z zhz
building Verbundindex
bvnumber BV040449607
classification_rvk ST 300
ST 302
ctrlnum (OCoLC)815939865
(DE-599)HBZHT017135594
discipline Informatik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01607nam a2200385 c 4500</leader><controlfield tag="001">BV040449607</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201021 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">121001s2012 |||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781439830031</subfield><subfield code="c">hbk</subfield><subfield code="9">978-1-4398-3003-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)815939865</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT017135594</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-473</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-945</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 302</subfield><subfield code="0">(DE-625)143652:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhou, Zhi-Hua</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)133174131</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ensemble methods</subfield><subfield code="b">foundations and algorithms</subfield><subfield code="c">Zhi-Hua Zhou</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton, Fla. [u.a.]</subfield><subfield code="b">Chapman &amp; Hall/CRC</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 222 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Chapman &amp; Hall/CRC Machine learning &amp; pattern recognition series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 187 - 218</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastisches Modell</subfield><subfield code="0">(DE-588)4057633-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Stochastisches Modell</subfield><subfield code="0">(DE-588)4057633-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4398-3005-5</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bamberg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=025297292&amp;sequence=000004&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025297292</subfield></datafield></record></collection>
id DE-604.BV040449607
illustrated Not Illustrated
indexdate 2024-09-27T16:26:41Z
institution BVB
isbn 9781439830031
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-025297292
oclc_num 815939865
open_access_boolean
owner DE-473
DE-BY-UBG
DE-29
DE-523
DE-945
DE-703
owner_facet DE-473
DE-BY-UBG
DE-29
DE-523
DE-945
DE-703
physical XIV, 222 Seiten Diagramme
publishDate 2012
publishDateSearch 2012
publishDateSort 2012
publisher Chapman & Hall/CRC
record_format marc
series2 Chapman & Hall/CRC Machine learning & pattern recognition series
spellingShingle Zhou, Zhi-Hua
Ensemble methods foundations and algorithms
Stochastisches Modell (DE-588)4057633-4 gnd
Maschinelles Lernen (DE-588)4193754-5 gnd
subject_GND (DE-588)4057633-4
(DE-588)4193754-5
title Ensemble methods foundations and algorithms
title_auth Ensemble methods foundations and algorithms
title_exact_search Ensemble methods foundations and algorithms
title_full Ensemble methods foundations and algorithms Zhi-Hua Zhou
title_fullStr Ensemble methods foundations and algorithms Zhi-Hua Zhou
title_full_unstemmed Ensemble methods foundations and algorithms Zhi-Hua Zhou
title_short Ensemble methods
title_sort ensemble methods foundations and algorithms
title_sub foundations and algorithms
topic Stochastisches Modell (DE-588)4057633-4 gnd
Maschinelles Lernen (DE-588)4193754-5 gnd
topic_facet Stochastisches Modell
Maschinelles Lernen
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025297292&sequence=000004&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT zhouzhihua ensemblemethodsfoundationsandalgorithms