Ensemble methods foundations and algorithms
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton, Fla. [u.a.]
Chapman & Hall/CRC
2012
|
Schriftenreihe: | Chapman & Hall/CRC Machine learning & pattern recognition series
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV040449607 | ||
003 | DE-604 | ||
005 | 20201021 | ||
007 | t | ||
008 | 121001s2012 |||| |||| 00||| eng d | ||
020 | |a 9781439830031 |c hbk |9 978-1-4398-3003-1 | ||
035 | |a (OCoLC)815939865 | ||
035 | |a (DE-599)HBZHT017135594 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-473 |a DE-29 |a DE-523 |a DE-945 |a DE-703 | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
084 | |a ST 302 |0 (DE-625)143652: |2 rvk | ||
100 | 1 | |a Zhou, Zhi-Hua |e Verfasser |0 (DE-588)133174131 |4 aut | |
245 | 1 | 0 | |a Ensemble methods |b foundations and algorithms |c Zhi-Hua Zhou |
264 | 1 | |a Boca Raton, Fla. [u.a.] |b Chapman & Hall/CRC |c 2012 | |
300 | |a XIV, 222 Seiten |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Chapman & Hall/CRC Machine learning & pattern recognition series | |
500 | |a Literaturverz. S. 187 - 218 | ||
650 | 0 | 7 | |a Stochastisches Modell |0 (DE-588)4057633-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 1 | |a Stochastisches Modell |0 (DE-588)4057633-4 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-4398-3005-5 |
856 | 4 | 2 | |m Digitalisierung UB Bamberg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025297292&sequence=000004&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-025297292 |
Datensatz im Suchindex
DE-473_call_number | 61/ST 302 GA 10609 |
---|---|
DE-473_location | 6 |
DE-BY-UBG_katkey | 2902621 |
DE-BY-UBG_media_number | 013901247433 |
_version_ | 1811359994831962113 |
adam_text | Contents
Preface
vii
Notations
¡x
1
Introduction
1
1.1
Basic Concepts
........................... 1
1.2
Popular
Learning Algorithms
..................
З
1.2.1
Linear Discriminant Analysis
.............. 3
1.2.2
Decision Trees
....................... 4
1.2.3
Neural Networks
..................... 6
1.2.4
Naïve Bayes
Classifier
................... 8
1.2.5
fe-Nearest Neighbor
.................... 9
1.2.6
Support Vector Machines and Kernel Methods
.... 9
1.3
Evaluation and Comparison
................... 12
1.4
Ensemble Methods
....................... . 15
1.5
Applications of Ensemble Methods
............... 17
1.6
Further Readings
......................... 20
2
Boosting
23
2.1
A General Boosting Procedure
.................. 23
2.2
The AdaBoost Algorithm
..................... 24
2.3
Illustrative Examples
....................... 28
2.4
Theoretical Issues
......................... 32
2.4.1
Initial Analysis
....................... 32
2.4.2
Margin Explanation
.................... 32
2.4.3
Statistical View
...................... 35
2.5
Multiclass Extension
....................... 38
2.6
Noise Tolerance
.......................... 41
2.7
Further Readings
......................... 44
3
Bagging
47
3.1
Two Ensemble Paradigms
.................... 47
3.2
The Bagging Algorithm
.......-.............. 48
3.3
Illustrative Examples
....................... 50
3.4
Theoretical Issues
..............·.......... 53
3.5
Random Tree Ensembles
..................... 57
3.5Л
Random Forest
...................... 57
xii Contents
3.5.2 Spectram
of Randomization...............
59
3.5.3
Random Tree
Ensembles
for Density Estimation
... 61
3.5.4
Random Tree Ensembles for Anomaly Detection
... 64
3.6
Further Readings
......................... 66
4
Combination Methods
67
4.1
Benefits of Combination
..................... 67
4.2
Averaging
.............................. 68
4.2.1
Simple Averaging
..................... 68
4.2.2
Weighted Averaging
.................... 70
4.3
Voting
................................ 71
4.3.1
MajorityVoting
...................... 72
4.3.2
Plurality Voting
...................... 73
4.3.3
Weighted Voting
...................... 74
4.3.4
SoftVoting
......................... 75
4.3.5
Theoretical Issues
..................... 77
4.4
Combining by Learning
...................... 83
4.4.1
Stacking
.......................... 83
4.4.2
Infinite Ensemble
..................... 86
4.5
Other Combination Methods
.................. 87
4.5.1
Algebraic Methods
.................... 87
4.5.2
Behavior Knowledge Space Method.
.......... 88
4.5.3
Decision Template Method
............... 89
4.6
Relevant Methods
......................... 89
4.6.1
Error-Correcting Output Codes
............. 90
4.6.2
Dynamic Classifier Selection
.............. 93
4.6.3
Mixture of Experts
..................... 93
4.7
Further Readings
......................... 95
5
Diversity
99
5.1
Ensemble Diversity
........................ 99
5.2
Error Decomposition
....................... 100
5.2.1
Error-Ambiguity Decomposition
............ 100
5.2.2
Bias-Variance-Covariance Decomposition
....... 102
5.3
Diversity Measures
........................ 105
5.3.1
Pairwise Measures
.................... 105
5.3.2
Non-Pairwise Measures
................. 106
5.3.3
Summary and Visualization
............... 109
5.3.4
Limitation of Diversity Measures
............ 110
5.4
Information Theoretic Diversity
.................
Ill
5.4.1
Information Theory and Ensemble
...........
Ш
5.4.2
Interaction Information Diversity
............ 112
5.4
J
Multi-Information Diversity
............... 113
5.4.4
Estimation Method
.................... 114
5.5
Diversity Generation
....................... 116
Contents xiii
5.6
Further Readings
.........................
П8
6
Ensemble Pruning
119
6.1
What Is Ensemble Pruning
.................... 119
6.2
Many Could Be Better Than All
................. 120
6.3
Categorization of Pruning Methods
............... 123
6.4
Ordering-Based Pruning
..................... 124
6.5
Clustering-Based Pruning
.................... 127
6.6
Optimization-Based Pruning
................... 128
6.6.1
Heuristic Optimization Pruning
............. 128
6.6.2
Mathematical Programming Pruning
.......... 129
6.6.3
Probabilistic Pruning
................... 131
6.7
Further Readings
......................... 133
7
Clustering Ensembles
135
7.1
Clustering
............................. 135
7.1.1
Clustering Methods
.................... 135
7.1.2
Clustering Evaluation
................... 137
7.1.3
Why Clustering Ensembles
................ 139
7.2
Categorization of Clustering Ensemble Methods
....... 141
7.3
Similarity-Based Methods
.................... 142
7.4
Graph-Based Methods
...................... 144
7.5
Relabeling-Based Methods
.................... 147
7.6
Transformation-Based Methods
................. 152
7.7
Further Readings
......................... 155
8
Advanced Topics
157
8.1
Semi-Supervised Learning
.................... 157
8.1.1
Usefulness of Unlabeled Data
.............. 157
8.1.2
Semi-Supervised Learning with Ensembles
...... 159
8.2
ActiveLearning
.......................... 163
8.2.1
Usefulness of Human Intervention
........... 163
8.2.2
Active Learning with Ensembles
............ 165
8.3
Cost-Sensitive Learning
...................... 166
8.3.1
Learning with Unequal Costs
.............. 166
8.3.2
Ensemble Methods for Cost-Sensitive Learning
. . . . 167
8.4
Class-Imbalance Learning
.................... 171
8.4.1
Learning with Class Imbalance
............. 171
8.4.2
Performance Evaluation with Class Imbalance
.... 172
8.4.3
Ensemble Methods for Class-Imbalance Learning
. . 176
8.5
Improving Comprehensibfflty
.................. 179
8.5.1
Reduction of Ensemble to Single Model
........ 179
8.5.2
Rule Extraction from Ensembles
............ 180
8.5.3
Visualization of Ensembles
............... 181
8.6
Future Directions of Ensembles
................. 182
xiv Contents
8.7
Further Readings
......................... 184
References
187
Index
219
|
any_adam_object | 1 |
author | Zhou, Zhi-Hua |
author_GND | (DE-588)133174131 |
author_facet | Zhou, Zhi-Hua |
author_role | aut |
author_sort | Zhou, Zhi-Hua |
author_variant | z h z zhz |
building | Verbundindex |
bvnumber | BV040449607 |
classification_rvk | ST 300 ST 302 |
ctrlnum | (OCoLC)815939865 (DE-599)HBZHT017135594 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01607nam a2200385 c 4500</leader><controlfield tag="001">BV040449607</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201021 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">121001s2012 |||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781439830031</subfield><subfield code="c">hbk</subfield><subfield code="9">978-1-4398-3003-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)815939865</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT017135594</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-473</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-945</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 302</subfield><subfield code="0">(DE-625)143652:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhou, Zhi-Hua</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)133174131</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ensemble methods</subfield><subfield code="b">foundations and algorithms</subfield><subfield code="c">Zhi-Hua Zhou</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton, Fla. [u.a.]</subfield><subfield code="b">Chapman & Hall/CRC</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 222 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Chapman & Hall/CRC Machine learning & pattern recognition series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 187 - 218</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastisches Modell</subfield><subfield code="0">(DE-588)4057633-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Stochastisches Modell</subfield><subfield code="0">(DE-588)4057633-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4398-3005-5</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bamberg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025297292&sequence=000004&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025297292</subfield></datafield></record></collection> |
id | DE-604.BV040449607 |
illustrated | Not Illustrated |
indexdate | 2024-09-27T16:26:41Z |
institution | BVB |
isbn | 9781439830031 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025297292 |
oclc_num | 815939865 |
open_access_boolean | |
owner | DE-473 DE-BY-UBG DE-29 DE-523 DE-945 DE-703 |
owner_facet | DE-473 DE-BY-UBG DE-29 DE-523 DE-945 DE-703 |
physical | XIV, 222 Seiten Diagramme |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Chapman & Hall/CRC |
record_format | marc |
series2 | Chapman & Hall/CRC Machine learning & pattern recognition series |
spellingShingle | Zhou, Zhi-Hua Ensemble methods foundations and algorithms Stochastisches Modell (DE-588)4057633-4 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4057633-4 (DE-588)4193754-5 |
title | Ensemble methods foundations and algorithms |
title_auth | Ensemble methods foundations and algorithms |
title_exact_search | Ensemble methods foundations and algorithms |
title_full | Ensemble methods foundations and algorithms Zhi-Hua Zhou |
title_fullStr | Ensemble methods foundations and algorithms Zhi-Hua Zhou |
title_full_unstemmed | Ensemble methods foundations and algorithms Zhi-Hua Zhou |
title_short | Ensemble methods |
title_sort | ensemble methods foundations and algorithms |
title_sub | foundations and algorithms |
topic | Stochastisches Modell (DE-588)4057633-4 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Stochastisches Modell Maschinelles Lernen |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025297292&sequence=000004&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT zhouzhihua ensemblemethodsfoundationsandalgorithms |