Diffeomorphisms of elliptic 3-manifolds

Gespeichert in:
Bibliographische Detailangaben
Format: Buch
Sprache:English
Veröffentlicht: Berlin [u.a.] Springer 2012
Schriftenreihe:Lecture notes in mathematics 2055
Schlagworte:
Online-Zugang:Inhaltstext
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV040447896
003 DE-604
005 20121008
007 t
008 120928s2012 ad|| |||| 00||| eng d
015 |a 12N24  |2 dnb 
016 7 |a 1023016516  |2 DE-101 
020 |a 9783642315633  |c pPbk.  |9 978-3-642-31563-3 
035 |a (OCoLC)815937239 
035 |a (DE-599)DNB1023016516 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-91G  |a DE-824  |a DE-11  |a DE-83  |a DE-188 
082 0 |a 514.34  |2 22/ger 
084 |a SI 850  |0 (DE-625)143199:  |2 rvk 
084 |a 57S10  |2 msc 
084 |a 57M99  |2 msc 
084 |a 58D05  |2 msc 
245 1 0 |a Diffeomorphisms of elliptic 3-manifolds  |c Sungbok Hong .... 
264 1 |a Berlin [u.a.]  |b Springer  |c 2012 
300 |a X, 155 S.  |b Ill., graph. Darst.  |c 235 mm x 155 mm 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Lecture notes in mathematics  |v 2055 
650 0 7 |a Diffeomorphismus  |0 (DE-588)4149767-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Riemannsche Metrik  |0 (DE-588)4294399-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Mannigfaltigkeit  |0 (DE-588)4037379-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Dimension 3  |0 (DE-588)4321722-9  |2 gnd  |9 rswk-swf 
689 0 0 |a Mannigfaltigkeit  |0 (DE-588)4037379-4  |D s 
689 0 1 |a Dimension 3  |0 (DE-588)4321722-9  |D s 
689 0 2 |a Riemannsche Metrik  |0 (DE-588)4294399-1  |D s 
689 0 3 |a Diffeomorphismus  |0 (DE-588)4149767-3  |D s 
689 0 |5 DE-604 
700 1 |a Hong, Sung-Bok  |e Sonstige  |4 oth 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-3-642-31564-0 
830 0 |a Lecture notes in mathematics  |v 2055  |w (DE-604)BV000676446  |9 2055 
856 4 |q text/html  |u http://deposit.dnb.de/cgi-bin/dokserv?id=4052443&prov=M&dok_var=1&dok_ext=htm  |3 Inhaltstext 
856 4 2 |m DNB Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025295607&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-025295607 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102/MAT 001z 2001 B 999-2055
DE-BY-TUM_katkey 1875443
DE-BY-TUM_media_number 040071421200
_version_ 1816713803648204800
adam_text IMAGE 1 CONTENTS 1 ELLIPTIC THREE-MANIFOLDS AND THE SMALE CONJECTURE 1 1.1 ELLIPTIC THREE-MANIFOLDS AND THEIR ISOMETRIES 1 1.2 THE SMALE CONJECTURE 3 1.3 THE WEAK SMALE CONJECTURE 5 1.4 PERELMAN'S METHODS 7 2 DIFFEOMORPHISMS AND EMBEDDINGS O F MANIFOLDS 9 2.1 FRECHET SPACES AND THE C-TOPOLOGY 9 2.2 METRICS WHICH ARE PRODUCTS NEAR THE BOUNDARY 10 2.3 MANIFOLDS WITH BOUNDARY 12 2.4 SPACES OF EMBEDDINGS 14 2.5 BUNDLES AND FIBER-PRESERVING DIFFEOMORPHISMS 14 2.6 ALIGNED VECTOR FIELDS AND THE ALIGNED EXPONENTIAL 16 3 THE METHOD O F CERF AND PALAIS 19 3.1 THE PALAIS-CERF RESTRICTION THEOREM 21 3.2 THE SPACE O F IMAGES 25 3.3 PROJECTION OF FIBER-PRESERVING DIFFEOMORPHISMS 26 3.4 RESTRICTION OF FIBER-PRESERVING DIFFEOMORPHISMS 29 3.5 RESTRICTION THEOREMS FOR ORBIFOLDS 31 3.6 SINGULAR FIBERINGS 36 3.7 SPACES OF FIBERED STRUCTURES 41 3.8 - RESTRICTING TO THE BOUNDARY OR THE BASEPOINT 44 3.9 THE SPACE OF SEIFERT FIBERINGS O F A HAKEN THREE-MANIFOLD 4 6 3.10 THE PARAMETERIZED EXTENSION PRINCIPLE 51 4 ELLIPTIC THREE-MANIFOLDS CONTAINING ONE-SIDED KLEIN BOTTLES 53 4.1 THE MANIFOLDS M ( M , N) 53 4.2 OUTLINE OF THE PROOF 54 4.3 ISOMETRIES O F ELLIPTIC THREE-MANIFOLDS 57 4.4 THE HOPFFIBERING O F M ( M , N) AND SPECIAL KLEIN BOTTLES 59 4.5 HOMOTOPY TYPE O F THE SPACE OF DIFFEOMORPHISMS 66 I X HTTP://D-NB.INFO/1023016516 IMAGE 2 X CONTENTS 4.6 GENERIC POSITION CONFIGURATIONS 68 4.7 GENERIC POSITION FAMILIES 74 4.8 PARAMETERIZATION 76 5 LENS SPACES 85 5.1 OUTLINE O F THE PROOF 85 5.2 REDUCTIONS 87 5.3 ANNULI IN SOLID TORI 88 5.4 HEEGAARD TORI IN VERY GOOD POSITION 90 5.5 SWEEPOUTS, AND LEVELS IN VERY GOOD POSITION 93 5.6 THE RUBINSTEIN-SCHARLEMANN GRAPHIC 96 5.7 GRAPHICS HAVING NO UNLABELED REGION 100 5.8 GRAPHICS FOR PARAMETERIZED FAMILIES 105 5.8.1 WEAK TRANSVERSALITY 106 5.8.2 FINITE SINGULARITY TYPE 109 5.8.3 SEMIALGEBRAIC SETS 110 5.8.4 THE CODIMENSION O F A REAL-VALUED FUNCTION I L L 5.8.5 THE STRATIFICATION O F C(M, R) BY CODIMENSION 113 5.8.6 BORDER LABEL CONTROL 116 5.8.7 BUILDING THE GRAPHICS 117 5.9 FINDING GOOD REGIONS 119 5.10 FROM GOOD TO VERY GOOD 126 5.11 SETTING UP THE LAST STEP 131 5.12 DEFORMING TO FIBER-PRESERVING FAMILIES 133 5.13 PARAMETERS IN D D 142 REFERENCES 145 INDEX 149
any_adam_object 1
building Verbundindex
bvnumber BV040447896
classification_rvk SI 850
ctrlnum (OCoLC)815937239
(DE-599)DNB1023016516
dewey-full 514.34
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 514 - Topology
dewey-raw 514.34
dewey-search 514.34
dewey-sort 3514.34
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV040447896</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20121008</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">120928s2012 ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">12N24</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1023016516</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642315633</subfield><subfield code="c">pPbk.</subfield><subfield code="9">978-3-642-31563-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)815937239</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1023016516</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.34</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">57S10</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">57M99</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58D05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Diffeomorphisms of elliptic 3-manifolds</subfield><subfield code="c">Sungbok Hong ....</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 155 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield><subfield code="c">235 mm x 155 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">2055</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diffeomorphismus</subfield><subfield code="0">(DE-588)4149767-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannsche Metrik</subfield><subfield code="0">(DE-588)4294399-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dimension 3</subfield><subfield code="0">(DE-588)4321722-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dimension 3</subfield><subfield code="0">(DE-588)4321722-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Riemannsche Metrik</subfield><subfield code="0">(DE-588)4294399-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Diffeomorphismus</subfield><subfield code="0">(DE-588)4149767-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hong, Sung-Bok</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-642-31564-0</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">2055</subfield><subfield code="w">(DE-604)BV000676446</subfield><subfield code="9">2055</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=4052443&amp;prov=M&amp;dok_var=1&amp;dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=025295607&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025295607</subfield></datafield></record></collection>
id DE-604.BV040447896
illustrated Illustrated
indexdate 2024-11-25T17:37:10Z
institution BVB
isbn 9783642315633
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-025295607
oclc_num 815937239
open_access_boolean
owner DE-91G
DE-BY-TUM
DE-824
DE-11
DE-83
DE-188
owner_facet DE-91G
DE-BY-TUM
DE-824
DE-11
DE-83
DE-188
physical X, 155 S. Ill., graph. Darst. 235 mm x 155 mm
publishDate 2012
publishDateSearch 2012
publishDateSort 2012
publisher Springer
record_format marc
series Lecture notes in mathematics
series2 Lecture notes in mathematics
spellingShingle Diffeomorphisms of elliptic 3-manifolds
Lecture notes in mathematics
Diffeomorphismus (DE-588)4149767-3 gnd
Riemannsche Metrik (DE-588)4294399-1 gnd
Mannigfaltigkeit (DE-588)4037379-4 gnd
Dimension 3 (DE-588)4321722-9 gnd
subject_GND (DE-588)4149767-3
(DE-588)4294399-1
(DE-588)4037379-4
(DE-588)4321722-9
title Diffeomorphisms of elliptic 3-manifolds
title_auth Diffeomorphisms of elliptic 3-manifolds
title_exact_search Diffeomorphisms of elliptic 3-manifolds
title_full Diffeomorphisms of elliptic 3-manifolds Sungbok Hong ....
title_fullStr Diffeomorphisms of elliptic 3-manifolds Sungbok Hong ....
title_full_unstemmed Diffeomorphisms of elliptic 3-manifolds Sungbok Hong ....
title_short Diffeomorphisms of elliptic 3-manifolds
title_sort diffeomorphisms of elliptic 3 manifolds
topic Diffeomorphismus (DE-588)4149767-3 gnd
Riemannsche Metrik (DE-588)4294399-1 gnd
Mannigfaltigkeit (DE-588)4037379-4 gnd
Dimension 3 (DE-588)4321722-9 gnd
topic_facet Diffeomorphismus
Riemannsche Metrik
Mannigfaltigkeit
Dimension 3
url http://deposit.dnb.de/cgi-bin/dokserv?id=4052443&prov=M&dok_var=1&dok_ext=htm
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025295607&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000676446
work_keys_str_mv AT hongsungbok diffeomorphismsofelliptic3manifolds