Diffeomorphisms of elliptic 3-manifolds
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2012
|
Schriftenreihe: | Lecture notes in mathematics
2055 |
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV040447896 | ||
003 | DE-604 | ||
005 | 20121008 | ||
007 | t | ||
008 | 120928s2012 ad|| |||| 00||| eng d | ||
015 | |a 12N24 |2 dnb | ||
016 | 7 | |a 1023016516 |2 DE-101 | |
020 | |a 9783642315633 |c pPbk. |9 978-3-642-31563-3 | ||
035 | |a (OCoLC)815937239 | ||
035 | |a (DE-599)DNB1023016516 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-824 |a DE-11 |a DE-83 |a DE-188 | ||
082 | 0 | |a 514.34 |2 22/ger | |
084 | |a SI 850 |0 (DE-625)143199: |2 rvk | ||
084 | |a 57S10 |2 msc | ||
084 | |a 57M99 |2 msc | ||
084 | |a 58D05 |2 msc | ||
245 | 1 | 0 | |a Diffeomorphisms of elliptic 3-manifolds |c Sungbok Hong .... |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2012 | |
300 | |a X, 155 S. |b Ill., graph. Darst. |c 235 mm x 155 mm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes in mathematics |v 2055 | |
650 | 0 | 7 | |a Diffeomorphismus |0 (DE-588)4149767-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Riemannsche Metrik |0 (DE-588)4294399-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dimension 3 |0 (DE-588)4321722-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |D s |
689 | 0 | 1 | |a Dimension 3 |0 (DE-588)4321722-9 |D s |
689 | 0 | 2 | |a Riemannsche Metrik |0 (DE-588)4294399-1 |D s |
689 | 0 | 3 | |a Diffeomorphismus |0 (DE-588)4149767-3 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Hong, Sung-Bok |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-642-31564-0 |
830 | 0 | |a Lecture notes in mathematics |v 2055 |w (DE-604)BV000676446 |9 2055 | |
856 | 4 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=4052443&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025295607&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-025295607 |
Datensatz im Suchindex
DE-BY-TUM_call_number | 0102/MAT 001z 2001 B 999-2055 |
---|---|
DE-BY-TUM_katkey | 1875443 |
DE-BY-TUM_media_number | 040071421200 |
_version_ | 1816713803648204800 |
adam_text |
IMAGE 1
CONTENTS
1 ELLIPTIC THREE-MANIFOLDS AND THE SMALE CONJECTURE 1
1.1 ELLIPTIC THREE-MANIFOLDS AND THEIR ISOMETRIES 1
1.2 THE SMALE CONJECTURE 3
1.3 THE WEAK SMALE CONJECTURE 5
1.4 PERELMAN'S METHODS 7
2 DIFFEOMORPHISMS AND EMBEDDINGS O F MANIFOLDS 9
2.1 FRECHET SPACES AND THE C-TOPOLOGY 9
2.2 METRICS WHICH ARE PRODUCTS NEAR THE BOUNDARY 10
2.3 MANIFOLDS WITH BOUNDARY 12
2.4 SPACES OF EMBEDDINGS 14
2.5 BUNDLES AND FIBER-PRESERVING DIFFEOMORPHISMS 14
2.6 ALIGNED VECTOR FIELDS AND THE ALIGNED EXPONENTIAL 16
3 THE METHOD O F CERF AND PALAIS 19
3.1 THE PALAIS-CERF RESTRICTION THEOREM 21
3.2 THE SPACE O F IMAGES 25
3.3 PROJECTION OF FIBER-PRESERVING DIFFEOMORPHISMS 26
3.4 RESTRICTION OF FIBER-PRESERVING DIFFEOMORPHISMS 29
3.5 RESTRICTION THEOREMS FOR ORBIFOLDS 31
3.6 SINGULAR FIBERINGS 36
3.7 SPACES OF FIBERED STRUCTURES 41
3.8 - RESTRICTING TO THE BOUNDARY OR THE BASEPOINT 44
3.9 THE SPACE OF SEIFERT FIBERINGS O F A HAKEN THREE-MANIFOLD 4 6
3.10 THE PARAMETERIZED EXTENSION PRINCIPLE 51
4 ELLIPTIC THREE-MANIFOLDS CONTAINING ONE-SIDED KLEIN BOTTLES 53 4.1 THE
MANIFOLDS M ( M , N) 53
4.2 OUTLINE OF THE PROOF 54
4.3 ISOMETRIES O F ELLIPTIC THREE-MANIFOLDS 57
4.4 THE HOPFFIBERING O F M ( M , N) AND SPECIAL KLEIN BOTTLES 59
4.5 HOMOTOPY TYPE O F THE SPACE OF DIFFEOMORPHISMS 66
I X
HTTP://D-NB.INFO/1023016516
IMAGE 2
X CONTENTS
4.6 GENERIC POSITION CONFIGURATIONS 68
4.7 GENERIC POSITION FAMILIES 74
4.8 PARAMETERIZATION 76
5 LENS SPACES 85
5.1 OUTLINE O F THE PROOF 85
5.2 REDUCTIONS 87
5.3 ANNULI IN SOLID TORI 88
5.4 HEEGAARD TORI IN VERY GOOD POSITION 90
5.5 SWEEPOUTS, AND LEVELS IN VERY GOOD POSITION 93
5.6 THE RUBINSTEIN-SCHARLEMANN GRAPHIC 96
5.7 GRAPHICS HAVING NO UNLABELED REGION 100
5.8 GRAPHICS FOR PARAMETERIZED FAMILIES 105
5.8.1 WEAK TRANSVERSALITY 106
5.8.2 FINITE SINGULARITY TYPE 109
5.8.3 SEMIALGEBRAIC SETS 110
5.8.4 THE CODIMENSION O F A REAL-VALUED FUNCTION I L L
5.8.5 THE STRATIFICATION O F C(M, R) BY CODIMENSION 113
5.8.6 BORDER LABEL CONTROL 116
5.8.7 BUILDING THE GRAPHICS 117
5.9 FINDING GOOD REGIONS 119
5.10 FROM GOOD TO VERY GOOD 126
5.11 SETTING UP THE LAST STEP 131
5.12 DEFORMING TO FIBER-PRESERVING FAMILIES 133
5.13 PARAMETERS IN D D 142
REFERENCES 145
INDEX 149 |
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV040447896 |
classification_rvk | SI 850 |
ctrlnum | (OCoLC)815937239 (DE-599)DNB1023016516 |
dewey-full | 514.34 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.34 |
dewey-search | 514.34 |
dewey-sort | 3514.34 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV040447896</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20121008</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">120928s2012 ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">12N24</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1023016516</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642315633</subfield><subfield code="c">pPbk.</subfield><subfield code="9">978-3-642-31563-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)815937239</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1023016516</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.34</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">57S10</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">57M99</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58D05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Diffeomorphisms of elliptic 3-manifolds</subfield><subfield code="c">Sungbok Hong ....</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 155 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield><subfield code="c">235 mm x 155 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">2055</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diffeomorphismus</subfield><subfield code="0">(DE-588)4149767-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannsche Metrik</subfield><subfield code="0">(DE-588)4294399-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dimension 3</subfield><subfield code="0">(DE-588)4321722-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dimension 3</subfield><subfield code="0">(DE-588)4321722-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Riemannsche Metrik</subfield><subfield code="0">(DE-588)4294399-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Diffeomorphismus</subfield><subfield code="0">(DE-588)4149767-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hong, Sung-Bok</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-642-31564-0</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">2055</subfield><subfield code="w">(DE-604)BV000676446</subfield><subfield code="9">2055</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=4052443&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025295607&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025295607</subfield></datafield></record></collection> |
id | DE-604.BV040447896 |
illustrated | Illustrated |
indexdate | 2024-11-25T17:37:10Z |
institution | BVB |
isbn | 9783642315633 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025295607 |
oclc_num | 815937239 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-824 DE-11 DE-83 DE-188 |
owner_facet | DE-91G DE-BY-TUM DE-824 DE-11 DE-83 DE-188 |
physical | X, 155 S. Ill., graph. Darst. 235 mm x 155 mm |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Springer |
record_format | marc |
series | Lecture notes in mathematics |
series2 | Lecture notes in mathematics |
spellingShingle | Diffeomorphisms of elliptic 3-manifolds Lecture notes in mathematics Diffeomorphismus (DE-588)4149767-3 gnd Riemannsche Metrik (DE-588)4294399-1 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd Dimension 3 (DE-588)4321722-9 gnd |
subject_GND | (DE-588)4149767-3 (DE-588)4294399-1 (DE-588)4037379-4 (DE-588)4321722-9 |
title | Diffeomorphisms of elliptic 3-manifolds |
title_auth | Diffeomorphisms of elliptic 3-manifolds |
title_exact_search | Diffeomorphisms of elliptic 3-manifolds |
title_full | Diffeomorphisms of elliptic 3-manifolds Sungbok Hong .... |
title_fullStr | Diffeomorphisms of elliptic 3-manifolds Sungbok Hong .... |
title_full_unstemmed | Diffeomorphisms of elliptic 3-manifolds Sungbok Hong .... |
title_short | Diffeomorphisms of elliptic 3-manifolds |
title_sort | diffeomorphisms of elliptic 3 manifolds |
topic | Diffeomorphismus (DE-588)4149767-3 gnd Riemannsche Metrik (DE-588)4294399-1 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd Dimension 3 (DE-588)4321722-9 gnd |
topic_facet | Diffeomorphismus Riemannsche Metrik Mannigfaltigkeit Dimension 3 |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=4052443&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025295607&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000676446 |
work_keys_str_mv | AT hongsungbok diffeomorphismsofelliptic3manifolds |