Combinatorics of permutations

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Bóna, Miklós (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Boca Raton [u.a.] CRC Press 2012
Ausgabe:2. ed.
Schriftenreihe:Discrete mathematics and its applications
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV040445059
003 DE-604
005 20130219
007 t|
008 120927s2012 xxud||| |||| 00||| eng d
020 |a 9781439850510  |c hbk  |9 978-1-4398-5051-0 
035 |a (OCoLC)808999138 
035 |a (DE-599)BVBBV040445059 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
044 |a xxu  |c US 
049 |a DE-473  |a DE-83  |a DE-634 
050 0 |a QA165 
082 0 |a 511/.64  |2 22 
084 |a SK 170  |0 (DE-625)143221:  |2 rvk 
084 |a 05A05  |2 msc 
084 |a MAT 201f  |2 stub 
084 |a MAT 050f  |2 stub 
100 1 |a Bóna, Miklós  |e Verfasser  |0 (DE-588)1013929861  |4 aut 
245 1 0 |a Combinatorics of permutations  |c Miklós Bóna 
250 |a 2. ed. 
264 1 |a Boca Raton [u.a.]  |b CRC Press  |c 2012 
300 |a 458 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Discrete mathematics and its applications 
650 7 |a Analyse combinatoire  |2 rasuqam 
650 7 |a Combinatieleer  |2 gtt 
650 7 |a Permutaties  |2 gtt 
650 7 |a Permutation (Mathematiques)  |2 rasuqam 
650 4 |a Permutations (Mathématiques) 
650 4 |a aPermutations 
650 0 7 |a Permutation  |0 (DE-588)4173832-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Kombinatorik  |0 (DE-588)4031824-2  |2 gnd  |9 rswk-swf 
689 0 0 |a Permutation  |0 (DE-588)4173832-9  |D s 
689 0 1 |a Kombinatorik  |0 (DE-588)4031824-2  |D s 
689 0 |5 DE-604 
856 4 2 |m Digitalisierung UB Bamberg  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025292817&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-025292817 

Datensatz im Suchindex

_version_ 1819586173959405568
adam_text Contents Foreword Preface to the First Edition Preface to the Second Edition Acknowledgments No Way around It. Introduction. 1 1 In One Line and Close. Permutations as Linear Orders. 3 1.1 Descents .............................. 3 1.1.1 The Definition of Descents ................ 3 1.1.2 Eulerian Numbers .................... 4 1.1.3 Stirling Numbers and Eulerian Numbers ........ 11 1.1.4 Generating Functions and Eulerian Numbers ..... 14 1.1.5 The Sequence of Eulerian Numbers ........... 16 1.2 Alternating Runs ......................... 25 1.3 Alternating Subsequences .................... 32 1.3.1 Definitions and a Recurrence Relation ......... 32 1.3.2 Alternating Runs and Alternating Subsequences ... 35 1.3.3 Alternating Permutations ................ 35 Exercises ................................. 37 Problems Plus .............................. 43 Solutions to Problems Plus ....................... 46 2 In One Line and Anywhere. Permutations as Linear Orders. Inversions- 53 2.1 Inversions ............................. 53 2.1.1 The Generating Function of Permutations by Inver¬ sions ............................ 53 2.1.2 Major Index ........................ 62 2.1.3 An Application: Determinants and Graphs ...... 65 2.2 Inversions in Permutations of Multisets ............. 68 2.2.1 An Application: Gaussian Polynomials and Subset Sums ............................ 69 2.2.2 Inversions and Gaussian Coefficients .......... 71 2.2.3 Major Index and Permutations of Multisets...... 72 Exercises ................................. 74 Problems Plus .............................. 79 Solutions to Problems Plus ....................... 81 In Many Circles. Permutations as Products of Cycles. 85 3.1 Decomposing a Permutation into Cycles ............ 85 3.1.1 An Application: Sign and Determinants ........ 87 3.1.2 An Application: Geometric Transformations ...... 90 3.2 Type and Stirling Numbers ................... 91 3.2.1 The Cycle Type of a Permutation ............ 91 3.2.2 An Application: Conjugate Permutations ....... 92 3.2.3 An Application: Trees and Transpositions .......93 3.2.4 Permutations with a Given Number of Cycles .....97 3.2.5 Generating Functions for Stirling Numbers ......104 3.2.6 An Application: Real Zeros and Probability ......107 3.3 Cycle Decomposition versus Linear Order ...........109 3.3.1 The Transition Lemma ..................109 3.3.2 Applications of the Transition Lemma .........110 3.4 Permutations with Restricted Cycle Structure .........113 3.4.1 The Exponential Formula ................113 3.4.2 The Cycle Index and Its Applications .........122 Exercises .................................129 Problems Plus ..............................136 Solutions to Problems Plus .......................140 In Any Way but This. Pattern Avoidance. The Basics. 147 4.1 The Notion of Pattern Avoidance ................ 147 4.2 Patterns of Length Three .................... 148 4.3 Monotone Patterns ........................ 151 4.4 Patterns of Length Four ..................... 154 4.4.1 The Pattern 1324..................... 155 4.4.2 The Pattern 1342..................... 161 4.4.3 The Pattern 1234..................... 176 4.5 The Proof of the Stanley-Wilf Conjecture ........... 177 4.5.1 The Füredi-Hajnal Conjecture ............. 177 4.5.2 Avoiding Matrices versus Avoiding Permutations . . . 178 4.5.3 The Proof of the Füredi-Hajnal Conjecture ...... 178 Exercises ................................. 183 Problems Plus .............................. 188 Solutions to Problems Plus ....................... 192 5 In This Way, but Nicely. Pattern Avoidance. Follow-Up. 197 5.1 Polynomial Recurrences .....................197 5.1.1 Polynomially Recursive Functions ............197 5.1.2 Closed Classes of Permutations .............198 5.1.3 Algebraic and Rational Power Series ..........200 5.1.4 The P-Recursiveness of 5„>r(132) ............204 5.2 Containing a Pattern Many Times ...............214 5.2.1 Packing Densities .....................214 5.2.2 Layered Patterns .....................215 5.3 Containing a Pattern a Given Number of Times ........220 5.3.1 A Construction with a Given Number of Copies .... 221 5.3.2 The Sequence {fc„}„>o ..................222 Exercises .................................226 Problems Plus ..............................228 Solutions to Problems Plus .......................230 6 Mean and Insensitive. Random Permutations. 235 6.1 The Probabilistic Viewpoint ...................235 6.1.1 Standard Young Tableaux ................237 6.2 Expectation ............................251 6.2.1 An Application: Finding the Maximum Element of a Sequence .........................252 6.2.2 Linearity of Expectation .................253 6.3 Variance and Standard Deviation ................256 6.3.1 An Application: Asmyptotically Normal Distributions 259 6.4 An Application: Longest Increasing Subsequences .......261 Exercises .................................263 Problems Plus ..............................267 Solutions to Problems Plus .......................269 7 Permutations and the Rest. Algebraic Combinatorics of Per¬ mutations. 275 7.1 The Robinson-Schensted-Knuth Correspondence .......275 7.2 Posets of Permutations ......................285 7.2.1 Posets on Sn .......................285 7.2.2 Posets on Pattern-Avoiding Permutations .......294 7.2.3 An Infinite Poset of Permutations ............296 7.3 Simplicia! Complexes of Permutations .............297 7.3.1 A Simplicial Complex of Restricted Permutations . . . 298 7.3.2 A SimpHcial Complex of AH n-Peraiutations ......299 Exercises .................................301 Problems Plus ..............................305 Solutions to Problems Plus .......................307 8 Get Them AU. Algorithms and Permutations. 313 8.1 Generating Permutations ....................313 8.1.1 Generating All η -Permutations............. 313 8.1.2 Generating Restricted Permutations ..........314 8.2 Stack Sorting Permutations ...................317 8.2.1 2-Stack Sortable Permutations .............319 8.2.2 t-Stack Sortable Permutations ..............321 8.2.3 Unhnodality ........................327 8.3 Variations of Stack Sorting ...................330 Exercises .................................338 Problems Plus ..............................342 Solutions to Problems Plus .......................344 9 How Did We Get Here? Permutations as Genome Rearrange¬ ments. 351 9.1 Introduction ............................351 9.2 Block Transpositions .......................352 9.3 Block Interchanges ........................356 9.3.1 The Average Number of Block Interchanges Needed to Sort ρ ..........................363 9.4 Block Transpositions Revisited .................372 Exercises .................................380 Problems Plus ..............................381 Solutions to Problems Plus .......................382 Do Not Look Just Yet. Solutions to Odd-Numbered Exercises. 385 Solutions for Chapter 1 .........................385 Solutions for Chapter 2 .........................392 Solutions for Chapter 3.........................396 Solutions for Chapter 4 .........................406 Solutions for Chapter 5.........................415 Solutions for Chapter 6.........................419 Solutions for Chapter 7.........................424 Solutions for Chapter 8 .........................427 Solutions for Chapter 9.........................431 References 435 List of Frequently Used Notation 453 Index 455
any_adam_object 1
author Bóna, Miklós
author_GND (DE-588)1013929861
author_facet Bóna, Miklós
author_role aut
author_sort Bóna, Miklós
author_variant m b mb
building Verbundindex
bvnumber BV040445059
callnumber-first Q - Science
callnumber-label QA165
callnumber-raw QA165
callnumber-search QA165
callnumber-sort QA 3165
callnumber-subject QA - Mathematics
classification_rvk SK 170
classification_tum MAT 201f
MAT 050f
ctrlnum (OCoLC)808999138
(DE-599)BVBBV040445059
dewey-full 511/.64
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 511 - General principles of mathematics
dewey-raw 511/.64
dewey-search 511/.64
dewey-sort 3511 264
dewey-tens 510 - Mathematics
discipline Mathematik
edition 2. ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01780nam a2200505zc 4500</leader><controlfield tag="001">BV040445059</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20130219 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">120927s2012 xxud||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781439850510</subfield><subfield code="c">hbk</subfield><subfield code="9">978-1-4398-5051-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)808999138</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040445059</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-473</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA165</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.64</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 170</subfield><subfield code="0">(DE-625)143221:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">05A05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 201f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 050f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bóna, Miklós</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1013929861</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Combinatorics of permutations</subfield><subfield code="c">Miklós Bóna</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton [u.a.]</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">458 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Discrete mathematics and its applications</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Analyse combinatoire</subfield><subfield code="2">rasuqam</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Combinatieleer</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Permutaties</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Permutation (Mathematiques)</subfield><subfield code="2">rasuqam</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Permutations (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aPermutations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Permutation</subfield><subfield code="0">(DE-588)4173832-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Permutation</subfield><subfield code="0">(DE-588)4173832-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bamberg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=025292817&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025292817</subfield></datafield></record></collection>
id DE-604.BV040445059
illustrated Illustrated
indexdate 2024-12-24T02:50:26Z
institution BVB
isbn 9781439850510
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-025292817
oclc_num 808999138
open_access_boolean
owner DE-473
DE-BY-UBG
DE-83
DE-634
owner_facet DE-473
DE-BY-UBG
DE-83
DE-634
physical 458 S. graph. Darst.
publishDate 2012
publishDateSearch 2012
publishDateSort 2012
publisher CRC Press
record_format marc
series2 Discrete mathematics and its applications
spellingShingle Bóna, Miklós
Combinatorics of permutations
Analyse combinatoire rasuqam
Combinatieleer gtt
Permutaties gtt
Permutation (Mathematiques) rasuqam
Permutations (Mathématiques)
aPermutations
Permutation (DE-588)4173832-9 gnd
Kombinatorik (DE-588)4031824-2 gnd
subject_GND (DE-588)4173832-9
(DE-588)4031824-2
title Combinatorics of permutations
title_auth Combinatorics of permutations
title_exact_search Combinatorics of permutations
title_full Combinatorics of permutations Miklós Bóna
title_fullStr Combinatorics of permutations Miklós Bóna
title_full_unstemmed Combinatorics of permutations Miklós Bóna
title_short Combinatorics of permutations
title_sort combinatorics of permutations
topic Analyse combinatoire rasuqam
Combinatieleer gtt
Permutaties gtt
Permutation (Mathematiques) rasuqam
Permutations (Mathématiques)
aPermutations
Permutation (DE-588)4173832-9 gnd
Kombinatorik (DE-588)4031824-2 gnd
topic_facet Analyse combinatoire
Combinatieleer
Permutaties
Permutation (Mathematiques)
Permutations (Mathématiques)
aPermutations
Permutation
Kombinatorik
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025292817&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT bonamiklos combinatoricsofpermutations