Chaos and fractals an elementary introduction

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Feldman, David P. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Oxford Oxford Univ. Press 2012
Ausgabe:1. ed.
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Klappentext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV040423022
003 DE-604
005 20131106
007 t|
008 120918s2012 xx ad|| |||| 00||| eng d
020 |a 9780199566440  |9 978-0-19-956644-0 
020 |a 9780199566433  |9 978-0-19-956643-3 
035 |a (OCoLC)810230938 
035 |a (DE-599)HEB303693622 
040 |a DE-604  |b ger 
041 0 |a eng 
049 |a DE-11  |a DE-19  |a DE-703  |a DE-20  |a DE-29T 
082 0 |a 514.742 
084 |a SK 350  |0 (DE-625)143233:  |2 rvk 
084 |a SK 430  |0 (DE-625)143239:  |2 rvk 
084 |a SK 810  |0 (DE-625)143257:  |2 rvk 
084 |a UG 3900  |0 (DE-625)145629:  |2 rvk 
100 1 |a Feldman, David P.  |e Verfasser  |0 (DE-588)1027041051  |4 aut 
245 1 0 |a Chaos and fractals  |b an elementary introduction  |c David P. Feldman 
250 |a 1. ed. 
264 1 |a Oxford  |b Oxford Univ. Press  |c 2012 
300 |a XXI, 408 S.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
650 0 7 |a Chaotisches System  |0 (DE-588)4316104-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Fraktal  |0 (DE-588)4123220-3  |2 gnd  |9 rswk-swf 
689 0 0 |a Fraktal  |0 (DE-588)4123220-3  |D s 
689 0 |5 DE-604 
689 1 0 |a Chaotisches System  |0 (DE-588)4316104-2  |D s 
689 1 |5 DE-604 
856 4 2 |m Digitalisierung UB Bayreuth  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025275683&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
856 4 2 |m Digitalisierung UB Bayreuth  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025275683&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA  |3 Klappentext 
943 1 |a oai:aleph.bib-bvb.de:BVB01-025275683 

Datensatz im Suchindex

DE-19_call_number 1705/UG 3900 F312
DE-19_location 95
DE-BY-UBM_katkey 4660936
DE-BY-UBM_media_number 41620551140013
_version_ 1823055067360526336
adam_text Contents I Introducing Discrete Dynamical Systems 1 0 Opening Remarks 3 0.1 Chaos 3 0.2 Fractals 4 0.3 The Character of Chaos and Fractals 5 1 Functions 9 1.1 Functions as Actions 9 1.2 Functions as a Formula 10 1.3 Functions are Deterministic 11 1.4 Functions as Graphs 11 1.5 Functions as Maps 13 Exercises 14 2 Iterating Functions 17 2.1 The Idea of Iteration 17 2.2 Some Vocabulary and Notation 18 2.3 Iterated Function Notation 19 2.4 Algebraic Expressions for Iterated Functions 20 2.5 Why Iteration? 21 Exercises 23 3 Qualitative Dynamics: The Fate of the Orbit 25 3.1 Dynamical Systems 25 3.2 Dynamics of the Squaring Function 26 3.3 The Phase Line 27 3.4 Fixed Points via Algebra 27 3.5 Fixed Points Graphically 29 3.6 Types of Fixed Points 30 Exercises 31 4 Time Series Plots 33 4.1 Examples of Time Series Plots 33 Exercises 35 5 Graphical Iteration 37 5.1 An Initial Example 37 5.2 The Method of Graphical Iteration 38 5.3 Further Examples 39 Exercises 42 xvi Contents Iterating Linear Functions 45 6.1 A Series of Examples 45 6.2 Slopes of +1 or -1 48 Exercises 50 Population Models 53 7.1 Exponential Growth 53 7.2 Modifying the Exponential Growth Model 56 7.3 The Logistic Equation 59 7.4 A Note on the Importance of Stability 62 7.5 Other r Values 64 Exercises 65 Newton, Laplace, and Determinism 67 8.1 Newton and Universal Mechanics 67 8.2 The Enlightenment and Optimism 69 8.3 Causality and Laplace s Demon 70 8.4 Science Today 71 8.5 A Look Ahead 72 II Chaos 75 9 Chaos and the Logistic Equation 77 9.1 Periodic Behavior 77 9.2 Aperiodic Behavior 82 9.3 Chaos Defined 85 9.4 Implications of Aperiodic Behavior 86 Exercises 87 10 The Butterfly Effect 89 10.1 Stable Periodic Behavior 89 10.2 Sensitive Dependence on Initial Conditions 90 10.3 SDIC Defined 93 10.4 Lyapunov Exponents 95 10.5 Stretching and Folding: Ingredients for Chaos 97 10.6 Chaotic Numerics: The Shadowing Lemma 99 Exercises 102 11 The Bifurcation Diagram 105 11.1 A Collection of Final-State Diagrams 105 11.2 Periodic Windows HO 11.3 Bifurcation Diagram Summary Ш Exercises 112 12 Universality 115 12.1 Bifurcation Diagrams for Other Functions П5 12.2 Universality of Period Doubling 118 12.3 Physical Consequences of Universality 121 Contents xvii 12.4 Renormalization and Universality 124 12.5 How are Higher-Dimensional Phenomena Universal? 128 Exercises 129 13 Statistical Stability of Chaos 131 13.1 Histograms of Periodic Orbits 131 13.2 Histograms of Chaotic Orbits 132 13.3 Ergodicity 135 13.4 Predictable Unpredictability 138 Exercises 139 14 Determinism, Randomness, and Nonlinearity 141 14.1 Symbolic Dynamics 141 14.2 Chaotic Systems as Sources of Randomness 143 14.3 Randomness? 144 14.4 Linearity, Nonlinearity, and Reductionism 148 14.5 Summary and a Look Ahead 152 Exercises 154 III Fractals 155 15 Introducing Fractals 157 15.1 Shapes 157 15.2 Self-Similarity 158 15.3 Typical Size? 160 15.4 Mathematical vs. Real Fractals 161 Exercises 162 16 Dimensions 163 16.1 How Many Little Things Fit inside a Big Thing? 163 16.2 The Dimension of the Snowflake 165 16.3 What does D « 1.46497 Mean? 166 16.4 The Dimension of the Cantor Set 167 16.5 The Dimension of the Sierpiński Triangle 168 16.6 Fractals, Defined Again 169 Exercises 170 17 Random Fractals 173 17.1 The Random Koch Curve 173 17.2 Irregular Fractals 176 17.3 Fractal Landscapes 178 17.4 The Chaos Game 178 17.5 The Role of Randomness 181 17.6 The Collage Theorem 181 Exercises 184 18 The Box-Counting Dimension 187 18.1 Covering a Box with Little Boxes 187 xviii Contents 18.2 Covering a Circle with Little Boxes 189 18.3 Estimating the Box-Counting Dimension 190 18.4 Summary 193 Exercises 193 19 When do Averages Exist? 195 19.1 Tossing a Coin 195 19.2 St. Petersburg Game 198 19.3 Average Winnings for the St. Petersburg Game 202 19.4 Implications 203 Exercises 204 20 Power Laws and Long Tails 207 20.1 The Central Limit Theorem and Normal Distributions 207 20.2 Power Laws: An Initial Example 211 20.3 Power Laws and the Long Tail 213 20.4 Power Laws and Fractals 215 20.5 Where do Power Laws Come From? 218 Exercises 219 21 Infinities, Big and Small 221 21.1 What is the Size of the Cantor Set? 221 21.2 Cardinality, Counting, and the Size of Sets 222 21.3 Countable Infinities 224 21.4 Rational and Irrational Numbers 225 21.5 Binary 225 21.6 The Cardinality of the Unit Interval 227 21.7 The Cardinality of the Cantor Set 229 21.8 Summary and a Look Ahead 232 Exercises 232 IV Julia Sets and the Mandelbrot Set 235 22 Introducing Julia Sets 237 22.1 The Squaring Function 237 22.2 Other Examples 238 22.3 Summary 239 Exercises 240 23 Complex Numbers 241 23.1 The Square Root of -1 241 23.2 The Algebra of Complex Numbers 242 23.3 The Geometry of Complex Numbers 243 23.4 The Geometry of Multiplication 244 Exercises 246 24 Julia Sets for the Quadratic Family 249 24.1 The Complex Squaring Function 249 Contents xix 24.2 Another Example: f (z) = z2 - 1 250 24.3 Julia Sets for ƒ (z) = z2 + с 252 24.4 Computing and Coloring Julia Sets 253 Exercises 255 25 The Mandelbrot Set 257 25.1 Cataloging Julia Sets 257 25.2 The Mandelbrot Set Defined 258 25.3 The Mandelbrot Set and the Critical Orbit 259 25.4 Exploring the Mandelbrot Set 260 25.5 The Mandelbrot Set is a Julia Set Encyclopedia 263 25.6 Conclusion 268 Exercises 269 V Higher-Dimensional Systems 271 26 Two-Dimensional Discrete Dynamical Systems 273 26.1 Review of One-Dimensional Discrete Dynamics 273 26.2 Two-Dimensional Discrete Dynamical Systems 274 26.3 The Hénon Map 275 26.4 Chaotic Behavior and the Hénon Map 277 26.5 A Chaotic Attractor 279 26.6 Strange Attractors Defined 283 Exercises 285 27 Cellular Automata 287 27.1 One-Dimensional Cellular Automata: An Initial Example 287 27.2 Surveying One-Dimensional Cellular Automata 290 27.3 Classifying and Characterizing С A Behavior 293 27.4 Behavior of CAs Using a Single-Cell Seed 296 27.5 CA Naming Conventions 298 27.6 Other Types of CAs 300 Exercises 302 28 Introduction to Differential Equations 303 28.1 Continuous Change 303 28.2 Instantaneous Rates of Change 304 28.3 Approximately Solving a Differential Equation 306 28.4 Euler s Method 310 28.5 Other Solution Methods 311 Exercises 312 29 One-Dimensional Differential Equations 313 29.1 The Continuous Logistic Equation 313 xx Contents 29.2 Another Example 316 29.3 Overview of One-Dimensional Differential Equations 317 Exercises 318 30 Two-Dimensional Differential Equations 321 30.1 Introducing the Lotka- Volterra Model 321 30.2 Euler s Method in Two Dimensions 323 30.3 Analyzing the Lotka- Volterra Model 325 30.4 Phase Space and Phase Portraits 326 30.5 Another Example: An Attracting Fixed Point 329 30.6 One More Example: Limit Cycles 330 30.7 Overview of Two-Dimensional Differential Equations 331 Exercises 332 31 Chaotic Differential Equations and Strange Attractors 335 31.1 The Lorenz Equations 335 31.2 A Fixed Point 336 31.3 Periodic Behavior 338 31.4 Chaos and the Lorenz Equations 339 31.5 The Lorenz Attractor 342 31.6 The Rössler Attractor 345 31.7 Chaotic Flows and One-Dimensional Functions 347 Exercises 349 VI Conclusion 351 32 Conclusion 353 32.1 Summary 353 32.2 Order and Disorder 354 32.3 Prediction and Understanding 355 32.4 A Theory of Forms 355 32.5 Revolution or Reconfiguration? 357 VII Appendices 361 A Review of Selected Topics from Algebra 363 A.I Exponents 363 A.2 The Quadratic Formula 366 A.3 Linear Functions 368 A. 4 Logarithms 370 Exercises 374 В Histograms and Distributions 377 B.I Representing Data with Histograms 377 B.2 Choosing Bin Sizes 378 B.3 Normalizing Histograms 381 B.4 Approximating Histograms with Functions 383 Exercises 386 С Suggestions for Further Reading C.I (Mostly) Books C.2 Peer-Reviewed Papers C.3 Suggestions for Further Reading References Index Contents xxi 389 389 393 395 397 403 This book provides the reader with an elementary introduction to chaos and fractals, suitable for students with a background in elementary algebra, without assuming prior coursework in calculus or physics. Simple iterated functions are used to introduce the key phenomena of chaos: aperiodicity, bifurcations, and sensitive dependence on initial conditions, also known as the butterfly effect. Fractals are introduced as self-similar geometric objects and analyzed with the self-similarity and box-counting dimensions. After a brief discussion of power laws, subsequent chapters explore Julia sets and the Mandelbrot set. The last part of the book examines cellular automata, chaotic differential equations, and strange attractors. The book is richly illustrated and includes over 250 end-of-chapter exercises. A flexible format and a clear and succinct writing style make it a good choice for introductory courses in chaos and fractals. David P. Feldman is Professor of Physics and Mathematics at College of the Atlantic, Bar Harbor, Maine, USA. Chaos and f ratìats are two intertwined concepts that have revolutionized many areas of science and renewed popular interest in mathematics over the past few decades. Feldman s book is a rich resource for anyone who wants a deeper understanding of these subjects without the need for advanced mathematics. Julien Clinton Sprott, Emeritus Professor of Physics, University of Wisconsin-Madison David P. Feldman provides a delightful and thoughtful introduďion to chaos and fractals requiring only a good background in algebra. The formal treatment of nonlinear dynamics, chaotic behavior, Lyapunov exponents, and fractal dimensions is leavened with creative analogies and many helpful and visually attractive figures and diagrams. Even more mathematically sophisticated readers will find this book a good starting point in exploring the complex and beguiling realms of chaos and f rada Is. Robert C. Hilborn, Associate Executive Officer, American Association of Physics Teachers ALSO PUBLISHED BY OXFORD UNIVERSITY PRESS: Chaos: The Science of Predictable Random Motion Richard Kautz The Language of Physics: A Foundation for University Study John P. Cullerne, Anton Macháček Atomic Physics: An Exploration through Problems and Solutions Dmitry Budker, Derek Kimball, and David DeMille Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers Robert С Hilborn Chaos and Time-Series Analysis Julien Clinton Sprott
any_adam_object 1
author Feldman, David P.
author_GND (DE-588)1027041051
author_facet Feldman, David P.
author_role aut
author_sort Feldman, David P.
author_variant d p f dp dpf
building Verbundindex
bvnumber BV040423022
classification_rvk SK 350
SK 430
SK 810
UG 3900
ctrlnum (OCoLC)810230938
(DE-599)HEB303693622
dewey-full 514.742
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 514 - Topology
dewey-raw 514.742
dewey-search 514.742
dewey-sort 3514.742
dewey-tens 510 - Mathematics
discipline Physik
Mathematik
edition 1. ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01832nam a2200433 c 4500</leader><controlfield tag="001">BV040423022</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20131106 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">120918s2012 xx ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780199566440</subfield><subfield code="9">978-0-19-956644-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780199566433</subfield><subfield code="9">978-0-19-956643-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)810230938</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HEB303693622</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.742</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 430</subfield><subfield code="0">(DE-625)143239:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 810</subfield><subfield code="0">(DE-625)143257:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 3900</subfield><subfield code="0">(DE-625)145629:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Feldman, David P.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1027041051</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Chaos and fractals</subfield><subfield code="b">an elementary introduction</subfield><subfield code="c">David P. Feldman</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford</subfield><subfield code="b">Oxford Univ. Press</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 408 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chaotisches System</subfield><subfield code="0">(DE-588)4316104-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fraktal</subfield><subfield code="0">(DE-588)4123220-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fraktal</subfield><subfield code="0">(DE-588)4123220-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Chaotisches System</subfield><subfield code="0">(DE-588)4316104-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=025275683&amp;sequence=000003&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=025275683&amp;sequence=000004&amp;line_number=0002&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025275683</subfield></datafield></record></collection>
id DE-604.BV040423022
illustrated Illustrated
indexdate 2025-02-03T17:28:01Z
institution BVB
isbn 9780199566440
9780199566433
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-025275683
oclc_num 810230938
open_access_boolean
owner DE-11
DE-19
DE-BY-UBM
DE-703
DE-20
DE-29T
owner_facet DE-11
DE-19
DE-BY-UBM
DE-703
DE-20
DE-29T
physical XXI, 408 S. Ill., graph. Darst.
publishDate 2012
publishDateSearch 2012
publishDateSort 2012
publisher Oxford Univ. Press
record_format marc
spellingShingle Feldman, David P.
Chaos and fractals an elementary introduction
Chaotisches System (DE-588)4316104-2 gnd
Fraktal (DE-588)4123220-3 gnd
subject_GND (DE-588)4316104-2
(DE-588)4123220-3
title Chaos and fractals an elementary introduction
title_auth Chaos and fractals an elementary introduction
title_exact_search Chaos and fractals an elementary introduction
title_full Chaos and fractals an elementary introduction David P. Feldman
title_fullStr Chaos and fractals an elementary introduction David P. Feldman
title_full_unstemmed Chaos and fractals an elementary introduction David P. Feldman
title_short Chaos and fractals
title_sort chaos and fractals an elementary introduction
title_sub an elementary introduction
topic Chaotisches System (DE-588)4316104-2 gnd
Fraktal (DE-588)4123220-3 gnd
topic_facet Chaotisches System
Fraktal
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025275683&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025275683&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT feldmandavidp chaosandfractalsanelementaryintroduction