Drug delivery in oncology from basic research to cancer therapy 2
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
2012
|
Online-Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV040416125 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t| | ||
008 | 120913s2012 gw ad|| |||| 00||| eng d | ||
015 | |a 11,A45 |2 dnb | ||
016 | 7 | |a 1016538634 |2 DE-101 | |
035 | |a (OCoLC)815892473 | ||
035 | |a (DE-599)DNB1016538634 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-19 | ||
245 | 1 | 0 | |a Drug delivery in oncology |b from basic research to cancer therapy |n 2 |c ed. by Felix Kratz ... |
264 | 1 | |a Weinheim |b Wiley-VCH |c 2012 | |
300 | |a XXIV S., S. 289 - 1185 |b Ill., graph. Darst. |c 25 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
700 | 1 | |a Kratz, Felix |4 edt | |
773 | 0 | 8 | |w (DE-604)BV040416114 |g 2 |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025268987&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-025268987 |
Datensatz im Suchindex
_version_ | 1819601757063348224 |
---|---|
adam_text | IMAGE 1
VII
CONTENTS TO VOLUME 1
PARTI PRINCIPLES OF TUMOR TARGETING I
LIMITS OF CONVENTIONAL CANCER CHEMOTHERAPY 3 KLAUS MROSS AND FELIX KRATZ
PATHOPHYSIOLOGICAL AND VASCULAR CHARACTERISTICS OF SOLID TUMORS IN
RELATION TO DRUG DELIVERY 33 PETER VAUPEL
ENHANCED PERMEABILITY AND RETENTION EFFECT IN RELATION TO TUMOR
TARGETING 65 HIROSHI MAEDA
PHARMACOKINETICS OF IMMUNOGLOBULIN C AND SERUM ALBUMIN: IMPACT OF THE
NEONATAL FC RECEPTOR ON DRUG DESIGN 85 JAN TERJE ANDERSEN AND INGER
SANDLIE
DEVELOPMENT OF CANCER-TARGETING LIGANDS AND LIGAND-DRUG CONJUGATES 121
RUIWU LIU, KAI XIAO, JUNTAO LUO, AND KIT S. LAM
ANTIBODY-DIRECTED ENZYME PRODRUG THERAPY (ADEPT) - BASIC PRINCIPLES AND
ITS PRACTICE SO FAR 169 KENNETH D. BAGSHAWE
PART II TUMOR IMAGING 187
IMAGING TECHNIQUES IN DRUG DEVELOPMENT AND CLINICAL PRACTICE 189 JOHN C.
CHANG, SANJIV S. GAMBHIR, AND JUERGEN K. WILLMANN
BIBLIOGRAFISCHE INFORMATIONEN HTTP://D-NB.INFO/1016538634
DIGITALISIERT DURCH
IMAGE 2
VIII CONTENTS
8 MAGNETIC NANOPARTICLES IN MAGNETIC RESONANCE IMAGING AND DRUG
DELIVERY 225 PATRICK D. SUTPHIN, EFRENJ. FLORES, AND MUKESH HARISINGHANI
9 PREDINICAL AND CLINICAL TUMOR IMAGING WITH SPECT/CT AND PET/CT 247
ANDREAS K. BUCK, FLORIAN GAERTNER, AMBROS BEER, KEN HERRMANN, SIBYLLE
ZIEGLER, AND MARKUS SCHWAIGER
CONTENTS TO VOLUME 2
FOREWORD V PREFACE XXIII
PART III MACROMOLECULAR DRUG DELIVERY SYSTEMS 289
ANTIBODY-BASED SYSTEMS 289
10 EMPOWERED ANTIBODIES FOR CANCER THERAPY 291 STEPHEN C. ALLEY, SIMONE
JEGER, ROBERT P. LYON, DJANGO SUSSMAN, AND PETER D. SENTER 10.1
INTRODUCTION AND RATIONALE FOR APPROACH 291 10.2 EXAMPLES OF EMPOWERED
ANTIBODY TECHNOLOGIES 291 10.2.1 ADCC 291 10.2.2 ANTIBODY-DRUG
CONJUGATES FOR CANCER THERAPY 295
10.2.2.1 TARGET ANTIGEN SELECTION 295 10.2.2.2 CONJUGATION TECHNOLOGIES
297 10.2.2.3 DRUG AND LINKER SELECTION 301 10.3 CLINICAL DEVELOPMENTS
307
10.3.1 GEMTUZUMAB OZOGAMICIN (MYLOTARG) AND OTHER CALICHEAMICIN-BASED
ADCS 307 10.3.2 BRENTUXIMAB VEDOTIN AND OTHER AURISTATIN-BASED ADCS 309
10.3.3 TRASTUZUMAB-DML AND OTHER MAYTANSINOID-BASED ADCS 310 10.4
ALTERNATIVE SCAFFOLDS 310 10.5 CONCLUSIONS AND PERSPECTIVES 311
REFERENCES 311
11 MAPPING ACCESSIBLE VASCULAR TARGETS TO PENETRATE ORGANS AND SOLID
TUMORS 325 KERRI A. MASSEY AND JAN E. SCHNITZER
11.1 INTRODUCTION 325 11.2 CURRENT APPROACHES TO THERAPY 325 11.3
DEFINING NEW TARGET SPACES 326
11.3.1 VASCULAR ENDOTHELIUM AS AN ACCESSIBLE TARGET SPACE 327 11.3.2
PATHWAYS ACROSS THE ENDOTHELIUM 328
IMAGE 3
CONTENTS IX
11.3.3 CAVEOLAE AS A TRANSVASCULAR PUMPING TARGET SPACE 329
11.3.4 APPLYING THE CONCEPT OF NEW TARGET SPACES TO SOLID TUMORS 330
11.4 DIFFICULTIES IN STUDYING ENDOTHELIAL CELLS 332 11.4.1 ENDOTHELIAL
CELLS IN CULTURE 332 11.4.2 HISTORIC APPROACHES TO VASCULAR MAPPING 333
11.5 METHODS TO IDENTIFY TISSUE-SPECIFIC TARGETS 334
11.5.1 ANTIBODY-BASED APPROACHES 334 11.5.2 PHAGE-BASED APPROACHES 335
11.5.3 LARGE-SCALE APPROACHES 335 11.6 MS-BASED APPROACHES TO MAP THE
VASCULAR ENDOTHELIAL CELL
PROTEOME 336
11.6.1 DEFINING ANALYTICAL COMPLETENESS 337 11.6.2 QUANTIFICATION AND
NORMALIZATION OF MS DATA 338 11.7 MEANS TO VALIDATION 339
11.8 IN VIVO TISSUE TARGETING: THE LUNGS AS PROOF OF PRINCIPLE 341 11.9
TARGETING LUNG TUMORS 343
11.10 FUTURE DIRECTIONS 346 REFERENCES 346
12 CONSIDERATIONS OF LINKER TECHNOLOGIES 355 LAURENT DUCRY 12.1
INTRODUCTION 355
12.2 LINKAGE SITE AND CROSS-LINKING CHEMISTRY 355 12.3 LINKERS FOR
CYTOTOXIC ADCS 357 12.3.1 CHEMICALLY LABILE LINKERS 357 12.3.2
ENZYME-LABILE LINKERS 361 12.3.3 NONCLEAVABLE LINKERS 367 12.4 LINKERS
FOR RADIOACTIVE IMMUNOCONJUGATES 369 12.5 CONCLUSIONS 370
REFERENCES 371
13 ANTIBODY-MAYTANSINOID CONJUGATES: FROM THE BENCH TO THE CLINIC 375
HANS ERICKSON 13.1 INTRODUCTION 375
13.2 CONJUGATION STRATEGIES 376 13.3 SELECTING THE OPTIMAL LINKER 381
13.4 CLINICAL CANDIDATES 384
13.5 ACTIVATION OF AMCS BY TARGETED CANCER CELLS 385 13.5.1 ISOLATION OF
MAYTANSINOID METABOLITES 385 13.5.2 TARGET CELL METABOLITES OF AMCS WITH
SMCC-DM1, SPP-DM1, AND SPDB-DM4 IINKER-MAYTANSINOID COMBINATIONS 386
13.5.3 LYSOSOMAL ACTIVATION IS NECESSARY FOR BOTH CLEAVABLE AND
UNDEAVABLE CONJUGATES 387
IMAGE 4
X I CONTENTS
13.5.4 EFFICIENCY OF ANTIGEN-MEDIATED PROCESSING 387
13.5.5 EFFLUX OF METABOLITES FROM TARGETED CANCER CELLS AND BYSTANDER
EFFECTS 388 13.5.6 TARGET CELL ACTIVATION OF CLEAVABLE AND UNCLEAVABLE
AMCS 389 13.6 IN VIVO TUMOR DELIVERY STUDIES 390
13.7 CONCLUSIONS 392 REFERENCES 392
14 CALICHEAMICIN ANTIBODY-DRUG CONJUGATES AND BEYOND 395 PUJA SAPRA,
JOHN DIJOSEPH, AND HANS-PETER GERBER 14.1 INTRODUCTION 395 14.2
DISCOVERY OF CALICHEAMICIN AND MECHANISM
OF ACTION 397
14.3 CALICHEAMICIN ADCS 399 14.3.1 GEMTUZUMAB OZOGAMICIN (MYLOTARG) 399
14.3.2 CLINICAL DEVELOPMENT OF GEMTUZUMAB OZOGAMICIN (MYLOTARG) 400
14.3.3 CMC-544 402
14.3.3.1 CD22 EXPRESSION AND FUNCTION 402 14.3.4 PRECLINICAL ACTIVITY OF
CMC-544, AN ANTI-CD22-CALICHEAMICIN CONJUGATE, IN MODELS OF NHL 402
14.3.5 EFFECT OF CMC-544 IN A MODEL OF ALL 403
14.4 CLINICAL DEVELOPMENT OF CALICHEAMICIN CONJUGATES: CMC-544 404 14.5
CONCLUSIONS AND FUTURE DIRECTIONS 405 REFERENCES 407
15 ANTIBODIES FOR THE DELIVERY OF RADIONUCLIDES 411 ANNA M. WU 15.1
INTRODUCTION 411 15.2 RATIONALE FOR USING ANTIBODIES FOR RADIONUCLIDE
DELIVERY 413
15.2.1 RADIONUCLIDES FOR IMAGING 415 15.2.1.1 Y EMITTERS 417 15.2.1.2
POSITRON EMITTERS 437 15.2.2 RADIONUCLIDES FOR THERAPY 418 15.2.2.1 SS
EMITTERS 421 15.2.2.2 A EMITTERS 422 15.2.2.3 AUGER ELECTRON EMITTERS
423 15.2.3 ANTIBODIES AS DELIVERY AGENTS 423 15.2.3.1 INTACT ANTIBODIES
424 15.2.3.2 ENGINEERED ANTIBODY FRAGMENTS 424 15.2.3.3 PRETARGETING 429
15.3 CLINICAL DEVELOPMENT 431 15.3.1 RADIOIMMUNOIMAGING 431 15.3.2
RADIOIMMUNOTHERAPY 434
IMAGE 5
CONTENTS | XI
15.4 CONCLUSIONS AND PERSPECTIVES 434
ACKNOWLEDGMENTS 435 REFERENCES 435
16 BISPECIFIC ANTIBODIES AND IMMUNE THERAPY TARGETING 441 SERGEJ M.
KIPRIJANOV 16.1 INTRODUCTION 441 16.2 TREATMENT OPTIONS IN CANCER IN THE
PRE-ANTIBODY ERA 442 16.3 ANTIBODIES AS THERAPEUTIC AGENTS 443 16.4 NEXT
GENERATION OF THERAPEUTIC ANTIBODIES 449 16.5 RATIONALE FOR
IMMUNOTHERAPY WITH BSABS 450 16.5.1 RETARGETING BSABS 450 16.5.2 BSABS
OF DUAL ACTION 452 16.5.3 BSABS OF ENHANCED SELECTIVITY 453 16.6 BSAB
FORMATS 454
16.6.1 HETERO-OLIGOMERIC ANTIBODIES 455 16.6.2 BISPECIFIC SINGLE-CHAIN
ANTIBODIES 457 16.6.3 RECOMBINANT IGG-LIKE BSABS 460 16.6.4 OTHER NOVEL
BSAB CONSTRUCTS 463 16.7 BSABS IN THE CLINIC 463 16.7.1 CLINICAL DATA
FOR FIRST-GENERATION BSABS 464 16.7.2 RECOMBINANT BISPECIFIC MOLECULES
ENTERING
CLINICAL TRIALS 464
16.7.2.1 BISPECIFIC T-CELL ENGAGER MOLECULES 464 16.7.2.2 OTHER
SCFV-SCFV TANDEM MOLECULES 468 16.7.2.3 TANDABS 469 16.7.2.4 BSABS OF
DUAL ACTION 471 16.8 CONCLUSIONS AND FUTURE PROSPECTS 472
REFERENCES 473
POLYMER-BASED SYSTEMS 483
17 DESIGN OF POLYMER-DRUG CONJUGATES 485 JINDFICH KOPECEK AND PAVLA
KOPECKOVA 17.1 INTRODUCTION 485 17.2 POLYMER CARRIERS 486 17.2.1 IMPACT
OF THE MOLECULAR WEIGHT OF THE POLYMER CARRIER ON ITS FATE AND
EFFICIENCY 488
17..2.2 STRUCTURAL FACTORS INFLUENCING THE CELLULAR UPTAKE AND
SUBCELLULAR FATE OF MACROMOLECULES 490 17.2.3 OTHER DESIGN FACTORS 493
17.3 BINDING DRUGS TO POLYMER CARRIERS 496
17 A ATTACHMENT OF TARGETING MOIETIES 498 17.4.1 SUBCELLULAR TARGETING
500 17.4.1.1 MITOCHONDRIAL TARGETING 501
IMAGE 6
XII CONTENTS
17.4.1.2 HORMONE-MEDIATED NUCLEAR DELIVERY 501
17.5 NOVEL DESIGNS OF POLYMER THERAPEUTICS 503 17.5.1 DESIGN OF BACKBONE
DEGRADABLE, LONG-CIRCULATING POLYMER CARRIERS 503 17.5.2 DRUG-FREE
MACROMOLECULAR THERAPEUTICS 504
17.6 CONCLUSIONS AND PERSPECTIVES 506 ACKNOWLEDGMENTS 506 REFERENCES 507
18 DENDRITIC POLYMERS IN ONCOLOGY: FACTS, FEATURES, AND APPLICATIONS 513
MOHIUDDIN ABDUL QUADIR, MARCELO CALDERON, AND RAINER HAAG 18.1
INTRODUCTION 513 18.2 CHEMISTRY AND ARCHITECTURE 515
18.3 DENDRITIC ARCHITECTURES AND ONCOLOGY: BACKGROUND AND APPLICATION
517 18.3.1 COMPLEXATION OF ANTICANCER AGENTS BY DENDRITIC ARCHITECTURES
520 18.3.2 ANTICANCER AGENTS CAN BE CHEMICALLY CONJUGATED WITH DENDRIMER
FUNCTIONAL GROUPS 523 18.3.3 TUMOR MICROENVIRONMENT AND ATTACHMENT OF
TARGETING MOIETY TO THE DENDRIMER 528 18.4 INTRACELLULAR TRAFFICKING,
CYTOTOXICITY, AND PHARMACOKINETICS OF A
DENDRITIC ARCHITECTURE ARE TUNABLE 535 18.5 OTHER MEDICAL APPLICATIONS
OF DENDRITIC POLYMERS 537 18.5.1 PHOTODYNAMIC THERAPY 537 18.5.2 BORON
NEUTRON CAPTURE THERAPY 538 18.5.3 DIAGNOSTIC APPLICATION OF DENDRIMERS
539
18.5.4 GENE DELIVERY WITH DENDRIMERS 542 18.6 NOVEL THERAPEUTIC
APPROACHES WITH DENDRIMERS 545 18.7 CONCLUSIONS 547 ACKNOWLEDGMENTS 547
REFERENCES 547
19 SITE-SPECIFIC PRODRUG ACTIVATION AND THE CONCEPT OF SELF-IMMOLATION
553 ANDRE WARNECKE 19.1 INTRODUCTION 553
19.2 RATIONALE AND CHEMICAL ASPECTS OF THE CONCEPT OF SELF-IMMOLATION
554 19.2.1 CYCLIZATION STRATEGIES 556 19.2.2 ELIMINATION STRATEGIES 558
19.2.3 SELF-IMMOLATIVE VERSUS CLASSIC STRATEGIES -A COMPARISON 562
19.3 ELIMINATION-BASED TRIGGER GROUPS FOR TUMOR-SPECIFIC ACTIVATION 564
19.3.1 ENZYMATIC AND RELATED BIOCATALYTIC ACTIVATION 564 19.3.2
REDUCTIVE ACTIVATION 566 19.3.3 OXIDATIVE ACTIVATION 569
IMAGE 7
CONTENTS XIII
19.3.4 PH-DEPENDENT ACTIVATION 569
19.3.5 OTHER METHODS OF ACTIVATION 571 19.4 BRANCHED ELIMINATION
LINKERS-CHEMICAL ADAPTORS OR BUILDING BLOCKS FOR MORE COMPLEX
SELF-IMMOLATIVE ARCHITECTURES 573 19.5 CLINICAL IMPACT 582
19.6 CONCLUSION AND PERSPECTIVES 584 REFERENCES 585
20 LIGAND-ASSISTED VASCULAR TARGETING OF POLYMER THERAPEUTICS 591 ANAT
ELDAR-BOOCK, DINA POLYAK, AND RONIT SATCHI-FAINARO 20.1 OVERVIEW OF
TUMOR ANGIOGENESIS 591 20.2 POTENTIAL ANGIOGENIC MARKERS 596 20.2.1
INTEGRINS 596
20.2.2 SELECTINS 596
20.2.3 APN (CD13) 598 20.2.4 HYALURONIC ACID BINDING RECEPTOR (CD44) 598
20.3 DRUG DELIVERY STRATEGY: TARGETED POLYMER THERAPEUTICS 599 20.4
NOVEL TARGETED POLYMERIC DRUG DELIVERY SYSTEMS DIRECTED TO TUMOR
ENDOTHELIAL CELLS 601 20.4.1 RGD-BASED POLYMER-DRUG CONJUGATES 601
20.4.2 SELECTIN-TARGETED POLYMER-DRUG CONJUGATES 612 20.4.3 APN-TARGETED
POLYMER THERAPEUTICS 613 20.4.4 HA-BASED POLYMER THERAPEUTICS 615 20.5
OPPORTUNITY FOR DUAL TARGETING OF ANGIOGENESIS-RELATED MARKERS 616
20.6 TUMOR ANGIOGENESIS-TARGETED POLYMERIC DRUG DELIVERY SYSTEMS:
SUMMARY AND LESSONS LEARNT 617 REFERENCES 619
21 DRUG CONJUGATES WITH POLY(ETHYLENE CLYCOL) 627 HONG ZHAO, LEE M.
GREENBERGER, AND IVAN D. HORAK 21.1 INTRODUCTION 627
21.2 RATIONALE FOR PEGYLATION AND PEG-DRUG CONJUGATES 627 21.3 PERMANENT
PEGYLATION 630 21.3.1 FIRST-GENERATION PEG LINKER: SS-PEG 630 21.3.2
SECOND-GENERATION PEG LINKERS 631 21.3.2.1 SC-PEG 631
21.3.2.2 PEG-ALDEHYDE 632 21.3.2.3 U-PEG 633 21.3.2.4 OTHER PERMANENT
LINKERS 637 21.4 RELEASABLE PEGYLATION 638 21.4.1 RELEASABLE PEG LINKERS
BASED ON ESTER LINKAGE 638 21.4.1.1 PEG-PACLITAXEL 638
21.4.1.2 PEG-CAMPTOTHECIN ANALOGS 641
IMAGE 8
XIV CONTENTS
21.4.2 RELEASABLE PEG LINKERS BASED ON AMIDE OR OTHER AMINO-DERIVED
LINKAGES 646
21.4.2.1 RELEASABLE PEG LINKERS BASED ON AROMATIC SYSTEMS 646 21.4.2.2
RELEASABLE PEG LINKERS BASED ON AN ALIPHATIC SYSTEM 649 21.4.2.3
AROMATIC AMIDES 653 21.4.2.4 ACID-ACTIVATED PEG-DRUG CONJUGATES 651
21.4.2.5 OTHER RELEASABLE LINKERS 653 21.5 SUMMARY OF CLINICAL STATUS
653 21.6 CONCLUSIONS AND PERSPECTIVES 655 ACKNOWLEDGMENTS 656
REFERENCES 657
22 THERMO-RESPONSIVE POLYMERS 667 DRAZEN RAUCHER AND SHAMA MOKTAN 22.1
INTRODUCTION 667 22.2 HYPERTHERMIA IN CANCER TREATMENT 668
22.3 SYNERGISTIC ADVANTAGES OF COMBINING THERMO-RESPONSIVE POLYMERS AND
HYPERTHERMIA 670 22.4 SELECTED THERMO-RESPONSIVE POLYMER CLASSES 671
22.4.1 SYNTHETIC POLYMERS 671
22.4.2 N-ISOPROPYLACRYLAMIDE-BASED POLYMERS 671 22.4.3 PEO-BASED
POLYMERS 674 22.4.4 POLY(ORGANOPHOSPHAZENE)-BASED POLYMERS 677 22.4.5
MISCELLANEOUS 678 22.5 ELASTIN-IIKE BIOPOLYMERS 678
22.5.1 ELP SYNTHESIS 678 22.5.2 CELL-PENETRATING PEPTIDES FOR
INTRACELLULAR DELIVERY OF ELPS 680 22.5.3 EFFICIENCY AND MECHANISM
OFCPP-ELP CELLULAR UPTAKE 681 22.5.4 ELPS FOR DELIVERY OF PEPTIDES 682
22.5.5 DELIVERY OF C-MYC INHIBITORY PEPTIDES BY ELPS 684
22.5.6 ELP-BASED DELIVERY OF A CELL CYCLE INHIBITORY P21 MIMETIC PEPTIDE
685 22.5.7 ELP DELIVERY OF CONVENTIONAL DRUGS 690 22.5.8 IN VIVO STUDIES
WITH THERMO-RESPONSIVE ELP CARRIERS 692 22.5.9 OPTIMIZING IN VIVO
DELIVERY OF ELP CARRIERS WITH CPPS 693 22.6 CONCLUSIONS AND PERSPECTIVES
695
ACKNOWLEDGEMENTS 696 REFERENCES 697
23 POLYSACCHARIDE-BASED DRUG CONJUGATES FOR TUMOR TARGETING 701 GURUSAMY
SARAVANAKUMAR, JAE HYUNG PARK, KWANGMEYUNG KIM, AND ICK CHAN KWON
23.1 INTRODUCTION 701 23.2 CHEMISTRY OF POLYSACCHARIDE-DRUG CONJUGATION
707 23.3 POLYSACCHARIDE-DRUG CONJUGATES 711
IMAGE 9
CONTENTS XV
23.3.1 DEX-BASED DRUG CONJUGATES 711
23.3.2 CHITIN- AND CHITOSAN-DRUG CONJUGATES 717 23.3.3 HA-DRUG
CONJUGATES 724 23.3.4 HEPARIN-DRUG CONJUGATES 727 23.3.5 PULLULAN-DRUG
CONJUGATES 730 23.3.6 OTHER NATURAL POLYMER-DRUG CONJUGATES 730
23.3.6.1 ALGINATE-DRUG CONJUGATES 730 23.3.6.2 ARABINOGALACTAN-DRUG
CONJUGATES 732 23.3.6.3 PECTIN-DRUG CONJUGATES 732 23.3.6.4
XYLOGLUCAN-DRUG CONJUGATES 734 23.3.6.5 POLYGALACTOSAMINE-DRUG
CONJUGATES 735 23.4 CYDODEXTRIN-DRUG CONJUGATES 735 23.5 CONCLUSIONS AND
PERSPECTIVES 738
REFERENCES 739
24 SERUM PROTEINS AS DRUG CARRIERS OF ANTICANCER AGENTS 747 FELIX KRATZ,
ANDREAS WUNDER, AND BAKHEET ELSADEK 24.1 INTRODUCTION 747 24.2 RATIONALE
FOR EXPLOITING ALBUMIN, TRANSFERRIN, AND LDL AS CARRIERS FOR
DRUG DELIVERY TO SOLID TUMORS 752 24.3 EXAMPLES OF DRUG DELIVERY SYSTEMS
WITH SERUM PROTEINS 759 24.3.1 SYNTHETIC APPROACHES FOR REALIZING DRUG
CONJUGATES, DRUG COMPLEXES, AND DRUG NANOPARTICLES WITH ALBUMIN,
TRANSFERRIN, OR LDL 759 24.3.2 DRUG COMPLEXES AND CONJUGATES WITH
ALBUMIN, TRANSFERRIN, AND
LDL 762
24.3.2.1 DRUG CONJUGATES WITH TRANSFERRIN AND ALBUMIN 772 24.3.2.2
LDL-DRUG COMPLEXES 786 24.4 CLINICAL DEVELOPMENT 788 24.5 CONCLUSIONS
AND PERSPECTIVES 791
REFERENCES 793
25 FUTURE TRENDS, CHALLENGES, AND OPPORTUNITIES WITH POLYMER-BASED
COMBINATION THERAPY IN CANCER 805 CORALIE DELADRIERE, RUT LUCAS, AND
MARIA J. VICENT 25.1 INTRODUCTION 805
25.1.1 COMBINATION THERAPY IN CANCER 805 25.2 CONCEPT OF POLYMER-DRUG
CONJUGATES FOR COMBINATION THERAPY 810 25.3 CHALLENGES AND OPPORTUNITIES
ASSOCIATED WITH THE USE OF POLYMER-BASED COMBINATION THERAPY 812 25.3.1
IDENTIFICATION OF APPROPRIATE DRUG COMBINATIONS AND DRUG
RATIOS 832
25.3.2 KINETICS OF DRUG RELEASE 814 25.3.3 LOADING CAPACITY 835 25.3.4
CORRELATION OF IN VITRO STUDIES WITH BEHAVIOR IN VIVO 815 25.3.5
PHYSICOCHEMICAL CHARACTERIZATION 816
IMAGE 10
XVI CONTENTS
25.3.6 CLINICAL DEVELOPMENT 816
25.4 REPRESENTATIVE EXAMPLES OF POLYMER-DRUG CONJUGATES FOR COMBINATION
THERAPY 817 25.4.1 PRECLINICAL DEVELOPMENT 817 25.4.1.1 IN VITRO STATUS
817
25.4.1.2 IN VIVO STATUS 821 25.4.2 CLINICAL DEVELOPMENT 829 25.4.2.1
FAMILY I: POLYMER-DRUG CONJUGATE PLUS FREE DRUG 829 25.5 CONCLUSIONS AND
PERSPECTIVES 830
ACKNOWLEDGMENTS 831 REFERENCES 831
26 CLINICAL EXPERIENCE WITH DRUG-POLYMER CONJUGATES 839 KHALID ABU AJAJ
AND FELIX KRATZ 26.1 INTRODUCTION 839 26.2 RATIONALE FOR DEVELOPING
DRUG-POLYMER CONJUGATES 840
26.3 CLINICAL DEVELOPMENT 846 26.4 CONCLUSIONS AND PERSPECTIVES 874
REFERENCES 878
PART IV NANO- AND MICROPARTICULATE DRUG DELIVERY SYSTEMS 885
LIPID-BASED SYSTEMS 885
27 OVERVIEW ON NANOCARRIERS AS DELIVERY SYSTEMS 887 HAIFA SHEN, ELVIN
BLANCO, BIANA GODIN, RITA E. SERDA, AGATHE K. STREIFF, AND MAURO FERRARI
27.1 INTRODUCTION 887 27.2 OVERVIEW ON LIPOSOME-BASED SYSTEMS 889 27.3
OVERVIEW ON POLYMER MICELLE-BASED SYSTEMS 892 27.4 OTHER NANOPARTICULATE
DRUG DELIVERY SYSTEMS 894 27A.I CHITOSAN AND CHITOSAN-COATED
NANOPARTICLES 894 27A.I ALBUMIN NANOPARTICLES 895 27.43 CARBON NANOTUBES
896 27.5 MSV DRUG DELIVERY SYSTEMS 896 27.6 CONCLUSIONS AND PERSPECTIVES
900
REFERENCES 901
28 DEVELOPMENT OF PECYLATED LIPOSOMES 907 I. CRAIG HENDERSON 28.1
INTRODUCTION AND RATIONALE 907 28.2 STRUCTURE, FORMATION, AND
CHARACTERISTICS OF LIPOSOMES 907
28.2.1 NON-PEGYLATED LIPOSOMES 907 28.2.2 STERICALLY STABILIZED OR
STEALTH LIPOSOMES 910 28.2.3 TUMOR TARGETING 910
IMAGE 11
CONTENTS XVII
28.2.4
28.3 28.4 28.4.1 28.4.1.1 28.4.1.2 28.4.1.3 28.4.2
28.4.3 28.4.3.1 28.4.3.2 28.4.3.3 28.4.3.4 28.4.3.5 28.4.4 28.5 28.6
29
29.1
29.1.1 29.1.2
29.1.3 29.2 29.2.1 29.2.2 29.2.3
29.2.4 29.3
29.4
30
30.1 30.2 30.2.1 30.2.2 30.3 30.3.1
IMPLICATION OF TUMOR TARGETING FOR DOSING PLD 912 PHARMACOKINETICS OF
STEALTH LIPOSOMES 913 CLINICAL DEVELOPMENT 915 TOXICITY PROFILE 935
PPE 916 INFUSION REACTIONS 918 CARDIOTOXICITY 938 FIRST CLINICAL
INDICATION: AIDS-RELATED KAPOSI S SARCOMA 939 ACTIVITY IN SOLID TUMORS
AND HEMATOLOGICAL MALIGNANCIES 924
OVARIAN CANCER 925 BREAST CANCER 929 MULTIPLE MYELOMA 933 SOFT-TISSUE
SARCOMAS 937
OTHER TUMORS 938 OPTIMAL DOSE SCHEDULE FOR PLD 938 NEWER APPLICATIONS OF
PEGYLATED LIPOSOMES 939 CONCLUSIONS AND PERSPECTIVE 941 REFERENCES 941
IMMUNOLIPOSOMES 953 VLADIMIR P. TORCHILIN INTRODUCTION: DRUG TARGETING
AND LIPOSOMES AS DRUG CARRIERS 951
DRUG TARGETING 951 LONGEVITY OF PHARMACEUTICAL NANOCARRIERS IN THE BLOOD
AND THE ENHANCED PERMEABILITY AND RETENTION EFFECT 952 LIPOSOMES 953
TUMOR-TARGETED LIPOSOMES IN CANCER CHEMOTHERAPY 955
DERIVATIZATION OF PEGYLATED LIPOSOMES 955 ANTIBODY-TARGETED LIPOSOMES
956 LIPOSOMES MODIFIED WITH NUDEOSOME-SPECIFIC ANTIBODIES 963 OTHER
TARGETING LIGANDS 966
PREPARATION AND ADMINISTRATION OF ANTIBODY-TARGETED LIPOSOMAL DRUGS 968
CONCLUSIONS 973 REFERENCES 971
989 RESPONSIVE LIPOSOMES (FOR SOLID TUMOR THERAPY) STAVROULA SOFOU
INTRODUCTION 989 RATIONALE: UNIFORMITY IN DELIVERY AND ACTUAL DELIVERY
RATIONALE FOR RESPONSIVE TARGETING 993
RATIONALE FOR RESPONSIVE RELEASE 994 EXAMPLES 994 PRECLINICAL
DEVELOPMENT 994
989
IMAGE 12
XVIII CONTENTS
30.3.1.1 ACTIVATION BY TUMOR-INTRINSIC STIMULI 994
30.3.1.2 ACTIVATION AT THE TUMOR BY EXTERNAL STIMULI 1000 30.3.2
CLINICAL DEVELOPMENT 1006 30.4 CONCLUSIONS AND PERSPECTIVES 1007
ACKNOWLEDGMENTS 1008
REFERENCES 1008
31 NANOSCALE DELIVERY SYSTEMS FOR COMBINATION CHEMOTHERAPY 1013 BARRY D.
LIBOIRON, PAUL G. TAXAI, TROY O. HARASYM, AND LAWRENCE, D. MAYER 31.1
INTRODUCTION 1013
31.2 RATIONALE FOR FIXED RATIO ANTICANCER COMBINATION THERAPY 1014
31.2.1 BIOLOGICAL BASIS FOR THE IMPORTANCE OF DRUG RATIOS 1014 31.3
APPLICATION OF DRUG DELIVERY SYSTEMS TO DEVELOP FIXED-RATIO DRUG
COMBINATION FORMULATIONS 1022 31.3.1 FORMULATION STRATEGIES FOR
MULTIAGENT DRUG DELIVERY VEHIDES 1022 31.3.2 EXAMPLES OF DUAL-DRUG
DELIVERY SYSTEMS 1026
31.4 LIPOSOME-BASED COMBIPL EX FORMULATIONS 1029 31.4.1 PRECLINICAL
DEVELOPMENT OF COMBIPLEX FORMULATIONS 1030 31.4.1.1 CPX-351
(CYTARABINE/DAUNORUBICIN) LIPOSOME INJECTION 1030 31.4.1.2 CPX-1
(FLOXURIDINE/IRINOTECAN) LIPOSOME INJECTION 3032 31.4.1.3 COMBIPLEX
SYSTEMS FOR REACTIVE AGENTS: CPX-571 1033
31.5 CLINICAL STUDIES OF COMBIPLEX FORMULATIONS 1036 31.5.1 CLINICAL
ACTIVITY OF CPX-351 1036 31.5.2 CLINICAL ACTIVITY OF CPX-1 1038 31.5.2.1
PHASE I CLINICAL TRIAL OF CPX-1 3038
31.5.2.2 PHASE II CLINICAL TRIALS OF CPX-1 1039 31.6 COMBIPLEX
FORMULATIONS OF HYDROPHOBIE AGENTS 1040 31.6.1 NANOPARTICLE COMBIPLEX
FORMULATIONS FOR DELIVERING DRUG COMBINATIONS CONTAINING HYDROPHOBIE
AGENTS 1040
31.7 CONCLUSIONS 3043 REFERENCES 1044
POLYMER-BASED SYSTEMS 1051
32 MICEILAR STRUCTURES AS DRUG DELIVERY SYSTEMS 3053
NOBUHIRO NISHIYAMA, HORACIO CABRAI, AND KAZUNORI KATAOKA 32.1
INTRODUCTION 1053 32.2 RATIONALE AND RECENT ADVANCES IN MICEILAR
STRUCTURES AS DRUG DELIVERY
SYSTEMS 1054
32.2.1 SMART POLYMERIC MICELLES FOR SITE-SPECIFIC DRUG DELIVERY 1054
32.2.2 POLYION COMPLEX MICELLES FOR GENE AND SIRNA DELIVERY 1058 32.2.3
OTHER BLOCK COPOLYMER ASSEMBLIES 1060
IMAGE 13
CONTENTS XIX
32.2.4 THERANOSTIC NANODEVICES 3062
32.3 CONCLUSIONS AND PERSPECTIVES 1063 REFERENCES 1064
33 TAILOR-MADE HYDROGELS FOR TUMOR DELIVERY 3073 SUNGWON KIM AND KINAM
PARK 33.1 INTRODUCTION 3073
33.2 RATIONALE FOR HYDROGEL-BASED CANCER THERAPY 3073 33.3 EXAMPLES 1072
33.3.1 MATERIALS AND BIODEGRADABILITY 3072 33.3.2 INJECTABLE
FORMULATIONS 1076 33.3.2.1 IN SITU GELATION 3077
33.3.2.2 NANOGELS 1078 33.3.3 THERAPEUTIC MECHANISMS 1079 33.3.3.1
SMALL-MOLECULE DRUGS 1079 33.3.3.2 PROTEIN AND PEPTIDE DRUGS 1082
33.3.3.3 GENE AND SIRNA DELIVERY 1085 33.3.3.4 CELL DELIVERY 1087
33.3.3.5 PHOTODYNAMIC THERAPY 1087 33.3.3.6 RADIOTHERAPY 1088 33.3.3.7
THERMOTHERAPY 1088 33.3.3.8 EMBOLIZATION 1089 33.4 CONCLUSIONS AND
PERSPECTIVES 1090
REFERENCES 1091
34 PH-TRIGGERED MICELLES FOR TUMOR DELIVERY 3099 HAIQING YIN AND YOU HAN
BAE 34.1 INTRODUCTION 1099
34.2 TUMOR EXTRACELLULAR ACIDITY 1100 34.3 GENERAL APPROACHES TO
CONSTRUCT PH-SENSITIVE POLYMERIC MICELLES FOR TUMOR DELIVERY 3 3 03 34.4
RECENT DEVELOPMENT IN PH-SENSITIVE MICELLES FOR TUMOR-TARGETED
DRUG DELIVERY 3304
34.4.1 PH-TRIGGERED DRUG RELEASE 1104 34.4.1.1 TUMOR EXTRACELLULAR PH
(PH E )-TRIGGERED DRUG RELEASE 3304 34.4.1.2 ENDOCYTIC PH-TRIGGERED DRUG
RELEASE 1106 34.4.2 TUMOR PH E -TRIGGERED MODULATION OF MICELLE SURFACE
FUNCTIONALITY 1113
34.4.2.1 PH E -TRIGGERED CONVERSION OF MICELLE SURFACE CHARGE 1113
34.4.2.2 PHE-TRIGGERED EXPOSURE OF CELL PENETRATING PEPTIDE (TAT) 1113
34.4.3 BEYOND PH-TRIGGERED DRUG RELEASE -MULTIFUNCTIONAL PH-SENSITIVE
MICELLES 1114
34.4.3.1 SYNERGY OF RECEPTOR-MEDIATED ENDOCYTOSIS AND ENDOCYTIC
PH-TRIGGERED DRUG RELEASE 3335 34.4.3.2 OVERCOMING MULTIDRUG RESISTANCE
3337
IMAGE 14
XX I CONTENTS
34.4.3.3 TAT-FUNCTIONALIZED MICELLES WITH A POP-UP MECHANISM FOR
VERSATILE TUMOR TARGETING 3323 34.4.3.4 VIRUS-MIMETIC CROSS-LINKED
MICELLES (NANOGELS) FOR MAXIMAL DRUG EFFICACY 3322
34.5 CONCLUSIONS AND PERSPECTIVE 3325 REFERENCES 1126
35 ALBUMIN-DRUG NANOPARTICLES 3333 NEIL DESAI 35.1 INTRODUCTION 3333
35.2 RATIONALE FOR USING ALBUMIN NANOPARTIDES FOR DRUG DELIVERY 1133
35.3 EXAMPLES OF ALBUMIN-BASED NANOPARTICLES 3335 35.3.1 IN VITRO AND
ANIMAL STUDIES WITH ALBUMIN-BASED NANOPARTICLES 1139 35.3.1.1 DELIVERY
OF HYDROPHOBIE SMALL-MOLECULE DRUGS USING NAB TECHNOLOGY 1139
35.3.1.2 OTHER ALBUMIN NANOPARTICLES CARRYING SMALL MOLECULES 1145
35.3.1.3 ALBUMIN NANOPARTIDE DELIVERY OF OLIGONUCLEOTIDES AND PROTEINS
1150 35.3.2 CLINICAL STUDIES WITH ALBUMIN-BASED NANOPARTICLES 3352
35.4 CONCLUSIONS AND PERSPECTIVES 1156 ACKNOWLEDGMENTS 1156 REFERENCES
1156
36 CARBON NANOTUBES 1163 DAVID A. SCHEINBERG, CARLOS H. VILLA, FREDDY
ESCORCIA, AND MICHAEL R. MCDEVITT 36.1 INTRODUCTION 3363
36.1.1 CHEMISTRY OF CNTS FOR BIOLOGIC APPLICATIONS 1164 36.1.2 COVALENT
MODIFICATIONS OF NANOTUBES 3366 36.1.3 NONCOVALENT MODIFICATIONS 1367
36.2 ARMING OF CNTS 3367
36.2.1 INTERACTIONS WITH CELLS AND TISSUES 1168 36.2.2 IMMUNOLOGIE
RESPONSES 3369 36.2.3 BIODEGRADABILITY AND BIOLOGIC PERSISTENCE 1169
36.3 TOXICITYOFCNTS 1170 36.3.1 PHARMACOKINETIC ISSUES 1173 36.3.1.1
ABSORPTION 3374 36.3.1.2 DISTRIBUTION 3375 36.3.1.3 METABOLISM 3377
36.3.1.4 EXCRETION 1178
IMAGE 15
CONTENTS XXI
36.3.2 IMAGING MODALITIES 1178
36.4 CONCLUSIONS 3380
REFERENCES 1181
CONTENTS TO VOLUME 3
PARTV LIGAND-BASED DRUG DELIVERY SYSTEMS 1187
37 CELL-PENETRATING PEPTIDES IN CANCER TARGETING 3389 KAIDO KURRIKQFF,
JULIA SUHORUT SENKO, AND UELO LANGEL
38 TARGETING TO PEPTIDE RECEPTORS 1219 ANDREW V. SCHALLY AND GABOR
HALMOS
39 APTAMER CONJUGATES: EMERGING DELIVERY PLATFORMS FOR TARGETED CANCER
THERAPY 1263 ZEYU XIAO, JULIAN FRIEDER, BENJAMIN A. TEPLY, AND OMID C.
FAROKHZAD
40 DESIGN AND SYNTHESIS OF DRUG CONJUGATES OF VITAMINS AND GROWTH
FACTORS 3283 IONTCHO R. VLAHOV, PAULJ. KKINDL, AND FEI YOU
41 DRUG CONJUGATES WITH POLYUNSATURATED FATTY ACIDS 1323
JOSHUA SEITZ AND IWAO OJIMA
PART VI SPECIAL TOPICS 3359
42 RNA DRUG DELIVERY APPROACHES 3363 YUAN ZHANG AND LEAF HUANG
43 LOCAL GENE DELIVERY FOR THERAPY OF SOLID TUMORS 3393 WOLFGANG
WALTHER, PETER M. SCHLAG, AND ULRIKE STEIN
44 VIRAL VECTORS FOR RNA INTERFERENCE APPLICATIONS IN CANCER RESEARCH
AND THERAPY 3435 HENRY FECHNER AND JENS KURRECK
45 DESIGN OF TARGETED PROTEIN TOXINS 3443 HENDRIK FUCHS AND CHRISTOPHER
BACHRAN
46 DRUG TARGETING TO THE CENTRAL NERVOUS SYSTEM 1489 GERT FRICKER, ANNE
MAHRINGER, MELANIE OTT, AND VALESKA REICHEL
IMAGE 16
XXII CONTENTS
47 LIVER TUMOR TARGETING 1519
KATRIN HOCHDOERFFER, GIUSEPPINA DI STEFANO, HIROSHI MAEDA, AND FELIX
KRATZ
48 PHOTODYNAMIC THERAPY: PHOTOSENSITIZER TARGETING AND DELIVERY 1569
PAWEL MROZ, SULBHA K. SHARMA, TIMUR ZHIYENTAYEV, YING-YING HUANG, AND
MICHAEL R. HAMBLIN
49 TUMOR-TARGETING STRATEGIES WITH ANTICANCER PLATINUM COMPLEXES 1605
MARKUS GALANSKI AND BERNHARD K. KEPPLER
INDEX 3633
|
any_adam_object | 1 |
author2 | Kratz, Felix |
author2_role | edt |
author2_variant | f k fk |
author_facet | Kratz, Felix |
building | Verbundindex |
bvnumber | BV040416125 |
ctrlnum | (OCoLC)815892473 (DE-599)DNB1016538634 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01086nam a2200301 cc4500</leader><controlfield tag="001">BV040416125</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">120913s2012 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">11,A45</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1016538634</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)815892473</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1016538634</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Drug delivery in oncology</subfield><subfield code="b">from basic research to cancer therapy</subfield><subfield code="n">2</subfield><subfield code="c">ed. by Felix Kratz ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIV S., S. 289 - 1185</subfield><subfield code="b">Ill., graph. Darst.</subfield><subfield code="c">25 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kratz, Felix</subfield><subfield code="4">edt</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV040416114</subfield><subfield code="g">2</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025268987&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025268987</subfield></datafield></record></collection> |
id | DE-604.BV040416125 |
illustrated | Illustrated |
indexdate | 2024-12-24T02:49:47Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025268987 |
oclc_num | 815892473 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM |
owner_facet | DE-19 DE-BY-UBM |
physical | XXIV S., S. 289 - 1185 Ill., graph. Darst. 25 cm |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Wiley-VCH |
record_format | marc |
spellingShingle | Drug delivery in oncology from basic research to cancer therapy |
title | Drug delivery in oncology from basic research to cancer therapy |
title_auth | Drug delivery in oncology from basic research to cancer therapy |
title_exact_search | Drug delivery in oncology from basic research to cancer therapy |
title_full | Drug delivery in oncology from basic research to cancer therapy 2 ed. by Felix Kratz ... |
title_fullStr | Drug delivery in oncology from basic research to cancer therapy 2 ed. by Felix Kratz ... |
title_full_unstemmed | Drug delivery in oncology from basic research to cancer therapy 2 ed. by Felix Kratz ... |
title_short | Drug delivery in oncology |
title_sort | drug delivery in oncology from basic research to cancer therapy |
title_sub | from basic research to cancer therapy |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025268987&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV040416114 |
work_keys_str_mv | AT kratzfelix drugdeliveryinoncologyfrombasicresearchtocancertherapy2 |