Biopharmaceutical production technology

Gespeichert in:
Bibliographische Detailangaben
Format: Buch
Sprache:English
Veröffentlicht: Weinheim Wiley-VCH
Schlagworte:
Online-Zugang:Inhaltstext
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 ca4500
001 BV040343838
003 DE-604
005 20121115
007 t|
008 120731nuuuuuuuugw |||| 00||| eng d
015 |a 11,N51  |2 dnb 
016 7 |a 1017775001  |2 DE-101 
020 |a 9783527330294  |c Gb. : ca. EUR 399.00 (DE) (freier Pr.), ca. EUR 349.00 (DE) (freier Subskr.Pr. bis 31.12.2012), ca. EUR 410.20 (AT) (freier Pr.)  |9 978-3-527-33029-4 
020 |a 3527330291  |9 3-527-33029-1 
024 3 |a 9783527330294 
028 5 2 |a Best.-Nr.: 1133029 000 
035 |a (DE-599)DNB1017775001 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a gw  |c XA-DE-BW 
084 |a VS 9400  |0 (DE-625)147728:253  |2 rvk 
084 |a CIT 840f  |2 stub 
084 |a CIT 960f  |2 stub 
084 |a 540  |2 sdnb 
245 1 0 |a Biopharmaceutical production technology  |c ed. by Ganapathy Subramanian 
264 1 |a Weinheim  |b Wiley-VCH 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
650 0 7 |a Biotechnologie  |0 (DE-588)4069491-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Pharmazeutische Technologie  |0 (DE-588)4045699-7  |2 gnd  |9 rswk-swf 
689 0 0 |a Pharmazeutische Technologie  |0 (DE-588)4045699-7  |D s 
689 0 1 |a Biotechnologie  |0 (DE-588)4069491-4  |D s 
689 0 |5 DE-604 
700 1 |a Subramanian, Ganapathy  |e Sonstige  |4 oth 
856 4 2 |m X:MVB  |q text/html  |u http://deposit.dnb.de/cgi-bin/dokserv?id=3932623&prov=M&dok_var=1&dok_ext=htm  |3 Inhaltstext 
856 4 2 |m DNB Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025198037&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-025198037 

Datensatz im Suchindex

DE-BY-UBM_katkey 4713612
_version_ 1823055145220440064
adam_text IMAGE 1 CONTENTS PREFACE X X I I I LIST O F CONTRIBUTORS XXV VOLUME 1 PART O N E UPSTREAM TECHNOLOGIES 1 1 STRATEGIES FOR PLASMID DNA PRODUCTION IN ESCHERICHIA COLI 3 EVA BRAND, KATHRIN RALLA, AND PETER NEUBAUER 1.1 I N T R O D U C T I O N 3 1.2 R E Q U I R E M E N T S FOR A P L A S M I D D N A P R O D U C T I O N PROCESS 4 1.3 STRUCTURE O F A D N A VACCINE P R O D U C T I O N PROCESS 6 1.4 CHOICE O F A N T I G E N 7 1.5 VECTOR D N A C O N S T R U C T 8 1.5.1 P O P U L A R AMPLIFICATION SYSTEMS 8 1.5.2 INTRINSIC FACTORS 9 1.6 H O S T STRAINS 11 1.6.1 ENDA A N D RECA 12 1.6.2 RELA 12 1.6.3 NUCLEOSIDE PATHWAY 14 1.6.4 GYRA 15 1.6.5 STRAINS FOR P R O D U C T I O N PROCESSES 15 1.7 CULTIVATION M E D I U M A N D PROCESS C O N D I T I O N S 16 1.8 LYSIS/EXTRACTION O F P L A S M I D D N A 19 1.9 PURIFICATION 2 0 1.9.1 CLARIFICATION O F T H E LYSATE A N D I N T E R M E D I A T E PURIFICATION 21 1.9.2 PURIFICATION B Y C H R O M A T O G R A P H Y 23 1.9.2.1 ANION-EXCHANGE C H R O M A T O G R A P H Y 23 1.9.2.2 H Y D R O P H O B I C INTERACTION C H R O M A T O G R A P H Y 24 1.9.2.3 GEL FILTRATION 2 4 1.9.2.4 M E M B R A N E C H R O M A T O G R A P H Y 2 4 1.9.2.5 C H R O M A T O G R A P H Y O N P O R O U S MONOLITHIC SUPPORTS 2 5 HTTP://D-NB.INFO/1017775001 IMAGE 2 VI | CONTENTS 1.10 F O R M U L A T I O N 2 6 1.10.1 LIPOPLEXES 2 7 1.10.2 POLYPLEXES 2 7 1.10.3 INORGANIC NANOPARTICLES 28 1.11 CONCLUSIONS 2 8 REFERENCES 28 2 ADVANCES IN PROTEIN PRODUCTION TECHNOLOGIES 43 LINDA H.L. LUA AND YAP PANG CHUAN 2.1 I N T R O D U C T I O N 43 2.2 GLYCOENGINEERING FOR H O M O G E N O U S H U M A N - L I K E GLYCOPROTEINS 4 5 2.3 BACTERIA AS PROTEIN FACTORIES 4 7 2.4 M A M M A L I A N CELL TECHNOLOGY 5 0 2.5 YEAST P R O T E I N P R O D U C T I O N 5 3 2.6 BACULOVIRUS-INSECT CELL TECHNOLOGY 5 5 2.7 T R A N S G E N I C A N I M A L PROTEIN P R O D U C T I O N 5 7 2.8 PLANT MOLECULAR F A R M I N G 5 9 2.9 CELL-FREE PROTEIN P R O D U C T I O N 6 2 2.10 F U T U R E PROSPECTS 6 5 REFERENCES 66 PART TWO PROTEIN RECOVERY 79 3 RELEASING BIOPHARMACEUTICAL PRODUCTS FROM CELLS 81 ANTON P.J. MIDDELBERG 3.1 I N T R O D U C T I O N 81 3.2 CELL STRUCTURE A N D STRATEGIES FOR D I S R U P T I O N 83 3.3 CELL MECHANICAL S T R E N G T H 8 5 3.4 H O M O G E N I Z A T I O N 89 3.4.1 M E C H A N I S M S 90 3.4.2 MODELING 91 3.5 BEAD MILLING 95 3.5.1 MODELING 96 3.6 C H E M I C A L T R E A T M E N T 9 8 3.7 CELLULAR DEBRIS 100 3.7.1 MODELING 102 3.8 CONCLUSIONS 103 REFERENCES 104 4 CONTINUOUS CHROMATOGRAPHY (MULTICOLUMN COUNTERCURRENT SOLVENT GRADIENT PURIFICATION) FOR PROTEIN PURIFICATION 107 CUIDO STROHLEIN, THOMAS MULLER-SPATH, AND LARS A U M A N N 4.1 I N T R O D U C T I O N 107 4.1.1 OVERVIEW O F T H E BIOPHARMACEUTICAL M A R K E T 107 4.1.2 OVERVIEW O F PURIFICATION O F BIOPHARMACEUTICALS 108 4.1.3 I N T R O D U C T I O N TO C O N T I N U O U S C H R O M A T O G R A P H I C PROCESSES 108 IMAGE 3 CONTENTS | VII 4.2 OVERVIEW O F C O N T I N U O U S C H R O M A T O G R A P H I C PROCESSES 110 4.2.1 SMB A N D ITS DERIVATIVES 110 4.2.1.1 APPLICATIONS O F SMB I N T H E PHARMACEUTICAL INDUSTRY: SMALL MOLECULES 111 4.2.1.2 LIMITATIONS O F SMB 112 4.2.2 M C S G P GOES BEYOND SMB A N D MAKES C O N T I N U O U S C H R O M A T O G R A P H Y POSSIBLE FOR BIOSEPARATIONS 112 4.3 PRINCIPLES O F M C S G P 113 4.3.1 TASKS I N BATCH C H R O M A T O G R A M 113 4.3.1.1 G E N E R I C PURIFICATION P R O B L E M 114 4.3.2 SIX-COLUMN M C S G P PRINCIPLE 115 4.3.3 T H R E E - C O L U M N M C S G P PRINCIPLE 115 4.3.4 F O U R - C O L U M N M C S G P W I T H SEPARATE C I P POSITION 116 4.3.5 F O U R - C O L U M N M C S G P W I T H A SEPARATE POSITION FOR C O N T I N U O U S F E E D 118 4.3.6 M C S G P PROCESS FOR SEPARATIONS W I T H M O R E T H A N T H R E E FRACTIONS 119 4.4 APPLICATION EXAMPLES O F M C S G P 120 4.4.1 POLYPEPTIDE PURIFICATION W I T H REVERSED-PHASE C H R O M A T O G R A P H Y 120 4.4.2 M A B C H A R G E VARIANT SEPARATION 125 4.4.3 M A B C A P T U R E A N D POLISH F R O M S U P E R N A T A N T 127 4.4.4 SIZE-EXCLUSION C H R O M A T O G R A P H I C PURIFICATION W I T H M C S G P 129 4.5 ENABLING FEATURES A N D E C O N O M I C I M P A C T O F M C S G P 134 4.6 A N N E X 1: C H R O M A T O G R A P H I C PROCESS DECISION T R E E 135 REFERENCES 136 5 VIRUS-LIKE PARTICLE BIOPROCESSING 139 YAP PANG CHUAN, LINDA H.L. LUA, AND ANTON P.J. MIDDELBERG 5.1 I N T R O D U C T I O N 139 5.2 U P S T R E A M PROCESSING 143 5.2.1 INTRACELLULAR EXPRESSION A N D A S S E M B L Y 143 5.2.2 CELL-FREE APPROACHES 147 5.3 D O W N S T R E A M PROCESSING 147 5.3.1 GARDASIL D O W N S T R E A M PROCESSING 148 5.3.2 VLP AGGREGATION 149 5.3.3 PURIFICATION O F CELL-ASSEMBLED VLPS 150 5.3.4 PURIFICATION FOR IN VITRO A S S E M B L Y 152 5.4 ANALYSIS 154 5.5 C O N C L U S I O N S 157 5.6 N O M E N C L A T U R E 158 A C K N O W L E D G M E N T S 158 REFERENCES 158 6 THERAPEUTIC PROTEIN STABILITY A N D FORMULATION 165 ROBERT FALCONAR 6.1 I N T R O D U C T I O N 165 6.2 PROTEIN STABILITY 167 - IMAGE 4 VIII | CONTENTS 6.2.1 STRUCTURAL STABILITY 167 6.2.2 T H E R M A L STABILITY 168 6.2.3 CHAOTROPES, SOLVENTS, A N D P H 168 6.2.4 SHEAR 169 6.2.5 FREEZING 169 6.2.6 DRYING 170 6.2.7 AIR-LIQUID A N D SOLID-LIQUID INTERFACES 170 6.2.8 CHEMICAL STABILITY 171 6.2.9 PRECIPITATION, AGGREGATION, A N D FIBRIL F O R M A T I O N 173 6.2.10 LEACHABLES 174 6.3 F O R M U L A T I O N A N D MATERIALS 175 6.3.1 LIQUID F O R M U L A T I O N S 175 6.3.2 P H 176 6.3.3 A M I N O ACIDS A N D O T H E R O R G A N I C BUFFERS 177 6.3.4 SUGARS A N D POLYOLS 177 6.3.5 SALTS 177 6.3.6 SURFACTANTS 178 6.3.7 SPECIFIC B I N D I N G 178 6.3.8 CHELATING AGENTS 178 6.3.9 REDOX POTENTIAL 179 6.3.10 CONTAINERS A N D CLOSURES 179 6.3.11 F R O Z E N F O R M U L A T I O N S 179 6.3.12 FREEZE-DRIED F O R M U L A T I O N S 180 6.4 SCREENING M E T H O D S 185 6.4.1 DSC 185 6.4.2 T H E R M A L S C A N N I N G W I T H SPECTROSCOPIC DETECTION O F PROTEIN U N F O L D I N G 187 6.5 ACCELERATED A N D LONG-TERM STABILITY T E S T I N G 188 6.5.1 REGULATORY PERSPECTIVE 188 6.5.2 ACCELERATED STABILITY T E S T I N G 189 6.6 ANALYTICAL T E C H N I Q U E S FOR STABILITY T E S T I N G 189 6.6.1 CELL-BASED BIOASSAYS A N D I N VITRO BINDING ASSAYS 190 6.6.2 H I G H - P E R F O R M A N C E LIQUID C H R O M A T O G R A P H Y A N D CAPILLARY Z O N E ELECTROPHORESIS 191 6.6.3 M A S S SPECTROMETRY-BASED ANALYSIS 192 6.6.4 DETECTION O F PROTEIN AGGREGATES 192 6.6.5 C R U D E ANALYTICAL ASSAYS: PAGE, IEF, BLOTTING, FTIR, CD, A N D U V FLUORESCENCE 193 6.7 CONCLUSIONS 194 REFERENCES 195 7 PRODUCTION O F PECYLATED PROTEINS 199 CONAN J. FEE AND VINOD B. DAMODARAN 7.1 INTRODUCTION 199 7.2 G E N E R A L CONSIDERATIONS 2 0 0 IMAGE 5 CONTENTS 7.2.1 EFFICIENCY O F PEG C O N J U G A T I O N 2 0 0 7.2.2 CONTROL O F POSITIONAL I S O M E R I S M 201 7 . 2 3 CONTROL O F T H E N U M B E R O F PEG ADDUCTS 2 0 2 1 .2.4 PURIFICATION O F T A R G E T PRODUCTS 203 7.3 PEGYLATION C H E M I S T R Y 204 7.3.1 A M I N E C O N J U G A T I O N 204 7.3.2 THIOL C O N J U G A T I O N 206 7.3.3 OXIDIZED CARBOHYDRATE O R N-TERMINAL C O N J U G A T I O N 208 7.3.4 T R A N S G L U T A M I N A S E - M E D I A T E D ENZYMATIC C O N J U G A T I O N 208 7.3.5 MISCELLANEOUS C O N J U G A T I O N C H E M I S T R I E S 209 7.3.6 REVERSIBLE PEGYLATION 2 0 9 7.4 PEGYLATED PROTEIN PURIFICATION 2 1 0 7.4.1 REMOVAL O F LOW-MOLECULAR-WEIGHT C O N T A M I N A N T S 2 1 0 7.4.2 REMOVAL O F FREE PEG 2 1 2 7.4.3 SEPARATION O F PEGYLATED A N D NATIVE PROTEIN F O R M S 213 7.4.4 SEPARATION O F PEGYLATED SPECIES 215 7.5 CONCLUSIONS 217 REFERENCES 218 PART THREE ADVANCES IN PROCESS DEVELOPMENT 223 8 AFFINITY CHROMATOGRAPHY: HISTORICAL A N D PROSPECTIVE OVERVIEW 225 LAURA ROWE, GRAZIELLA EL KHOUIY, AND CHRISTOPHER R. LOWE 8.1 HISTORY A N D ROLE O F AFFINITY C H R O M A T O G R A P H Y I N T H E SEPARATION SCIENCES 2 2 5 8.1.1 I N T R O D U C T I O N 2 2 5 8.1.2 EARLY HISTORY 226 8.1.3 BIOLOGICAL LIGANDS 226 8.1.4 SYNTHETIC A N D D E S I G N E D LIGANDS 228 8.1.5 ALTERNATIVE LIGANDS 229 8.1.6 ROLE O F AFFINITY C H R O M A T O G R A P H Y I N T H E SEPARATION SCIENCES 2 2 9 8.2 OVERVIEW O F AFFINITY CHROMATOGRAPHY: T H E O R Y A N D M E T H O D S 2 3 0 8.2.1 BASIC C H R O M A T O G R A P H I C THEORY 230 8.2.2 MATRIX SELECTION A N D I M M O B I L I Z A T I O N O F A N AFFINITY LIGAND 2 3 2 8.2.3 O T H E R CONSIDERATIONS 2 3 7 8.3 AFFINITY LIGANDS 239 8.3.1 BIOLOGICAL LIGANDS 239 8.3.1.1 I M M U N O A F F I N I T Y A D S O R B E N T S 239 8.3.1.2 BACTERIAL PROTEINS 242 8.3.1.3 LECTINS 246 8.3.1.4 H E P A R I N 247 8.3.1.5 G L U T A T H I O N E 248 8.3.1.6 AVIDIN A N D STREPTAVIDIN 248 8.3.1.7 V I T A M I N S A N D H O R M O N E S 249 IMAGE 6 X CONTENTS 8.3.1.8 NUCLEIC ACIDS 249 8.3.1.9 ALTERNATIVE AFFINITY M E T H O D S 250 8.3.2 SYNTHETIC A N D D E S I G N E D LIGANDS 251 8.3.2.1 I M M O B I L I Z E D METALS 252 8.3.2.2 H Y D R O P H O B I C LIGANDS 253 8.3.2.3 THIOPHILIC LIGANDS 253 8.3.2.4 H I S T I D I N E 2 5 4 8.3.2.5 MIXED-MODE ADSORBENTS 255 8.3.2.6 BORONATE 256 8.3.2.7 BENZHYDROXAMIC ACID 256 8.3.2.8 DYE LIGANDS 2 5 7 8.3.2.9 BIOMIMETICS 2 5 8 8.4 AFFINITY LIGANDS I N PRACTICE: BIOPHARMACEUTICAL P R O D U C T I O N 269 8.5 CONCLUSIONS A N D F U T U R E PERSPECTIVES 271 REFERENCES 272 9 HYDROXYAPATITE IN BIOPROCESSING 283 FRANK HILBRIG AND RUTH FREITAG 9.1 INTRODUCTION 283 9.2 MATERIALS A N D INTERACTION M E C H A N I S M S 285 9.2.1 APATITES FOR C H R O M A T O G R A P H Y 285 9.2.2 S T R U C T U R E - F U N C T I O N RELATIONSHIP 289 9.2.3 RETENTION M E C H A N I S M S I N APATITE C H R O M A T O G R A P H Y 2 9 4 9.3 SETTING U P A SEPARATION 301 9.3.1 G E N E R A L CONSIDERATIONS 301 9.3.2 ELUTION M O D E 3 0 5 9.3.3 D I S P L A C E M E N T M O D E 3 0 9 9.4 SEPARATION EXAMPLES 313 9.4.1 PROTEINS I N G E N E R A L 313 9.4.2 ANTIBODIES 313 9.4.3 POLYNUCLEOTIDES 3 2 2 9.4.4 O T H E R S 323 9.5 C O N C L U S I O N S 323 REFERENCES 3 2 4 10 MONOLITHS IN BIOPROCESSING 333 ALES PODGORNIK, MILOS BARUT, MATJAZ PETERKA, AND ALEI STRANCAR 10.1 I N T R O D U C T I O N 3 3 3 10.2 PROPERTIES O F C H R O M A T O G R A P H I C M O N O L I T H S 3 3 3 10.3 MONOLITHIC ANALYTICAL C O L U M N S FOR PROCESS ANALYTICAL TECHNOLOGY APPLICATIONS 3 3 8 10.3.1 U P S T R E A M APPLICATIONS 3 3 9 10.3.2 D O W N S T R E A M APPLICATIONS 3 4 0 10.3.2.1 H P L C ANALYSIS O F IGG PROTEINS 3 4 0 10.3.2.2 H P L C ANALYSIS O F T H E IGM S A M P L E S 341_ IMAGE 7 CONTENTS XI 10.3.2.3 H P L C ANION-EXCHANGE ANALYSIS O F T H E PEGYLATED PROTEINS 3 4 2 10.3.2.4 VIRUSES 344 10.4 MONOLITHS FOR PREPARATIVE C H R O M A T O G R A P H Y 348 10.4.1 PROTEIN PURIFICATION 349 10.4.2 PURIFICATION O F VIRUSES 351 10.4.3 P L A S M I D D N A PURIFICATION 354 10.4.4 NEGATIVE C H R O M A T O G R A P H Y 357 10.5 E N Z Y M E REACTORS 3 5 8 10.5.1 P R O T E O M E ANALYSIS 3 5 8 10.5.2 BIOSENSORS 3 6 0 10.5.3 BIOCONVERSION O F T A R G E T MOLECULES 3 6 0 10.5.4 STUDY O F ENZYME-INTRINSIC PROPERTIES 3 6 2 10.6 CONCLUSIONS 364 REFERENCES 3 6 4 11 M E M B R A N E CHROMATOGRAPHY FOR BIOPHARMACEUTICAL MANUFACTURING 3 7 7 O M A R M. WAHAB 11.1 M E M B R A N E A D S O R B E R S - I N T R O D U C T I O N A N D TECHNICAL SPECIFICATIONS 3 7 7 11.1.1 I N T R O D U C T I O N 3 7 7 11.1.2 M E M B R A N E A D S O R B E R CONSTRUCTION 3 8 0 11.1.3 TYPES O F AVAILABLE LIGANDS 3 8 2 11.1.4 U S E A N D SCALING-UP W I T H M E M B R A N E ADSORBERS 384 11.2 C O M P A R I N G RESINS A N D M E M B R A N E ADSORBERS 3 8 7 11.2.1 FLOW-THROUGH POLISHING APPLICATIONS 3 8 9 11.2.2 BIND-AND-ELUTE APPLICATIONS 3 9 0 11.2.3 ECONOMICAL MODELING A N D C A S E STUDIES 391 11.3 M E M B R A N E C H R O M A T O G R A P H Y APPLICATIONS A N D CASE STUDIES 3 9 3 11.3.1 VALIDATION O F M E M B R A N E S INTO A PURIFICATION PROCESS 3 9 3 11.3.2 VIRUS PURIFICATION A N D VACCINE M A N U F A C T U R E 3 9 5 11.3.3 VIRUS REMOVAL 3 9 6 11.3.4 ENDOTOXIN REMOVAL 3 9 9 11.3.5 H C P REMOVAL 4 0 2 11.3.6 D N A REMOVAL 4 0 4 11.3.7 AGGREGATE REDUCTION 4 0 4 11.4 CONCLUSIONS 406 REFERENCES 4 0 7 12 MODELING A N D EXPERIMENTAL MODEL PARAMETER DETERMINATION WITH QUALITY BY DESIGN FOR BIOPROCESSES 409 CHRISTOPH HELLING AND JOCHEN STRUBE 12.1 I N T R O D U C T I O N 4 0 9 12.2 Q B D F U N D A M E N T A L S 4 1 0 12.3 PROCESS MODELING A N D EXPERIMENTAL MODEL P A R A M E T E R D E T E R M I N A T I O N 411 IMAGE 8 XII J CONTENTS 12.3.1 M O D E L I N G 413 12.3.2 EXPERIMENTAL MODEL P A R A M E T E R D E T E R M I N A T I O N 4 1 4 12.3.2.1 I S O T H E R M P A R A M E T E R S 414 12.3.2.2 FLUID DYNAMICS 416 12.3.2.3 M A S S T R A N S F E R KINETICS 417 12.4 PROCESS ROBUSTNESS STUDY 4 2 5 12.4.1 MODEL ERROR 425 12.4.2 MODEL P A R A M E T E R D E T E R M I N A T I O N ERROR 426 12.4.3 VARIATION O F PROCESS CONDITIONS 431 12.5 CONCLUSIONS 439 12.6 N O M E N C L A T U R E 4 4 0 A C K N O W L E D G M E N T S 441 REFERENCES 4 4 2 VOLUME 2 PART FOUR ANALYTICAL TECHNOLOGIES 445 13 BIOSENSORS IN T H E PROCESSING A N D ANALYSIS O F BIOPHARMACEUTICALS 4 4 7 SRIRAM KUMARASWAMY 13.1 I N T R O D U C T I O N 447 13.2 PRINCIPLES A N D C O M M E R C I A L APPLICATIONS O F BIOSENSORS 448 13.2.1 LABELED V E R S U S LABEL-FREE BIOSENSORS 4 4 9 13.2.2 LABEL-FREE BIOSENSORS 451 13.2.2.1 LABEL-FREE BIOSENSORS I N C O M M E R C I A L U S E 451 13.2.2.2 I N T R O D U C T I O N TO BLI 453 13.2.2.3 I N T R O D U C T I O N TO SPR 453 13.2.2.4 I N T R O D U C T I O N TO R W G 455 13.2.3 S A M P L E H A N D L I N G CONSIDERATIONS 4 5 5 13.2.3.1 S A M P L E H A N D L I N G BY BLI 456 13.2.3.2 S A M P L E H A N D L I N G BY S P R 456 13.2.3.3 S A M P L E H A N D L I N G BY R W G 458 13.2.4 C O M P A R I S O N O F BIOSENSOR C H I P S 458 13.2.4.1 OCTET D I P A N D READ BIOSENSORS 459 13.2.4.2 BIACORE C H I P S 4 5 9 13.2.4.3 EPIC MICROPLATES 4 6 2 13.2.5 C O M P A R I S O N O F T H R O U G H P U T 4 6 2 13.3 U S E O F BIOSENSORS I N BIOPHARMACEUTICAL P R O D U C T I O N A N D PROCESSING 4 6 4 13.3.1 QUANTIFICATION O F THERAPEUTICS A N D O T H E R M I N O R I M P U R I T I E S 464 13.3.2 PURIFICATION O N C H R O M A T O G R A P H Y C O L U M N S I N D O W N S T R E A M P R O C E S S D E V E L O P M E N T 4 6 5 13.3.3 KINETIC ANALYSIS FOR CHARACTERIZATION O F BIOPHARMACEUTICALS 466 IMAGE 9 13.3.4 13.4 VACCINE D E S I G N A N D EFFICACY 468 CONCLUSIONS 4 6 9 REFERENCES 4 7 0 CONTENTS XIII 14 PROTEOMICS TOOLKIT: APPLICATIONS IN PROTEIN BIOLOGICAL PRODUCTION A N D METHOD DEVELOPMENT 473 G/EMVYN KEMP AND ACHIM TREUMANN 14.1 I N T R O D U C T I O N 473 14.1.1 P R O B L E M O F AVAILABILITY 4 7 4 14.1.2 W H A T IS PROTEOMICS? 4 7 4 14.2 APPLICATIONS O F PROTEOMICS 475 14.2.1 PROTEIN IDENTIFICATION A N D CHARACTERIZATION 475 14.2.2 PROTEIN MODIFICATIONS 4 7 6 14.2.3 PROTEIN INTERACTIONS 4 7 6 14.2.4 P R O T E I N Q U A N T I T A T I O N 4 7 7 14.3 MYTHS A N D M I S C O N C E P T I O N S - P E R C E I V E D DRAWBACKS O F PROTEOMICS 4 7 7 14.3.1 H I G H SET-UP COST 4 7 7 14.3.2 T I M E - C O N S U M I N G / L O W T H R O U G H P U T 478 14.3.3 EXPERTISE A N D T R A I N I N G 4 7 8 14.3.4 REPRODUCIBILITY 4 7 9 14.4 CRITICAL FACTORS FOR INDUSTRIALIZATION O F PROTEOMICS 4 8 0 14.4.1 QUALITY CONTROL 4 8 0 14.4.2 R O B U S T N E S S A N D RELIABILITY 4 8 1 14.5 C A S E STUDIES 481 14.5.1 T W O - D I M E N S I O N A L PAGE 481 14.5.2 M A S S SPECTROMETRY AS A PROCESS D E V E L O P M E N T TOOL 4 8 2 14.5.2.1 MATRIX-ASSISTED LASER D E S O R P T I O N IONIZATION BIOTYPING 483 14.5.3 QUANTITATIVE PROTEOMICS 4 8 4 14.5.3.1 STABLE ISOTOPE LABELING 4 8 4 14.5.3.2 ISOBARIC LABELING 485 14.6 C O N C L U S I O N S 4 8 6 REFERENCES 4 8 7 15 SCIENCE O F PROTEOMICS: HISTORICAL PERSPECTIVES A N D POSSIBLE ROLE IN H U M A N HEALTHCARE 4 8 9 NAWIN MISHRA 15.1 SCIENCE O F OMICS 4 8 9 15.2 M A J O R ADVANCES I N BIOLOGY T H A T LED T O T H E SCIENCES O F OMICS 489 15.3 M E N D E L S PRINCIPLES O F I N H E R I T A N C E 4 9 0 15.4 O N E G E N E / O N E E N Z Y M E C O N C E P T O F BEADLE A N D T A T U M 4 9 0 15.5 W A T S O N - C R I C K STRUCTURE O F D N A 4 9 0 15.6 D E V E L O P M E N T O F DIFFERENT TECHNOLOGIES RESPONSIBLE FOR T H E E M E R G E N C E O F G E N O M I C S A N D PROTEOMICS 491 15.6.1 GENOMICS-SPECIFIC TECHNOLOGIES 491 IMAGE 10 XIV | CONTENTS 15.6.2 PROTEIN SEPARATION, PROTEIN SEQUENCING, A N D T H E I R T H R O U G H P U T TECHNOLOGIES 4 9 2 15.7 G E N O M I C S 4 9 2 15.8 PROTEOMICS 493 15.8.1 START O F PROTEOMICS 4 9 6 15.8.2 D E V E L O P M E N T O F PROTEOMICS 498 15.8.2.1 TWO-DIMENSIONAL GEL ELECTROPHORESIS 498 15.8.2.2 MASS SPECTROMETRY 4 9 9 15.8.2.3 X-RAY CRYSTALLOGRAPHY A N D NUCLEAR MAGNETIC R E S O N A N C E SPECTROSCOPY 501 15.8.3 PROTEOMICS AS A BASIS FOR DIFFERENTIATION 501 15.9 INTERACTOMICS: COMPLEXITY O F A N O R G A N I S M BASED O N T H E INTERACTIONS O F PROTEINS 501 15.10 RELATION B E T W E E N DISEASES, G E N E S , A N D PROTEINS: D I S E A S O M E CONCEPT 503 15.11 PROTEINS AS BIOMARKERS O F H U M A N DISEASES 503 15.11.1 MODIFICATION O F PROTEINS 503 15.12 METABOLOMICS 505 15.13 PROTEOMICS A N D D R U G DISCOVERY 506 15.14 C U R R E N T A N D F U T U R E BENEFITS O F PROTEOMICS I N H U M A N HEALTHCARE 5 0 6 15.14.1 U N D E R S T A N D I N G COMPLEX DISEASES A N D POSSIBILITY O F PERSONALIZED MEDICINE 506 15.14.2 BETTER D R U G S FOR H U M A N DISEASES 5 0 7 15.14.3 IDENTIFICATION O F PROTEIN BIOMARKERS 5 0 7 15.14.4 D R U G D E V E L O P M E N T 5 0 7 15.14.5 DISCOVERY O F N E W PROTEINS AS D R U G S 5 0 7 15.14.6 PROTEINS LINKED TO BRAIN DISEASES 5 0 8 REFERENCES 5 0 8 PART FIVE QUALITY CONTROL 511 16 CONSISTENCY O F SCALE-UP FROM BIOPROCESS DEVELOPMENT T O PRODUCTION 513 STEFAN JUNNE, ARNE KLINGNER, DIRK ITZECK, EVA BRAND, A N D PETER NEUBAUER 16.1 I N H O M O G E N E I T I E S I N INDUSTRIAL FED-BATCH PROCESSES 513 16.2 EFFECTS O F CONDITIONS I N INDUSTRIAL-SCALE FED-BATCH PROCESSES O N T H E M A I N C A R B O N METABOLISM 515 16.3 EFFECTS O F CONDITIONS I N INDUSTRIAL-SCALE FED-BATCH PROCESSES O N A M I N O ACID SYNTHESIS 518 16.4 SCALE-DOWN REACTORS FOR IMITATING LARGE-SCALE FED-BATCH PROCESS CONDITIONS A T T H E LABORATORY SCALE 5 2 0 16.5 I M P R O V E D T W O - C O M P A R T M E N T REACTOR SYSTEM TO I M I T A T E LARGE-SCALE CONDITIONS A T T H E LABORATORY SCALE 523 IMAGE 11 CONTENTS 16.6 DESCRIPTION O F T H E H Y D R O D Y N A M I C CONDITIONS I N T H E P F R P A R T O F T H E P R E S E N T E D T W O - C O M P A R T M E N T REACTOR 526 16.7 DESCRIPTION O F OXYGEN T R A N S F E R I N T H E PFR P A R T O F T H E T W O - C O M P A R T M E N T REACTOR 5 2 9 16.8 E. COLI FED-BATCH CULTIVATIONS I N T H E T W O - C O M P A R T M E N T REACTOR SYSTEM 531 16.9 F U T U R E PERSPECTIVES FOR T H E APPLICATION O F A T W O - C O M P A R T M E N T REACTOR 5 3 7 REFERENCES 538 17 SYSTEMATIC APPROACH T O OPTIMIZATION A N D COMPARABILITY O F BIOPHARMACEUTICAL CLYCOSYLATION T H R O U G H O U T T H E DRUG LIFE CYCLE 545 DARYL L. FERNANDES 17.1 COSTS O F INCONSISTENT, U N O P T I M I Z E D D R U G GLYCOSYLATION 545 17.2 S C H E M E 1: TRADITIONAL A P P R O A C H TO COMPARABILITY O F D R U G GLYCOSYLATION 5 47 17.2.1 I N C O M P A R A B L E GLYCOSYLATION D U R I N G SCALE-UP O F MYOZYME 548 17.2.2 W H Y I N C O M P A R A B L E GLYCOSYLATION OCCURS W I T H TRADITIONAL D R U G SCALE-UP 549 17.3 S C H E M E 2: COMPARABILITY O F D R U G GLYCOSYLATION U S I N G Q B D DS 551 17.3.1 Q B D A P P R O A C H TO GLYCOSYLATION I N T H E A-MAB CASE STUDY 5 5 2 17.4 S C H E M E 3: E N H A N C E D Q B D A P P R O A C H TO COMPARABILITY O F D R U G GLYCOSYLATION 554 17.4.1 INFORMATICS TOOLS FOR E N H A N C I N G Q B D FOR GLYCOPROTEIN D R U G S 554 17.4.2 CASE FOR A POPULATION MODEL FOR COMPARABILITY O F GLYCOPROTEIN T H E R A P E U T I C S 5 5 5 17.4.3 D O M A I N ONTOLOGY MODEL FOR D R U G REALIZATION 5 5 7 17.4.4 ONTOLOGY M A P 5 5 7 17.4.5 ELEMENTS VIEW O F T H E ONTOLOGY M A P 5 6 0 17.4.6 BUILDING A P O P U L A T I O N COMPARABILITY MODEL F O R D R U G GLYCOSYLATION 561 17.4.6.1 SE BOARD 5 6 2 17.4.6.2 STEP 1: CATEGORIZE T H E BIOLOGICAL BEHAVIORS O F T H E D R U G I N T E R M S O F SAFETY A N D EFFICACY 563 17.4.6.3 STEP 2: D E T E R M I N E A N D PRIORITIZE T H E GLYCOSYLATION CRITICAL QUALITY ATTRIBUTES 563 17.4.6.4 STEP 3: DEVELOP A T U N E D GLYCOPROFILING S Y S T E M TO M E A S U R E T H E G C Q A S 571 17.4.6.5 STEP 4: DESCRIBING A N D O P T I M I Z I N G T H E GLYCOSYLATION Q T P P B Y GLYCOFORM ACTIVITY MODELING 573 17.4.6.6 U S I N G GLYCAN ACTIVITY MODELING I N GLYCOSYLATION O P T I M I Z A T I O N A N D COMPARABILITY STUDIES 5 7 7 17.5 CONCLUSIONS 5 8 0 A C K N O W L E D G M E N T S 581 REFERENCES 581 IMAGE 12 XVI CONTENTS 18 QUALITY A N D RISK M A N A G E M E N T IN ENSURING T H E VIRUS SAFETY O F BIOPHARMACEUTICALS 5 8 5 ANDY BAILEY 18.1 I N T R O D U C T I O N 5 8 5 18.2 Q R M A N D VIRUS SAFETY 5 8 6 18.2.1 P R O D U C T COMPLEXITY A N D RISK 5 8 7 18.3 PILLARS O F SAFETY 5 9 0 18.3.1 S O U R C I N G - D E F I N I N G T H E BASELINE RISK 5 9 0 18.3.1.1 E P I D E M I O L O G Y - A POWERFUL TOOL FOR R E D U C I N G RISK FOR H U M A N - A N D ANIMAL-DERIVED C O M P O N E N T S 5 9 2 18.3.1.2 ADDITIONAL M E A S U R E S FOR CONTROLLING ANIMAL-DERIVED MATERIALS 5 9 6 18.3.2 T E S T I N G - R E D U C I N G F U R T H E R T H E BASELINE RISK 5 9 6 18.3.2.1 IN VITRO A N D I N VIVO ADVENTITIOUS A G E N T T E S T S - A D V A N T A G E S A N D DISADVANTAGES 5 9 7 18.3.2.2 INFECTIVITY TESTS FOR E N D O G E N O U S RETROVIRUSES 5 9 7 18.3.2.3 ELECTRON MICROSCOPY TESTS F O R RETROVIRUSES 5 9 8 18.3.2.4 REVERSE TRANSCRIPTASE ASSAYS 5 9 8 18.3.2.5 P C R T E S T I N G - A D V A N T A G E S A N D DISADVANTAGES 5 9 9 18.3.3 S O U R C I N G A N D T E S T I N G - I S I T E N O U G H ? 5 9 9 18.3.4 P A T H O G E N C L E A R A N C E - C O N T R O L L I N G T H E RESIDUAL RISK 6 0 0 18.3.5 CONTROLLING SUPPLIERS O F MEDIA A N D O T H E R ACTIVE P H A R M A C E U T I C A L INGREDIENTS 601 18.4 C O M M I T T E E FOR PROPRIETARY MEDICINAL PRODUCTS GUIDELINES FOR INVESTIGATIONAL MEDICINAL P R O D U C T S - R I S K M A N A G E M E N T I N PRACTICE 602 18.4.1 U S I N G G E N E R I C DATA TO R E D U C E VIRUS SAFETY T E S T I N G 603 18.4.2 EXPERIENCE WITH WELL-CHARACTERIZED CELL LINES 603 18.4.3 REDUCING VIRUS VALIDATION R E Q U I R E M E N T S FOR I M P S 6 0 4 18.4.4 PLATFORM PURIFICATION PROCESSES 605 18.5 DEVELOPING A R O B U S T RISK M I N I M I Z A T I O N S T R A T E G Y - W H A T IS T H E CORRECT PARADIGM? 6 0 7 REFERENCES 609 19 ENSURING QUALITY A N D EFFICIENCY O F BIOPROCESSES BY T H E TAILORED APPLICATION O F PROCESS ANALYTICAL TECHNOLOGY A N D QUALITY BY DESIGN 613 HELMUT TRAUTMANN 19.1 I N T R O D U C T I O N 613 19.2 PAT A N D Q B D I N B I O P R O C E S S I N G - E N G I N E E R I N G MEETS BIOLOGY 614 19.2.1 PAT A N D Q B D 614 19.2.2 E N G I N E E R I N G MEETS BIOLOGY 616 19.3 ASPECTS O F BIOLOGICAL D E M A N D S - S E L E C T E D EXAMPLES 617 19.3.1 BASIC PATTERNS O F N U T R I E N T METABOLISM: GLUCOSE A N D G L U T A M I N E A S C O M P L E M E N T A R Y MAJOR C A R B O N A N D ENERGY SOURCES 618 19.3.1.1 GLUCOSE UTILIZATION 619 19.3.1.2 G L U T A M I N E M E T A B O L I S M 625 19.3.1.3 GLUCOSE A N D G L U T A M I N E CONCENTRATIONS I N BATCH C U L T U R E S 625 IMAGE 13 CONTENTS XVII 19.3.2 EFFECT O F CULTURE STATES O N GLYCOSYLATION 626 19.3.2.1 DISSOLVED OXYGEN PARTIAL P R E S S U R E A N D P H 6 2 7 19.3.2.2 CONCENTRATIONS O F N U T R I E N T S 629 19.3.2.3 CONCENTRATIONS O F METABOLIC BYPRODUCTS: LACTATE A N D A M M O N I A 629 19.3.2.4 S U P P L E M E N T I N G SUITABLE P R E C U R S O R S 632 19.3.2.5 EFFECTS O N SECRETED GLYCOPROTEINS I N T H E M E D I U M 632 19.3.3 CELL-CELL A D H E S I O N A N D AGGREGATION: INFLUENCE O N T H E G R O W T H BEHAVIOR O F C H O CELLS 632 19.3.3.1 CONCLUSIONS 637 19.4 TECHNICAL A N D E N G I N E E R I N G SOLUTIONS 6 3 8 19.4.1 PAT A N D Q B D C O M P L I A N T PROCESS U N D E R S T A N D I N G A N D PROCESS CONTROL: F R O M DATA TO I N F O R M A T I O N A N D KNOWLEDGE, A N D ITS T R A N S F E R F R O M BIOPROCESS D E V E L O P M E N T TO M A N U F A C T U R I N G 639 19.4.1.1 ACQUISITION O F P R I M A R Y DATA 640 19.4.1.2 G A I N I N G / D E R I V I N G I N F O R M A T I O N F R O M DATA 644 19.4.1.3 PROCESS U N D E R S T A N D I N G BASED O N KNOWLEDGE 646 19.4.1.4 D E M O N S T R A T I O N O F PROCESS U N D E R S T A N D I N G A N D PROOF-OF-CONCEPT 647 19.4.1.5 PROCESS CONTROL 648 19.4.2 CHALLENGE O F S P E E D A N D QUALITY I N BIOPROCESS D E V E L O P M E N T 649 19.5 CONCLUSIONS 653 A C K N O W L E D G M E N T S 653 REFERENCES 654 PART SIX PROCESS DESIGN A N D M A N A G E M E N T 6 5 7 2 0 BIOPROCESS DESIGN A N D PRODUCTION TECHNOLOGY FOR T H E FUTURE 659 JOCHEN STRUBE, FLORIAN CROTE, AND REINHARD DITZ 20.1 I N T R O D U C T I O N 659 20.2 ANALYSIS O F B I O M A N U F A C T U R I N G TECHNOLOGIES 662 20.2.1 PROCESS CONCEPTS I N B I O M A N U F A C T U R I N G 663 20.2.2 TOTAL PROCESS ANALYSIS 666 20.2.2.1 M A B S 6 6 7 20.2.3 BATCH TO C O N T I N U O U S M A N U F A C T U R I N G 672 20.2.3.1 DISCUSSION 6 7 7 20.3 AAC: A N Y T H I N G A N D C H R O M A T O G R A P H Y 679 20.3.1 EXPANDED-BED C H R O M A T O G R A P H Y 679 20.3.2 M E M B R A N E C H R O M A T O G R A P H Y 681 20.3.3 LIQUID-LIQUID EXTRACTION 682 20.3.4 CRYSTALLIZATION/PRECIPITATION 684 20.4 PROCESS INTEGRATION 685 20.5 PROCESS D E S I G N A N D Q B D 689 20.6 PACKAGE U N I T E N G I N E E R I N G A N D STANDARDIZATION 691 20.7 D O W N S T R E A M O F D O W N S T R E A M PROCESSING 694 20.7.1 H U M A N I N S U L I N 695 - - IMAGE 14 XVIII | CONTENTS 20.7.2 ANTIBIOTICS (PENICILLIN) 696 20.8 CONCLUSIONS 699 A C K N O W L E D G M E N T S 699 REFERENCES 700 21 INTEGRATED PROCESS DESIGN: CHARACTERIZATION O F PROCESS A N D PRODUCT DEFINITION O F DESIGN SPACES 707 RICHARD FRANCIS 21.1 INTRODUCTORY PRINCIPLES 707 21.2 ORIGINAL PROCESS D E V E L O P M E N T P A R A D I G M 707 21.3 T H E ESSENTIAL Q B D CONCEPTS 710 21.4 C O N C L U S I O N 715 REFERENCES 715 22 EVALUATING A N D VISUALIZING T H E COST-EFFECTIVENESS A N D ROBUSTNESS O F BIOPHARMACEUTICAL MANUFACTURING STRATEGIES 717 SUZANNE S. FARID 22.1 I N T R O D U C T I O N 717 22.2 SCOPE O F RESEARCH O N DECISION-SUPPORT TOOLS FOR T H E BIOTECH SECTOR 71 9 22.2.1 CHALLENGES 720 22.2.2 TYPICAL STAGES O F ANALYSIS A N D A P P R O A C H E S 722 22.3 C A P T U R I N G PROCESS R O B U S T N E S S U N D E R UNCERTAINTY 723 22.3.1 FED-BATCH V E R S U S P E R F U S I O N C U L T U R E STRATEGIES 723 22.3.2 ROBUSTNESS O F LEGACY PURIFICATION FACILITIES TO H I G H E R TITER PROCESSES 725 22.4 RECONCILING MULTIPLE CONFLICTING O U T P U T S U N D E R UNCERTAINTY 7 2 8 22.4.1 STAINLESS STEEL VERSUS SINGLE-USE FACILITIES FOR CLINICAL TRIALS 728 22.5 SEARCHING LARGE DECISION SPACES EFFICIENTLY 731 22.5.1 PORTFOLIO M A N A G E M E N T : PORTFOLIO SELECTION A N D CAPACITY SOURCING 731 22.5.2 C H R O M A T O G R A P H Y SIZING O P T I M I Z A T I O N FOR F U T U R E FACILITIES 735 22.6 INTEGRATING STOCHASTIC S I M U L A T I O N W I T H MULTIVARIATE ANALYSIS 736 22.6.1 PREDICTING SHORT-TERM FACILITY FIT U P O N T E C H T R A N S F E R TO LARGER FACILITIES 7 3 7 22.7 CONCLUSIONS 7 3 7 A C K N O W L E D G M E N T S 739 REFERENCES 740 PART SEVEN CHANGING FACE O F PROCESSING 743 23 FULL PLASTICS: C O N S E Q U E N T EVOLUTION IN PHARMACEUTICAL BIOMANUFACTURING FROM VIAL T O W A R E H O U S E 745 ROLAND WAGNER AND DETHARDT MULLER 23.1 INCREASED D E M A N D , REDUCED V O L U M E S , A N D M A X I M U M FLEXIBILITY-DRIVING FORCE TO PLASTIC DEVICES 745 IMAGE 15 CONTENTS 23.2 P L A S T I C - T H E FLEXIBLE ALL-ROUND REPLACER: F R O M MATERIAL T O F U N C T I O N 7 4 7 23.3 POLLUTION W I T H PLASTICS: LEACHABLES A N D EXTRACTABLES 753 23.4 PLASTICS FOR STORAGE: VIAL A N D BAG 755 23.4.1 VIAL 755 23.4.2 BAG 755 23.5 PLASTICS FOR CULTIVATION: FLASK, TUBE, A N D U N S T I R R E D A N D STIRRED BIOREACTOR 7 5 7 23.5.1 FLASKS 7 5 7 23.5.2 T U B E S 7 5 7 23.5.3 BIOREACTORS 7 5 7 23.6 PLASTICS FOR PURIFICATION: C O L U M N A N D M E M B R A N E 760 23.6.1 C O L U M N 760 23.6.2 M E M B R A N E 761 23.7 CASE STUDY: COMPARABILITY O F PLASTIC BAG-BASED BIOREACTORS I N CULTIVATION PROCESSES 761 23.8 CONCLUSIONS A N D PROSPECTS 763 REFERENCES 765 24 BIOSMB* TECHNOLOGY: C O N T I N U O U S COUNTERCURRENT CHROMATOGRAPHY ENABLING A FULLY DISPOSABLE PROCESS 769 MARC BISSCHOPS 24.1 I N T R O D U C T I O N 769 24.1.1 EVOLUTION O F C O N T I N U O U S C O U N T E R C U R R E N T C H R O M A T O G R A P H Y 769 24.1.2 C O N T I N U O U S C H R O M A T O G R A P H Y SYSTEMS 773 24.1.3 INDUSTRIAL APPLICATIONS O F C O N T I N U O U S C H R O M A T O G R A P H Y 774 24.1.3.1 FRACTIONATION C H R O M A T O G R A P H Y 774 24.1.3.2 C O N T I N U O U S ION-EXCHANGE C H R O M A T O G R A P H Y 775 24.2 C O N T I N U O U S C H R O M A T O G R A P H Y I N BIOPHARMACEUTICAL I N D U S T R I E S 776 24.2.1 I N D U S T R Y DRIVERS 776 24.2.2 POTENTIAL APPLICATION AREAS 778 24.2.3 KEY CHALLENGES 779 24.2.4 BIOSMB* TECHNOLOGY 780 24.2.4.1 DISPOSABLE F O R M A T 780 24.2.4.2 PREPACKED C O L U M N S 780 24.2.4.3 ALTERNATIVE C H R O M A T O G R A P H Y F O R M A T S 781 24.3 PROCESS D E S I G N PRINCIPLES 781 24.3.1 PROCESS DESIGN F U N D A M E N T A L S 781 24.3.1.1 T H E R M O D Y N A M I C E Q U I L I B R I U M 781 24.3.1.2 MASS T R A N S F E R KINETICS 782 24.3.1.3 O T H E R P H E N O M E N A 783 24.3.1.4 P E R F O R M A N C E PREDICTION 783 24.3.2 PROCESS D E S I G N FEATURES 783 24.3.2.1 FRACTIONATION C H R O M A T O G R A P H Y 784 24.3.2.2 C A P T U R E C H R O M A T O G R A P H Y 785 IMAGE 16 XX I CONTENTS 24.4 CASE STUDIES 786 24.4.1 PROTEIN A C H R O M A T O G R A P H Y 786 24.4.2 AGGREGATE REMOVAL U S I N G H Y D R O P H O B I C INTERACTION C H R O M A T O G R A P H Y 7 8 7 24.4.3 VACCINE PURIFICATION U S I N G SIZE-EXCLUSION C H R O M A T O G R A P H Y 7 8 8 24.5 CONCLUSIONS 789 REFERENCES 790 25 SINGLE-USE TECHNOLOGY: OPPORTUNITIES IN BIOPHARMACEUTICAL PROCESSES 793 MAIK W. JORNITZ, DETLEV SZARAFINSKI, AND THORSTEN PEUKER 25.1 C U R R E N T SINGLE-USE TECHNOLOGIES 793 25.1.1 LIQUID H O L D BAGS 7 9 4 25.1.2 MIXING 795 25.1.3 P R O D U C T A N D C O M P O N E N T T R A N S F E R 7 9 7 25.1.4 PURIFICATION 7 9 8 25.1.5 FILTRATION 8 0 0 25.1.6 STERILE C O N N E C T I O N S 801 25.1.7 FILLING 8 0 2 25.2 F U T U R E SINGLE-USE OPERATIONS 8 0 2 25.2.1 U P S T R E A M O P P O R T U N I T I E S 8 0 3 25.2.2 D O W N S T R E A M O P P O R T U N I T I E S 804 25.2.3 SINGLE-USE PROCESS E N G I N E E R I N G 804 25.3 A U T O M A T I O N R E Q U I R E M E N T S I N SINGLE-USE M A N U F A C T U R I N G 8 0 6 25.3.1 DATA ACQUISITION 8 0 8 25.3.2 M O N I T O R I N G A N D CONTROL 8 0 8 25.3.3 FACILITY-WIDE A U T O M A T I O N STRUCTURE 8 0 8 25.4 QUALIFICATION A N D VALIDATION EXPECTATIONS 8 0 9 25.4.1 E Q U I P M E N T QUALIFICATION 8 0 9 25.4.2 PROCESS VALIDATION 811 25.5 O P E R A T O R T R A I N I N G 8 1 5 REFERENCES 815 2 6 SINGLE-USE BIOTECHNOLOGIES A N D MODULAR MANUFACTURING ENVIRONMENTS INVITE PARADIGM SHIFTS IN BIOPROCESS DEVELOPMENT A N D BIOPHARMACEUTICAL MANUFACTURING 817 ALFRED LUITJENS, JOHN LEWIS, AND ALAIN PROLONG 26.1 I N T R O D U C T I O N 8 1 7 26.2 P A R A D I G M SHIFT A T CRUCELL 819 26.2.1 I N T R O D U C T I O N TO CRUCELL 819 26.2.2 EVOLUTION O F SINGLE-USE BIOTECHNOLOGY 821 26.2.2.1 P H A S E I: SINGLE-USE TECHNOLOGY D E V E L O P M E N T - S U C C E S S W I T H SMALL-SCALE PLASTIC CELL C U L T U R E U N I T S 821 26.2.2.2 P H A S E II: SINGLE-USE BIOTECHNOLOGIES D E V E L O P M E N T - S C A L E - U P , CAPSULES, A N D C O U P L I N G 8 2 4 IMAGE 17 CONTENTS 26.2.2.3 P H A S E III: SINGLE-USE BIOTECHNOLOGIES D E V E L O P M E N T - I N D U S T R I A L I Z A T I O N A N D SIMPLIFICATION 829 26.2.2.4 CRUCELL M A N U F A C T U R I N G O F M A B S W I T H T H E P E R . C 6 CELL LINE: A COMPLETELY SINGLE-USE FED-BATCH PROCESS 835 26.2.2.5 MISSING E L E M E N T S A N D OUTLOOK 839 26.2.3 ADAPTATION O F FACILITY LAYOUT TO SINGLE-USE TECHNOLOGY 8 4 2 26.2.4 PROCESS D E V E L O P M E N T VALUE S T R E A M 849 26.2.5 A S S E S S M E N T O F T H E CRUCELL P A R A D I G M SHIFT 854 26.3 CONCLUSIONS A N D G E N E R A L OUTLOOK 856 REFERENCES 857 INDEX 859
any_adam_object 1
building Verbundindex
bvnumber BV040343838
classification_rvk VS 9400
classification_tum CIT 840f
CIT 960f
ctrlnum (DE-599)DNB1017775001
discipline Chemie / Pharmazie
Biologie
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01754nam a2200421 ca4500</leader><controlfield tag="001">BV040343838</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20121115 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">120731nuuuuuuuugw |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">11,N51</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1017775001</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527330294</subfield><subfield code="c">Gb. : ca. EUR 399.00 (DE) (freier Pr.), ca. EUR 349.00 (DE) (freier Subskr.Pr. bis 31.12.2012), ca. EUR 410.20 (AT) (freier Pr.)</subfield><subfield code="9">978-3-527-33029-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3527330291</subfield><subfield code="9">3-527-33029-1</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527330294</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Best.-Nr.: 1133029 000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1017775001</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VS 9400</subfield><subfield code="0">(DE-625)147728:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CIT 840f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CIT 960f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">540</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Biopharmaceutical production technology</subfield><subfield code="c">ed. by Ganapathy Subramanian</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biotechnologie</subfield><subfield code="0">(DE-588)4069491-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pharmazeutische Technologie</subfield><subfield code="0">(DE-588)4045699-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Pharmazeutische Technologie</subfield><subfield code="0">(DE-588)4045699-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Biotechnologie</subfield><subfield code="0">(DE-588)4069491-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Subramanian, Ganapathy</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=3932623&amp;prov=M&amp;dok_var=1&amp;dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=025198037&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025198037</subfield></datafield></record></collection>
id DE-604.BV040343838
illustrated Not Illustrated
indexdate 2025-02-03T17:28:01Z
institution BVB
isbn 9783527330294
3527330291
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-025198037
open_access_boolean
publishDateSort 0000
publisher Wiley-VCH
record_format marc
spellingShingle Biopharmaceutical production technology
Biotechnologie (DE-588)4069491-4 gnd
Pharmazeutische Technologie (DE-588)4045699-7 gnd
subject_GND (DE-588)4069491-4
(DE-588)4045699-7
title Biopharmaceutical production technology
title_auth Biopharmaceutical production technology
title_exact_search Biopharmaceutical production technology
title_full Biopharmaceutical production technology ed. by Ganapathy Subramanian
title_fullStr Biopharmaceutical production technology ed. by Ganapathy Subramanian
title_full_unstemmed Biopharmaceutical production technology ed. by Ganapathy Subramanian
title_short Biopharmaceutical production technology
title_sort biopharmaceutical production technology
topic Biotechnologie (DE-588)4069491-4 gnd
Pharmazeutische Technologie (DE-588)4045699-7 gnd
topic_facet Biotechnologie
Pharmazeutische Technologie
url http://deposit.dnb.de/cgi-bin/dokserv?id=3932623&prov=M&dok_var=1&dok_ext=htm
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025198037&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT subramanianganapathy biopharmaceuticalproductiontechnology