Adaptive numerical solution of PDEs

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Deuflhard, Peter 1944-2019 (VerfasserIn), Weiser, Martin 1970- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Berlin ; Boston de Gruyter 2012
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV040301749
003 DE-604
005 20221130
007 t
008 120709s2012 a||| |||| 00||| eng d
020 |a 9783110283105  |9 978-3-11-028310-5 
020 |a 9783110283112  |9 978-3-11-028311-2 
035 |a (OCoLC)853206708 
035 |a (DE-599)BVBBV040301749 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-739  |a DE-188  |a DE-19  |a DE-20  |a DE-634  |a DE-83  |a DE-91G  |a DE-862 
082 0 |a 515/.3533 
084 |a SK 500  |0 (DE-625)143243:  |2 rvk 
084 |a SK 540  |0 (DE-625)143245:  |2 rvk 
084 |a SK 920  |0 (DE-625)143272:  |2 rvk 
084 |a 65Mxx  |2 msc 
084 |a 65Nxx  |2 msc 
084 |a MAT 671f  |2 stub 
100 1 |a Deuflhard, Peter  |d 1944-2019  |0 (DE-588)108205983  |4 aut 
245 1 0 |a Adaptive numerical solution of PDEs  |c Peter Deuflhard ; Martin Weiser 
264 1 |a Berlin ; Boston  |b de Gruyter  |c 2012 
300 |a xi, 421 Seiten  |b Illustrationen, Diagramme 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
500 |a Includes bibliographical references and index 
650 4 |a Differential equations, Elliptic / Numerical solutions / Textbooks 
650 4 |a Differential equations, Parabolic / Numerical solutions / Textbooks 
650 0 7 |a Adaptives Verfahren  |0 (DE-588)4310560-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Numerisches Verfahren  |0 (DE-588)4128130-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Partielle Differentialgleichung  |0 (DE-588)4044779-0  |2 gnd  |9 rswk-swf 
689 0 0 |a Partielle Differentialgleichung  |0 (DE-588)4044779-0  |D s 
689 0 1 |a Numerisches Verfahren  |0 (DE-588)4128130-5  |D s 
689 0 2 |a Adaptives Verfahren  |0 (DE-588)4310560-9  |D s 
689 0 |5 DE-604 
700 1 |a Weiser, Martin  |d 1970-  |0 (DE-588)123252040  |4 aut 
856 4 2 |m Digitalisierung UB Passau  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025156768&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-025156768 

Datensatz im Suchindex

DE-BY-862_location 2000
DE-BY-FWS_call_number 2000/SK 920 D485
DE-BY-FWS_katkey 579696
DE-BY-FWS_media_number 083000513421
DE-BY-TUM_call_number 0303/MAT 671f 2014 L 913
0303/MAT 671f 2014 L 913+5
0303/MAT 671f 2014 L 913+3
0303/MAT 671f 2014 L 913+4
0303/MAT 671f 2014 L 913+2
DE-BY-TUM_katkey 1906572
DE-BY-TUM_media_number 040071475691
040080097874
040080097885
040080097909
040080097896
_version_ 1816713840920887296
adam_text Contents Preface v Outline 1 1 Elementary Partial Differential Equations 5 1.1 Laplace and Poisson Equation ................................ 5 1.1.1 Boundary Value Problems ............................ 6 1.1.2 Initial Value Problem ................................ 10 1.1.3 Eigenvalue Problem ................................. 12 1.2 Diffusion Equation ........................................ 15 1.3 Wave Equation ........................................... 18 1.4 Schrödinger Equation ...................................... 23 1.5 Helmholtz Equation ........................................ 26 1.5.1 Boundary Value Problems ............................ 26 1.5.2 Time-harmonic Differential Equations ................... 27 1.6 Classification ............................................. 29 1.7 Exercises ................................................ 31 2 Partial Differential Equations in Science and Technology 34 2.1 Electrodynamics .......................................... 34 2.1.1 Maxwell Equations .................................. 34 2.1.2 Optical Model Hierarchy .............................. 37 2.2 Fluid Dynamics ........................................... 40 2.2.1 Euler Equations ..................................... 41 2.2.2 Navier-Stokes Equations ............................. 44 2.2.3 Prandtl s Boundary Layer ............................. 49 2.2.4 Porous Media Equation ............................... 51 2.3 Elastomechanics .......................................... 52 2.3.1 Basic Concepts of Nonlinear Elastomechanics ............. 52 2.3.2 Linear Elastomechanics .............................. 56 2.4 Exercises ................................................ 59 3 Finite Difference Methods for Poisson Problems 62 3.1 Discretization of Standard Problem ............................ 62 3.1.1 Discrete Boundary Value Problems ..................... 63 3.1.2 Discrete Eigenvalue Problem .......................... 68 3.2 Approximation Theory on Uniform Grids ....................... 71 3.2.1 Discretization Error in L2 ............................. 73 3.2.2 Discretization Error in L°° ............................ 76 3.3 Discretization on Nonuniform Grids ........................... 78 3.3.1 One-dimensional Special Case ......................... 78 3.3.2 Curved Boundaries .................................. 80 3.4 Exercises ................................................ 83 4 Galerkin Methods 86 4.1 General Scheme ........................................... 86 4.1.1 Weak Solutions ..................................... 86 4.1.2 Ritz Minimization for Boundary Value Problems .......... 89 4.1.3 Rayleigh-Ritz Minimization for Eigenvalue Problems ...... 93 4.2 Spectral Methods .......................................... 95 4.2.1 Realization by Orthogonal Systems ..................... 96 4.2.2 Approximation Theory ............................... 100 4.2.3 Adaptive Spectral Methods ............................ 103 4.3 Finite Element Methods .................................... 108 4.3.1 Meshes and Finite Element Spaces ...................... 108 4.3.2 Elementary Finite Elements ........................... Ill 4.3.3 Realization of Finite Elements ......................... 121 4.4 Approximation Theory for Finite Elements ..................... 128 4.4.1 Boundary Value Problems ............................ 128 4.4.2 Eigenvalue Problems ................................. 131 4.4.3 Angle Condition for Nonuniform Meshes ................ 136 4.5 Exercises ................................................ 139 5 Numerical Solution of Linear Elliptic Grid Equations 143 5.1 Direct Elimination Methods ................................. 144 5.1.1 Symbolic Factorization ............................... 145 5.1.2 Frontal Solvers ..................................... 147 5.2 Matrix Decomposition Methods .............................. 150 5.2.1 Jacobi Method ...................................... 152 5.2.2 Gauss-Seidel Method ................................ 154 5.3 Conjugate Gradient Method .................................156 5.3.1 CG-Method as Galerkin Method ........................156 5.3.2 Preconditioning .....................................159 5.3.3 Adaptive PCG-method ...............................163 5.3.4 A CG-variant for Eigenvalue Problems ..................165 5.4 Smoothing Property of Iterative Solvers ........................170 5.4.1 Illustration for the Poisson Model Problem ...............170 5.4.2 Spectral Analysis for Jacobi Method ....................174 5.4.3 Smoothing Theorems ................................175 5.5 Iterative Hierarchical Solvers ................................180 5.5.1 Classical Multigrid Methods ...........................182 5.5.2 Hierarchical-basis Method ............................190 5.5.3 Comparison with Direct Hierarchical Solvers .............193 5.6 Power Optimization of a Darrieus Wind Generator ...............194 5.7 Exercises ................................................200 Construction of Adaptive Hierarchical Meshes 203 6.1 A Posteriori Error Estimators ................................203 6.1.1 Residual Based Error Estimator ........................206 6.1.2 Triangle Oriented Error Estimators ......................211 6.1.3 Gradient Recovery ..................................215 6.1.4 Hierarchical Error Estimators ..........................219 6.1.5 Goal-oriented Error Estimation .........................222 6.2 Adaptive Mesh Refinement ..................................223 6.2.1 Equilibration of Local Discretization Errors ...............224 6.2.2 Refinement Strategies ................................229 6.2.3 Choice of Solvers on Adaptive Hierarchical Meshes ........233 6.3 Convergence on Adaptive Meshes ............................233 6.3.1 A Convergence Proof ................................234 6.3.2 An Example with a Reentrant Corner ....................236 6.4 Design of a Plasmon-Polariton Waveguide ......................240 6.5 Exercises ................................................244 Adaptive Multigrid Methods for Linear Elliptic Problems 246 7.1 Subspace Correction Methods ................................246 7.1.1 Basic Principle .....................................247 7.1.2 Sequential Subspace Correction Methods .................250 7.1.3 Parallel Subspace Correction Methods ...................255 7.1.4 Overlapping Domain Decomposition Methods .............259 7.1.5 Higher-order Finite Elements ..........................266 7.2 Hierarchical Space Decompositions ...........................271 7.2.1 Decomposition into Hierarchical Bases ..................272 7.2.2 L2-orthogonal Decomposition: BPX ....................278 7.3 Multigrid Methods Revisited ................................. 282 7.3.1 Additive Multigrid Methods ........................... 282 7.3.2 Multiplicative Multigrid Methods ....................... 286 7.4 Cascadic Multigrid Methods ................................. 289 7.4.1 Theoretical Derivation ............................... 289 7.4.2 Adaptive Realization ................................. 295 7.5 Eigenvalue Problem Solvers ................................. 300 7.5.1 Linear Multigrid Method .............................. 301 7.5.2 Rayleigh Quotient Multigrid Method .................... 303 7.6 Exercises ................................................ 306 Adaptive Solution of Nonlinear Elliptic Problems 310 8.1 Discrete Newton Methods for Nonlinear Grid Equations ........... 311 8.1.1 Exact Newton Methods ............................... 312 8.1.2 Inexact Newton-PCG Methods ......................... 316 8.2 Inexact Newton-Multigrid Methods ........................... 319 8.2.1 Hierarchical Grid Equations ........................... 319 8.2.2 Realization of Adaptive Algorithm ...................... 321 8.2.3 An Elliptic Problem Without a Solution .................. 325 8.3 Operation Planning in Facial Surgery .......................... 328 8.4 Exercises ................................................ 331 Adaptive Integration of Parabolic Problems 333 9.1 Time Discretization of Stiff Differential Equations ............... 333 9.1.1 Linear Stability Theory ............................... 334 9.1.2 Linearly Implicit One-step Methods ..................... 340 9.1.3 Order Reduction .................................... 347 9.2 Space-time Discretization of Parabolic PDEs .................... 353 9.2.1 Adaptive Method of Lines ............................ 354 9.2.2 Adaptive Method of Time Layers ....................... 362 9.2.3 Goal-oriented Error Estimation ......................... 371 9.3 Electrical Excitation of the Heart Muscle ....................... 374 9.3.1 Mathematical Models ................................ 374 9.3.2 Numerical Simulation ................................ 375 9.4 Exercises ................................................ 378 A Appendix 380 A.I Fourier Analysis and Fourier Transform ........................380 A.2 Differential Operators in K3 .................................381 A.3 Integral Theorems .........................................383 A.4 Delta-Distribution and Green s Functions .......................387 A.5 Sobolev Spaces ...........................................392 A.6 Optimality Conditions ......................................397 В Software 398 B.I Adaptive Finite Element Codes ...............................398 B.2 Direct Solvers ............................................399 B.3 Nonlinear Solvers .........................................399 Bibliography 401 Index 415
any_adam_object 1
author Deuflhard, Peter 1944-2019
Weiser, Martin 1970-
author_GND (DE-588)108205983
(DE-588)123252040
author_facet Deuflhard, Peter 1944-2019
Weiser, Martin 1970-
author_role aut
aut
author_sort Deuflhard, Peter 1944-2019
author_variant p d pd
m w mw
building Verbundindex
bvnumber BV040301749
classification_rvk SK 500
SK 540
SK 920
classification_tum MAT 671f
ctrlnum (OCoLC)853206708
(DE-599)BVBBV040301749
dewey-full 515/.3533
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515/.3533
dewey-search 515/.3533
dewey-sort 3515 43533
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02093nam a2200493 c 4500</leader><controlfield tag="001">BV040301749</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221130 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">120709s2012 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110283105</subfield><subfield code="9">978-3-11-028310-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110283112</subfield><subfield code="9">978-3-11-028311-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)853206708</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040301749</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.3533</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 500</subfield><subfield code="0">(DE-625)143243:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 920</subfield><subfield code="0">(DE-625)143272:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">65Mxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">65Nxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 671f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Deuflhard, Peter</subfield><subfield code="d">1944-2019</subfield><subfield code="0">(DE-588)108205983</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adaptive numerical solution of PDEs</subfield><subfield code="c">Peter Deuflhard ; Martin Weiser</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">de Gruyter</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xi, 421 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Elliptic / Numerical solutions / Textbooks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Parabolic / Numerical solutions / Textbooks</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Adaptives Verfahren</subfield><subfield code="0">(DE-588)4310560-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Adaptives Verfahren</subfield><subfield code="0">(DE-588)4310560-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weiser, Martin</subfield><subfield code="d">1970-</subfield><subfield code="0">(DE-588)123252040</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=025156768&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025156768</subfield></datafield></record></collection>
id DE-604.BV040301749
illustrated Illustrated
indexdate 2024-11-25T17:37:10Z
institution BVB
isbn 9783110283105
9783110283112
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-025156768
oclc_num 853206708
open_access_boolean
owner DE-739
DE-188
DE-19
DE-BY-UBM
DE-20
DE-634
DE-83
DE-91G
DE-BY-TUM
DE-862
DE-BY-FWS
owner_facet DE-739
DE-188
DE-19
DE-BY-UBM
DE-20
DE-634
DE-83
DE-91G
DE-BY-TUM
DE-862
DE-BY-FWS
physical xi, 421 Seiten Illustrationen, Diagramme
publishDate 2012
publishDateSearch 2012
publishDateSort 2012
publisher de Gruyter
record_format marc
spellingShingle Deuflhard, Peter 1944-2019
Weiser, Martin 1970-
Adaptive numerical solution of PDEs
Differential equations, Elliptic / Numerical solutions / Textbooks
Differential equations, Parabolic / Numerical solutions / Textbooks
Adaptives Verfahren (DE-588)4310560-9 gnd
Numerisches Verfahren (DE-588)4128130-5 gnd
Partielle Differentialgleichung (DE-588)4044779-0 gnd
subject_GND (DE-588)4310560-9
(DE-588)4128130-5
(DE-588)4044779-0
title Adaptive numerical solution of PDEs
title_auth Adaptive numerical solution of PDEs
title_exact_search Adaptive numerical solution of PDEs
title_full Adaptive numerical solution of PDEs Peter Deuflhard ; Martin Weiser
title_fullStr Adaptive numerical solution of PDEs Peter Deuflhard ; Martin Weiser
title_full_unstemmed Adaptive numerical solution of PDEs Peter Deuflhard ; Martin Weiser
title_short Adaptive numerical solution of PDEs
title_sort adaptive numerical solution of pdes
topic Differential equations, Elliptic / Numerical solutions / Textbooks
Differential equations, Parabolic / Numerical solutions / Textbooks
Adaptives Verfahren (DE-588)4310560-9 gnd
Numerisches Verfahren (DE-588)4128130-5 gnd
Partielle Differentialgleichung (DE-588)4044779-0 gnd
topic_facet Differential equations, Elliptic / Numerical solutions / Textbooks
Differential equations, Parabolic / Numerical solutions / Textbooks
Adaptives Verfahren
Numerisches Verfahren
Partielle Differentialgleichung
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025156768&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT deuflhardpeter adaptivenumericalsolutionofpdes
AT weisermartin adaptivenumericalsolutionofpdes