Aerodynamics for engineering students

Gespeichert in:
Bibliographische Detailangaben
Format: Buch
Sprache:English
Veröffentlicht: Amsterdam [u.a.] Elsevier 2013
Ausgabe:6. ed.
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV040112439
003 DE-604
005 20170619
007 t|
008 120420s2013 xx ad|| |||| 00||| eng d
015 |a GBB217124  |2 dnb 
020 |a 9780080966328  |9 978-0-08-096632-8 
020 |a 0080966322  |9 0-08-096632-2 
035 |a (OCoLC)815882604 
035 |a (DE-599)BVBBV040112439 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-634  |a DE-83  |a DE-29T  |a DE-573  |a DE-898 
084 |a ZO 7230  |0 (DE-625)157840:  |2 rvk 
245 1 0 |a Aerodynamics for engineering students  |c E. L. Houghton ... 
250 |a 6. ed. 
264 1 |a Amsterdam [u.a.]  |b Elsevier  |c 2013 
300 |a XVI, 724 S.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
500 |a Literaturverz. S. 707 - 713 
650 4 |a Aerodynamics 
650 0 7 |a Aerodynamik  |0 (DE-588)4000589-6  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)4123623-3  |a Lehrbuch  |2 gnd-content 
689 0 0 |a Aerodynamik  |0 (DE-588)4000589-6  |D s 
689 0 |8 1\p  |5 DE-604 
700 1 |a Houghton, Edward L.  |e Sonstige  |4 oth 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024968738&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-024968738 

Datensatz im Suchindex

_version_ 1819670242007187456
adam_text Titel: Aerodynamics for engineering students Autor: Houghton, Edward L Jahr: 2013 Contents Preface............................................................................... xv CHAPTER 1 Basic Concepts and Definitions.................................. 1 1.1 Introduction....................................................... 1 1.1.1 Basic Concepts............................................. 2 1.1.2 Measures of Dynamical Properties........................ 4 1.2 Units and Dimensions............................................ 5 1.2.1 Fundamental Dimensions and Units...................... 6 1.2.2 Fractions and Multiples.................................... 7 1.2.3 Units of Other Physical Quantities........................ 7 1.2.4 Imperial Units.............................................. 9 1.3 Relevant Properties............................................... 12 1.3.1 Forms of Matter............................................ 12 1.3.2 Huids....................................................... 13 1.3.3 Pressure..................................................... 14 1.3.4 Temperature................................................ 16 1.3.5 Density..................................................... 16 1.3.6 Viscosity.................................................... 17 1.3.7 Speed of Sound and Bulk Elasticity....................... 19 1.3.8 Thermodynamic Properties................................ 20 1.4 Aeronautical Definitions ......................................... 25 1.4.1 Airfoil Geometry........................................... 25 1.4.2 WingGeometry............................................ 27 1.5 Dimensional Analysis............................................ 29 1.5.1 Fundamental Principles.................................... 29 1.5.2 Dimensional Analysis Applied to Aerodynamic Force .. 32 1.6 Basic Aerodynamics.............................................. 38 1.6.1 Aerodynamic Force and Moment......................... 38 . 1.6.2 Force and Moment Coefficients........................... 40 1.6.3 Pressure Distribution on an Airfoil........................ 41 1.6.4 Pitching Moment........................................... 43 1.6.5 TypesofDrag.............................................. 47 1.6.6 Estimation of Lift, Drag, and Pitching Moment Coefficients from the Pressure Distribution.............. 51 1.6.7 Induced Drag............................................... 55 1.6.8 Lift-Dependent Drag....................................... 58 1.6.9 Airfoil Characteristics..................................... 58 1.7 Exercises.......................................................... 65 CHAPTER 2 Fundamental Equations of Fluid Mechanics.................... 69 2.1 Introduction....................................................... 69 2.1.1 Selection of Coordinates................................... 70 2.1.2 A Comparison of Steady and Unsteady How ............ 71 2.2 One-Dimensional How: The Basic Equations.................. 73 2.2.1 One-Dimensional How: The Basic Equations of Conservation............................................... 73 2.2.2 Comments on the Momentum and Energy Equations.... 80 2.3 Measurement of Air Speed....................................... 81 2.3.1 Pit6t-Static Tube........................................... 81 2.3.2 Pressure Coefficient........................................ 82 2.3.3 Air-Speed Indicator: Indicated and Equivalent Air Speeds ................................................. 83 2.3.4 Incompressibility Assumption............................. 84 2.4 Two-Dimensional How .......................................... 87 2.4.1 Component Velocities ..................................... 88 2.4.2 Equation of Continuity or Conservation of Mass ........ 91 2.4.3 Equation of Continuity in Polar Coordinates............. 93 2.5 Stream Function and Streamline................................. 94 2.5.1 Stream Function if......................................... 94 2.5.2 Streamline.................................................. 96 2.5.3 Velocity Components in Terms of ty...................... 97 2.6 Momentum Equation............................................. 100 2.6.1 Euler Equations............................................ 105 2.7 Rates of Strain, Rotational How, and Vorticity.................. 105 2.7.1 Distortion of Huid Element in How Field................ 106 2.7.2 Rate of Shear Strain........................................ 107 2.7.3 Rate of Direct Strain....................................... 108 2.7.4 Vorticity.................................................... 109 2.7.5 Vorticity in Polar Coordinates............................. 109 2.7.6 Rotational and Irrotational How.......................... 110 2.7.7 Circulation.................................................. 110 2.8 Navier-Stokes Equations......................................... 113 2.8.1 Relationship between Rates of Strain and Viscous Stresses..................................................... 113 2.8.2 Derivation of the Navier-Stokes Equations............... 115 2.9 Properties of the Navier-Stokes Equations...................... 117 2.10 Exact Solutions of the Navier-Stokes Equations................ 121 2.10.1 Couette How: Simple Shear How....................... 122 2.10.2 Plane Poiseuille Flow: Pressure-Driven Channel How. 122 2.10.3 Hiemenz How: Two-Dimensional Stagnation-Point How ...................................................... 124 2.11 Prandtl s Boundary-Layer Equations............................ 128 2.11.1 Development of the Boundary Layer.................... 130 2.11.2 Boundary-Layer Thickness.............................. 132 2.11.3 Nondimensional Profile.................................. 132 2.11.4 Laminar and Turbulent Hows ........................... 133 2.11.5 Growth along a Hat Surface............................. 134 2.11.6 Effects of an External Pressure Gradient................ 136 2.12 Boundary-Layer Equations....................................... 137 2.12.1 Derivation of the Laminar Boundary-Layer Equations. 138 2.12.2 Boundary-Layer Thickness for Laminar and Turbulent Hows.......................................... 143 2.12.3 Boundary-Layer/Potential-How Model of Airfoils and Wings................................................ 144 2.13 Exercises.......................................................... 144 CHAPTER 3 Potential Flow..................................................... 149 3.1 Two-Dimensional Hows......................................... 149 3.1.1 The Velocity Potential..................................... 153 3.1.2 The Equipotential.......................................... 155 3.1.3 Velocity Components in Terms of t ...................... 156 3.2 Standard Hows in Terms of x/r and / ............................ 157 3.2.1 Uniform How.............................................. 158 3.2.2 Two-Dimensional How from a Source (or towards a Sink)...................................................... 160 3.2.3 Doublet Located at (jc,v) = (0,0).......................... 162 3.2.4 Line (Point) Vortex......................................... 163 3.2.5 Solid Boundaries and Image Systems..................... 165 3.2.6 Rankine Leading Edge..................................... 168 3.2.7 RankineOval............................................... 171 3.2.8 Circular Cylinder with Circulation in a Cross How...... 175 3.2.9 Joukowski Airfoil and the Circular Cylinder............. 182 3.3 Axisymmetric Hows (Inviscid and Incompressible Hows).... 183 3.3.1 Cylindrical Coordinate System............................ 184 3.3.2 Spherical Coordinates..................................... 185 3.3.3 Axisymmetric How from a Point Source (or towards aPointSink)............................................... 186 3.3.4 Point Source and Sink in a Uniform Axisymmetric How........................................................ 187 3.3.5 The Point Doublet and the Potential How around a Sphere.................................................... 189 3.3.6 How around Slender Bodies.............................. 192 3.4 Computational (Panel) Methods................................. 195 3.5 Exercises.......................................................... 203 CHAPTER4 Two-Dimensional Wing Theory..................................209 4.1 Introduction....................................................... 209 4.1.1 The Kutta Condition....................................... 211 4.1.2 Circulation and Vorticity................................... 213 4.1.3 Circulation and Lift (The Kutta-Joukowski Theorem)................................................... 218 4.2 The Development of Airfoil Theory............................. 220 4.3 General Thin-Airfoil Theory..................................... 223 4.4 Solution to the General Equation................................ 228 4.4.1 Thin Symmetrical Hat-Plate Airfoil...................... 229 4.4.2 General Thin-Airfoil Section.............................. 231 4.5 The Happed Airfoil............................................... 235 4.5.1 Hinge Moment Coefficient................................ 237 4.6 The Jet Hap....................................................... 240 4.7 Normal Force and Pitching Moment Derivatives Due to Pitching........................................................... 240 4.7.1 (Zq)(Mq) Wing Contributions............................. 241 4.8 Particular Camber Lines.......................................... 245 4.8.1 Cubic Camber Lines....................................... 245 4.8.2 NACA Four-Digit Wing Sections......................... 249 4.9 The Thickness Problem for Thin-Airfoil Theory ............... 251 4.9.1 Thickness Problem for Thin Airfoils...................... 252 4.10 Computational (Panel) Methods for Two-Dimensional Lifting Hows..................................................... 256 4.11 Exercises.......................................................... 265 CHAPTER 5 Wing Theory.......................................................269 5.1 The Vortex System................................................ 270 5.1.1 Starting Vortex............................................. 270 5.1.2 Trailing Vortex System.................................... 271 5.1.3 Bound Vortex System...................................... 272 5.1.4 Horseshoe Vortex.......................................... 273 5.2 Laws of Vortex Motion........................................... 273 5.2.1 Helmholtz s Theorems..................................... 275 5.2.2 The Biot-Savart Law....................................... 276 5.2.3 Variation of Velocity in Vortex How...................... 279 5.3 The Wing as a Simplified Horseshoe Vortex.................... 281 5.3.1 Influence of Downwash on the Tailplane................. 285 5.3.2 Ground Effects............................................. 286 5.4 Vortex Sheets...................................................... 289 5.4.1 Use of Vortex Sheets to Model the Lifting Effects of a Wing...................................................... 290 5.5 Relationship between Spanwise Loading and Trailing Vorticity........................................................... 294 5.5.1 Induced Velocity (Downwash)............................ 296 5.5.2 The Consequences of Downwash?Trailing Vortex Drag........................................................ 299 5.5.3 Characteristics of Simple Symmetric Loading?Elliptic Distribution ........................... 302 5.5.4 General (Series) Distribution of Lift...................... 306 5.5.5 Aerodynamic Characteristics for Symmetrical General Loading .................................................... 309 5.6 Determination of Load Distribution on a Given Wing.......... 315 5.6.1 General Theory for Wings of High Aspect Ratio......... 316 5.6.2 General Solution to Prandtl s Integral Equation.......... 318 5.6.3 Load Distribution for Minimum Drag.................... 323 5.7 Swept and Delta Wings........................................... 325 5.7.1 Yawed Wings of Infinite Span............................. 326 5.7.2 Swept Wings of Finite Span............................... 327 5.7.3 Wings of Small Aspect Ratio.............................. 330 5.8 Computational (Panel) Methods for Wings...................... 337 5.9 Exercises.......................................................... 342 CHAPTER 6 Compressible Flow................................................349 6.1 Introduction....................................................... 350 6.2 Isentropic One-Dimensional How............................... 352 6.2.1 Pressure, Density, and Temperature Ratios along a Streamline in Isentropic How........................... 355 6.2.2 Ratio of Areas at Different Sections of the Stream Tube in Isentropic How................................... 359 6.2.3 Velocity along an Isentropic Stream Tube................ 361 6.2.4 Variation of Mass How with Pressure.................... 363 6.3 One-Dimensional How: Weak Waves........................... 375 6.3.1 Speed of Sound (Acoustic Speed)......................... 376 6.4 One-Dimensional How: Plane Normal Shock Waves.......... 380 6.4.1 One-Dimensional Properties of Normal Shock Waves... 381 6.4.2 Pressure-Density Relations across the Shock............. 381 6.4.3 Static Pressure Jump across a Normal Shock............. 383 6.4.4 Density Jump across the Normal Shock.................. 384 6.4.5 Temperature Rise across the Normal Shock.............. 385 6.4.6 Entropy Change across the Normal Shock ............... 385 6.4.7 Mach Number Change across the Normal Shock........ 386 6.4.8 Velocity Change across the Normal Shock............... 386 6.4.9 Total Pressure Change across the Normal Shock......... 388 6.4.10 Pitdt Tube Equation........................................ 389 6.4.11 Converging-Diverging Nozzle Operations................ 391 6.5 Mach Waves and Shock Waves in Two-Dimensional How .... 395 6.6 Mach Waves...................................................... 396 6.6.1 Mach Wave Reflection..................................... 404 6.6.2 Mach Wave Interference................................... 407 6.7 ShockWaves...................................................... 407 6.7.1 Plane Oblique Shock Relations ........................... 407 6.7.2 Shock Polar................................................. 412 6.7.3 Two-Dimensional Supersonic How Past a Wedge....... 419 6.8 Exercises.......................................................... 422 CHAPTER 7 Airfoils and Wings in Compressible Flow.......................427 7.1 Wings in Compressible How..................................... 427 7.1.1 Transonic How: The Critical Mach Number............. 427 7.1.2 Subcritical How: The Small-Perturbation Theory (Prandtl-Glauert Rule)..................................... 431 7.1.3 Supersonic Linearized Theory (Ackeret s Rule) ......... 446 7.1.4 Other Aspects of Supersonic Wings...................... 470 7.2 Exercises.......................................................... 476 CHAPTER 8 Viscous Row and Boundary Layers..............................479 8.1 Introduction....................................................... 479 8.2 Boundary-Layer Theory.......................................... 484 8.2.1 Blasius s Solution.......................................... 485 8.2.2 Definitions of Boundary-Layer Thickness................ 487 8.2.3 Skin-Friction Drag......................................... 491 8.2.4 Laminar Boundary-Layer Thickness along a Flat Plate........................................................ 495 8.2.5 Solving the General Case.................................. 496 8.3 Boundary-Layer Separation...................................... 498 8.3.1 Separation Bubbles ........................................ 500 8.4 Flow Past Cylinders and Spheres................................ 501 8.4.1 Turbulence on Spheres..................................... 507 8.4.2 Golf Balls................................................... 509 8.4.3 Cricket Balls ............................................... 509 8.5 The Momentum-Integral Equation............................... 511 8.5.1 An Approximate Velocity Profile for the Laminar Boundary Layer............................................ 515 8.6 Approximate Methods for a Boundary Layer on a Flat Plate with Zero Pressure Gradient..................................... 519 8.6.1 Simplified Form of the Momentum-Integral Equation.................................................... 519 8.6.2 Rate of Growth of a Laminar Boundary Layer on aFlatPlate................................................. 520 8.6.3 Drag Coefficient for a Flat Plate of Streamwise Length L with a Wholly Laminar Boundary Layer............... 520 8.6.4 Turbulent Velocity Profile................................. 521 8.6.5 Rate of Growth of a Turbulent Boundary Layer on a Hat Plate................................................. 523 8.6.6 Drag Coefficient for a Hat Plate with a Wholly Turbulent Boundary Layer................................ 527 8.6.7 Conditions at Transition................................... 528 8.6.8 Mixed Boundary-Layer How on a Hat Plate with Zero Pressure Gradient.......................................... 529 8.7 Additional Examples of the Momentum-Integral Equation .... 534 8.8 Laminar-Turbulent Transition.................................... 538 8.9 The Physics of Turbulent Boundary Layers..................... 545 8.9.1 Reynolds Averaging and Turbulent Stress................ 545 8.9.2 Boundary-Layer Equations for Turbulent Hows......... 548 8.9.3 Eddy Viscosity............................................. 549 8.9.4 Prandtl s Mixing-Length Theory of Turbulence.......... 553 8.9.5 Regimes of Turbulent Wall How.......................... 554 8.9.6 Formulae for Local Skin-Friction Coefficient and Drag................................................... 556 8.9.7 Distribution of Reynolds Stresses and Turbulent Kinetic Energy across the Boundary Layer.............. 558 8.9.8 Turbulence Structures in the Near-Wall Region.......... 558 8.10 Computational Methods.......................................... 565 8.10.1 Methods Based on the Momentum-Integral Equation .. 565 8.10.2 Transition Prediction..................................... 569 8.10.3 Computational Solution for the Laminar Boundary-Layer Equations.............................. 570 8.10.4 Computational Solution for Turbulent Boundary Layers..................................................... 575 8.10.5 Zero-Equation Methods.................................. 576 8.10.6 k - e: A Typical Two-Equation Method................. 577 8.10.7 Large-Eddy Simulation .................................. 579 8.11 Estimation of Profile Drag from the Velocity Profile in a Wake ......................................................... 581 8.11.1 Momentum-Integral Expression for the Drag of a Two-Dimensional Body................................ 581 8.11.2 Jones s Wake Traverse Method for Determining Profile Drag............................................... 582 8.11.3 Growth Rate of a Two-Dimensional Wake Using the General Momentum-Integral Equation.................. 584 8.12 Some Boundary-Layer Effects in Supersonic Flow............. 587 8.12.1 Near-Normal Shock Interaction with the Laminar Boundary Layer.......................................... 588 8.12.2 Near-Normal Shock Interaction with the Turbulent Boundary Layer.......................................... 589 8.12.3 Shock-Wave/Boundary-Layer Interaction in Supersonic Row ......................................... 590 8.13 Exercises.......................................................... 598 CHAPTER 9 Flow Control and Wing Design...................................601 9.1 Introduction....................................................... 601 9.2 Maximizing Lift for Single-Element Airfoils................... 602 9.3 Multi-Element Airfoils........................................... 608 9.3.1 The Slat Effect............................................. 611 9.3.2 The Flap Effect............................................. 612 9.3.3 Off-the-Surface Recovery................................. 612 9.3.4 Fresh Boundary-Layer Effect............................. 614 9.3.5 The Gurney Flap........................................... 615 9.3.6 Movable Flaps: Artificial Bird Feathers.................. 619 9.4 Boundary Layer Control Prevention to Separation ............. 621 9.4.1 Boundary-Layer Suction................................... 622 9.4.2 Control by Tangential Blowing............................ 623 9.4.3 Other Methods of Separation Control..................... 630 9.5 Reduction of Skin-Friction Drag................................. 631 9.5.1 Laminar Flow Control by Boundary-Layer Suction..... 631 9.5.2 Compliant Walls: Artificial Dolphin Skins............... 633 9.5.3 Riblets...................................................... 636 9.6 Reduction of Form Drag ......................................... 638 9.7 Reduction of Induced Drag....................................... 639 9.8 Reduction of Wave Drag......................................... 642 CHAPTER 10 Propulsion Devices............................................... 645 10.1 Froude s Momentum Theory of Propulsion..................... 645 10.2 Airscrew Coefficients............................................. 652 10.2.1 Thrust Coefficient........................................ 652 10.2.2 Torque Coefficient........................................ 654 10.2.3 Efficiency................................................. 654 10.2.4 Power Coefficient ........................................ 654 10.2.5 Activity Factor............................................ 655 10.3 Airscrew Pitch.................................................... 659 10.3.1 Geometric Pitch.......................................... 659 10.3.2 Effect of Geometric Pitch on Airscrew Performance... 660 10.3.3 Experimental Mean Pitch................................ 662 10.4 Blade-Element Theory ........................................... 662 10.4.1 Vortex System of an Airscrew........................... 662 10.4.2 Performance of a Blade Element........................ 664 10.5 The Momentum Theory Applied to the Helicopter Rotor...... 671 10.5.1 Actuator Disc in Hovering Flight........................ 671 10.5.2 Vertical Climbing Flight................................. 672 10.5.3 Slow, Powered Descending Flight....................... 673 10.5.4 Translational Helicopter Flight.......................... 673 10.6 The Rocket Motor................................................ 675 10.6.1 Free Motion of a Rocket-Propelled Body............... 677 10.7 The Hovercraft.................................................... 682 10.8 Exercises.......................................................... 685 Appendix A: Symbols and Notation................................................. 689 Appendix B........................................................................... 695 Appendix C: A Solution of Integrals of the Type of Glauert s Integral............701 Appendix D: Conversion of Imperial Units to Systeme International (SI) Units...............................................705 Bibliography.........................................................................707 Index.................................................................................715
any_adam_object 1
building Verbundindex
bvnumber BV040112439
classification_rvk ZO 7230
ctrlnum (OCoLC)815882604
(DE-599)BVBBV040112439
discipline Verkehr / Transport
edition 6. ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01506nam a2200397 c 4500</leader><controlfield tag="001">BV040112439</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170619 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">120420s2013 xx ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBB217124</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080966328</subfield><subfield code="9">978-0-08-096632-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080966322</subfield><subfield code="9">0-08-096632-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)815882604</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040112439</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-898</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZO 7230</subfield><subfield code="0">(DE-625)157840:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Aerodynamics for engineering students</subfield><subfield code="c">E. L. Houghton ...</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">6. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Elsevier</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 724 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 707 - 713</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aerodynamics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Aerodynamik</subfield><subfield code="0">(DE-588)4000589-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Aerodynamik</subfield><subfield code="0">(DE-588)4000589-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Houghton, Edward L.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=024968738&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024968738</subfield></datafield></record></collection>
genre (DE-588)4123623-3 Lehrbuch gnd-content
genre_facet Lehrbuch
id DE-604.BV040112439
illustrated Illustrated
indexdate 2024-12-24T02:39:09Z
institution BVB
isbn 9780080966328
0080966322
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-024968738
oclc_num 815882604
open_access_boolean
owner DE-634
DE-83
DE-29T
DE-573
DE-898
DE-BY-UBR
owner_facet DE-634
DE-83
DE-29T
DE-573
DE-898
DE-BY-UBR
physical XVI, 724 S. Ill., graph. Darst.
publishDate 2013
publishDateSearch 2013
publishDateSort 2013
publisher Elsevier
record_format marc
spellingShingle Aerodynamics for engineering students
Aerodynamics
Aerodynamik (DE-588)4000589-6 gnd
subject_GND (DE-588)4000589-6
(DE-588)4123623-3
title Aerodynamics for engineering students
title_auth Aerodynamics for engineering students
title_exact_search Aerodynamics for engineering students
title_full Aerodynamics for engineering students E. L. Houghton ...
title_fullStr Aerodynamics for engineering students E. L. Houghton ...
title_full_unstemmed Aerodynamics for engineering students E. L. Houghton ...
title_short Aerodynamics for engineering students
title_sort aerodynamics for engineering students
topic Aerodynamics
Aerodynamik (DE-588)4000589-6 gnd
topic_facet Aerodynamics
Aerodynamik
Lehrbuch
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024968738&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT houghtonedwardl aerodynamicsforengineeringstudents