Time reversibility, computer simulation, algorithms, chaos

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hoover, William G. (VerfasserIn), Hoover, Carol G. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Singapore [u.a.] World Scientific 2012
Ausgabe:2. ed.
Schriftenreihe:Advanced series in nonlinear dynamics 13
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV040108723
003 DE-604
005 20140623
007 t|
008 120419s2012 xx ad|| |||| 00||| eng d
020 |a 9789814383165  |9 978-981-4383-16-5 
020 |a 9814383163  |9 981-4383-16-3 
035 |a (OCoLC)796207808 
035 |a (DE-599)BVBBV040108723 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-355  |a DE-19 
084 |a SK 870  |0 (DE-625)143265:  |2 rvk 
084 |a ST 600  |0 (DE-625)143681:  |2 rvk 
084 |a UG 3900  |0 (DE-625)145629:  |2 rvk 
100 1 |a Hoover, William G.  |e Verfasser  |4 aut 
245 1 0 |a Time reversibility, computer simulation, algorithms, chaos  |c William Graham Hoover ; Carol Griswold Hoover 
250 |a 2. ed. 
264 1 |a Singapore [u.a.]  |b World Scientific  |c 2012 
300 |a XXIV, 401 S.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Advanced series in nonlinear dynamics  |v 13 
650 0 7 |a Computersimulation  |0 (DE-588)4148259-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Nichtlineare Optimierung  |0 (DE-588)4128192-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Nichtlineare Optimierung  |0 (DE-588)4128192-5  |D s 
689 0 1 |a Computersimulation  |0 (DE-588)4148259-1  |D s 
689 0 |5 DE-604 
700 1 |a Hoover, Carol G.  |e Verfasser  |4 aut 
830 0 |a Advanced series in nonlinear dynamics  |v 13  |w (DE-604)BV004464593  |9 13 
856 4 2 |m Digitalisierung UB Regensburg  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024965122&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-024965122 

Datensatz im Suchindex

DE-19_call_number 1705/UG 3900 H789(2)
DE-19_location 95
DE-BY-UBM_katkey 4691925
DE-BY-UBM_media_number 41620563550014
_version_ 1823055112445100032
adam_text Contents Preface vii Preface to the First Edition xi Glossary of Technical Terms xxi 1. Time Reversibility, Computer Simulation, Algorithms, Chaos 1 1.1 Microscopic Reversibility; Macroscopic Irreversibili ty ... 1 1.2 Time Reversibility of Irreversible Processes ........ 6 1.3 Classical Microscopic and Macroscopic Simulation .... 8 1.4 Continuity, Information, and Bit Reversibility ....... 10 1.5 Instability and Chaos .................... 11 1.6 Simple Explanations of Complex Phenomena ....... 13 1.7 The Paradox: Irreversibility from Reversible Dynamics . . 15 1.8 Algorithm: Fourth-Order Runge-Kutta Integrator .... 16 1.9 Example Problems ...................... 20 1.9.1 Equilibrium Baker Map ............... 21 1.9.2 Equilibrium Galton Board ............. 25 1.9.3 Equilibrium Hookean Pendulum .......... 29 1.9.4 Nose-Hoover Oscillator with a Temperature Gradient ....................... 32 1.10 Summary and Notes ..................... 36 1.10.1 Notes and References ................ 37 2. Time-Reversibility in Physics and Computation 39 2.1 Introduction .......................... 39 2.2 Time Reversibility ...................... 41 xvi Time Reversibility, Computer Simulation, Algorithms, Chaos 2.3 Levesque and Verlet s Bit-Reversible Algorithm ...... 44 2.4 Lagrangian and Hamiltonian Mechanics .......... 46 2.5 Liouville s Incompressible Theorem ............. 49 2.6 What Is Macroscopic Thermodynamics? .......... 50 2.7 First and Second Laws of Thermodynamics ........ 52 2.8 Temperature, Zeroth Law, Reservoirs, Thermostats .... 54 2.9 Irreversibility from Stochastic Irreversible Equations ... 58 2.10 Irreversibility from Time-Reversible Equations? ...... 60 2.11 An Algorithm Implementing Bit-Reversible Dynamics . . 61 2.12 Example Problems ...................... 67 2.12.1 Time-Reversible Dissipative Map ......... 68 2.12.2 A Smooth-Potential Galton Board ......... 73 2.13 Summary ........................... 77 2.13.1 Notes and References ................ 78 3. Gibbs Statistical Mechanics 81 3.1 Scope and History ...................... 81 3.2 Formal Structure of Gibbs Statistical Mechanics ..... 83 3.3 Initial Conditions, Boundary Conditions, Ergodicity ... 86 3.4 From Hamiltonian Dynamics to Gibbs Probability .... 89 3.5 From Gibbs Probability to Thermodynamics ....... 90 3.6 Pressure and Energy from Gibbs Canonical Ensemble . . 92 3.7 Gibbs Entropy versus Boltzmann s Entropy ........ 93 3.8 Number-Dependence and Thermodynamic Fluctuations . 96 3.9 Green and Kubo s Linear-Response Theory ........ 97 3.10 An Algorithm for Local Smooth-Particle Averages .... 99 3.11 Example Problems ...................... 103 3.11.1 Quasiharmonic Thermodynamics ......... 104 3.11.2 Hard-Disk and Hard-Sphere Thermodynamics . . 106 3.11.3 Time-Reversible Confined Free Expansion .... 108 3.12 Summary ........................... Ill 3.12.1 Notes and References ................ 112 4. Irreversibility in Real Life 113 4.1 Introduction .......................... 113 4.2 Phenomenology — the Linear Dissipative Laws ...... 116 4.3 Microscopic Basis of the Irreversible Linear Laws ..... 117 4.4 Solving the Linear Macroscopic Equations ......... 119 Contents xvii 4.5 Nonequilibrium Entropy Changes .............. 120 4.6 Fluctuations and Nonequilibrium States .......... 123 4.7 Deviations from the Phenomenological Linear Laws .... 124 4.8 Causes of Irreversibility à la Boltzmann and Lyapunov . . 126 4.9 Rayleigh-Bénard Algorithm with Atomistic Flow ..... 128 4.10 Rayleigh-Bénard Algorithm for a Continuum ....... 135 4.11 Three Rayleigh-Bénard Example Problems ........ 140 4.11.1 Rayleigh-Bénard Flow via Lorenz Attractor . . . 142 4.11.2 Rayleigh-Bénard Flow with Continuum Mechanics 144 4.11.3 Rayleigh-Bénard Flow with Molecular Dynamics . 154 4.12 Summary ........................... 159 4.12.1 Notes and References ................ 160 5. Microscopic Computer Simulation 163 5.1 Introduction .......................... 163 5.2 Integrating the Motion Equations .............. 164 5.3 Interpretation of Results ................... 165 5.4 Control of a Falling Particle ................. 168 5.5 Second Law of Thermodynamics .............. 176 5.6 Simulating Shear Flow and Heat Flow ........... 177 5.7 Shockwaves .......................... 181 5.8 Algorithm for Periodic Shear Flow with Doll s Tensor . . 184 5.9 Example Problems ...................... 188 5.9.1 Isokinetic Nonequilibrium Galton Board ..... 189 5.9.2 Heat-Conducting One-Dimensional Oscillator . . . 192 5.9.3 Many-Body Heat Flow ............... 195 5.10 Summary ........................... 196 5.10.1 Notes and References ................ 197 6. Shockwaves Revisited 199 6.1 Introduction .......................... 199 6.2 Equation of State Information from Shockwaves ...... 201 6.3 Shockwave Conditions for Molecular Dynamics ...... 203 6.4 Shockwave Stability ..................... 206 6.5 Thermodynamic Variables .................. 214 6.6 Shockwave Profiles from Continuum Mechanics ...... 215 6.6.1 Shockwave Profile with Shear Viscosity ...... 217 xviii Time Reversibility, Computer Simulation, Algorithms, Chaos 6.6.2 Shockwave Profile with Viscosity and Conductivity ..................... 220 6.6.3 Shockwave Profiles with Tensor Temperatures . . 222 6.6.4 Flow Algorithm with Maxwell-Cattaneo Time Delays ..................... 223 6.7 Comparing Model Profiles with Molecular Dynamics . . . 229 6.8 Lyapunov Instability in Strong Shockwaves ........ 232 6.9 Summary ........................... 238 6.9.1 Notes and References ................ 238 7. Macroscopic Computer Simulation 241 7.1 Introduction .......................... 241 7.2 Continuity and Coordinate Systems ............ 243 7.3 Macroscopic Flow Variables ................. 245 7.4 Finite-Difference Methods .................. 246 7.5 Finite-Element Methods ................... 248 7.6 Smooth Particle Applied Mechanics [SPAM] ........ 251 7.7 A SPAM Algorithm for Rayleigh-Bénard Convection . . . 255 7.7.1 Initial Conditions .................. 255 7.7.2 SPAM Evaluation of the Particle Densities .... 257 7.7.3 SPAM Evaluation of {Vu} and {VT} ...... 258 7.7.4 SPAM Evaluation of the Constitutive Relations . 260 7.8 Applications of SPAM to Rayleigh-Bénard Flows ..... 262 7.8.1 SPAM with and without a Core Potential ..... 266 7.8.2 SPAM and Kinetic-Energy Fluctuations ...... 268 7.9 Summary ........................... 271 7.9.1 Notes and References ................ 271 8. Chaos, Lyapunov Instability, Fractals 273 8.1 Introduction .......................... 273 8.2 Continuum Mathematics ................... 277 8.3 Chaos ............................. 278 8.4 The Spectrum of Lyapunov Exponents ........... 279 8.5 Fractal Dimensions ...................... 284 8.6 A Simple Ergodic Fractal .................. 288 8.7 Fractal Attractor-Repeller Pairs .............. . 290 8.8 A Global Second Law from Reversible Chaos ....... 292 8.9 Coarse-Grained and Fine-Grained Entropy ......... 297 Contents xix 8.10 Oscillators, Lyapunov Algorithms, Fractal Dimensions . . 298 8.10.1 A Thought-Provoking Oscillator Exercise ..... 298 8.10.2 Doubly-Thermostated Oscillator; Lyapunov Spectra ........................ 300 8.10.3 Lyapunov Spectra for a Chaotic Double Pendulum ...................... 310 8.10.4 Coarse-Grained Galton Board Entropy ...... 312 8.10.5 Color Conductivity ................. 313 8.11 Summary ........................... 316 8.11.1 Notes and References ................ 317 9. Resolving the Reversibility Paradox 319 9.1 Introduction .......................... 319 9.2 Irreversibility from Boltzmann s Kinetic Theory ...... 320 9.3 Boltzmann s Equation Today ................ 325 9.4 Gibbs Statistical Mechanics ................. 327 9.5 Jaynes Information Theory ................. 330 9.6 Green and Kubo s Linear Response Theory ........ 332 9.7 Thermomechanics ...................... 334 9.8 The Delay Times Separating Causes from their Effects . . 336 9.9 A Fluctuation Theorem ................... 337 9.10 Are Initial Conditions Relevant? .............. 340 9.11 Constrained Hamiltonian Ensembles ............ 343 9.12 Anosov Systems and Sinai-Ruelle-Bowen Measures .... 344 9.13 Trajectories versus Distribution Functions ......... 347 9.14 Are Maps Relevant? ..................... 348 9.15 Irreversibility <— Time-Reversible Motion Equations . . 351 9.16 Boltzmann-Equation Shockwave-Structure Algorithm . . . 353 9.17 Summary ........................... 359 9.17.1 Notes and References ................ 361 10. Afterword — a Research Perspective 363 10.1 Introduction .......................... 363 10.2 What do We Know? ..................... 364 10.3 Why Reversibility is Still a Problem ............ 366 10.4 Change and Innovation ................... 369 10.5 Role of Examples ....................... 372 10.6 Role of Chaos and Fractals ................. 374 xx Time Reversibility, Computer Simulation, Algorithms, Chaos 10.7 Role of Mathematics .............. ....... 374 10.8 Remaining Puzzles ...................... 376 10.9 Summary ........................... 379 10.10 Acknowledgments ....................... 383 Bibliography 387 Index 397
any_adam_object 1
author Hoover, William G.
Hoover, Carol G.
author_facet Hoover, William G.
Hoover, Carol G.
author_role aut
aut
author_sort Hoover, William G.
author_variant w g h wg wgh
c g h cg cgh
building Verbundindex
bvnumber BV040108723
classification_rvk SK 870
ST 600
UG 3900
ctrlnum (OCoLC)796207808
(DE-599)BVBBV040108723
discipline Physik
Informatik
Mathematik
edition 2. ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01730nam a2200421 cb4500</leader><controlfield tag="001">BV040108723</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140623 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">120419s2012 xx ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814383165</subfield><subfield code="9">978-981-4383-16-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814383163</subfield><subfield code="9">981-4383-16-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)796207808</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040108723</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 870</subfield><subfield code="0">(DE-625)143265:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 600</subfield><subfield code="0">(DE-625)143681:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 3900</subfield><subfield code="0">(DE-625)145629:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hoover, William G.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Time reversibility, computer simulation, algorithms, chaos</subfield><subfield code="c">William Graham Hoover ; Carol Griswold Hoover</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore [u.a.]</subfield><subfield code="b">World Scientific</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIV, 401 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Advanced series in nonlinear dynamics</subfield><subfield code="v">13</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computersimulation</subfield><subfield code="0">(DE-588)4148259-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Optimierung</subfield><subfield code="0">(DE-588)4128192-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare Optimierung</subfield><subfield code="0">(DE-588)4128192-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Computersimulation</subfield><subfield code="0">(DE-588)4148259-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hoover, Carol G.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Advanced series in nonlinear dynamics</subfield><subfield code="v">13</subfield><subfield code="w">(DE-604)BV004464593</subfield><subfield code="9">13</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=024965122&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024965122</subfield></datafield></record></collection>
id DE-604.BV040108723
illustrated Illustrated
indexdate 2025-02-03T17:28:01Z
institution BVB
isbn 9789814383165
9814383163
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-024965122
oclc_num 796207808
open_access_boolean
owner DE-355
DE-BY-UBR
DE-19
DE-BY-UBM
owner_facet DE-355
DE-BY-UBR
DE-19
DE-BY-UBM
physical XXIV, 401 S. Ill., graph. Darst.
publishDate 2012
publishDateSearch 2012
publishDateSort 2012
publisher World Scientific
record_format marc
series Advanced series in nonlinear dynamics
series2 Advanced series in nonlinear dynamics
spellingShingle Hoover, William G.
Hoover, Carol G.
Time reversibility, computer simulation, algorithms, chaos
Advanced series in nonlinear dynamics
Computersimulation (DE-588)4148259-1 gnd
Nichtlineare Optimierung (DE-588)4128192-5 gnd
subject_GND (DE-588)4148259-1
(DE-588)4128192-5
title Time reversibility, computer simulation, algorithms, chaos
title_auth Time reversibility, computer simulation, algorithms, chaos
title_exact_search Time reversibility, computer simulation, algorithms, chaos
title_full Time reversibility, computer simulation, algorithms, chaos William Graham Hoover ; Carol Griswold Hoover
title_fullStr Time reversibility, computer simulation, algorithms, chaos William Graham Hoover ; Carol Griswold Hoover
title_full_unstemmed Time reversibility, computer simulation, algorithms, chaos William Graham Hoover ; Carol Griswold Hoover
title_short Time reversibility, computer simulation, algorithms, chaos
title_sort time reversibility computer simulation algorithms chaos
topic Computersimulation (DE-588)4148259-1 gnd
Nichtlineare Optimierung (DE-588)4128192-5 gnd
topic_facet Computersimulation
Nichtlineare Optimierung
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024965122&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV004464593
work_keys_str_mv AT hooverwilliamg timereversibilitycomputersimulationalgorithmschaos
AT hoovercarolg timereversibilitycomputersimulationalgorithmschaos