Lie superalgebras and enveloping algebras

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Musson, Ian M. 1953- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Providence, RI American Math. Soc. 2012
Schriftenreihe:Graduate studies in mathematics 131
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV040095710
003 DE-604
005 20210118
007 t|
008 120412s2012 xxud||| |||| 00||| eng d
010 |a 2011044064 
020 |a 9780821868676  |c alk. paper  |9 978-0-8218-6867-6 
035 |a (OCoLC)794590510 
035 |a (DE-599)BVBBV040095710 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
044 |a xxu  |c US 
049 |a DE-384  |a DE-824  |a DE-19  |a DE-188  |a DE-11  |a DE-355 
050 0 |a QA252.3 
082 0 |a 510 
084 |a SK 340  |0 (DE-625)143232:  |2 rvk 
100 1 |a Musson, Ian M.  |d 1953-  |e Verfasser  |0 (DE-588)173254004  |4 aut 
245 1 0 |a Lie superalgebras and enveloping algebras  |c Ian M. Musson 
264 1 |a Providence, RI  |b American Math. Soc.  |c 2012 
300 |a XX, 488 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Graduate studies in mathematics  |v 131 
650 4 |a Lie superalgebras 
650 4 |a Universal enveloping algebras 
650 7 |a Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Universal enveloping (super)algebras  |2 msc 
650 7 |a Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Representations, algebraic theory (weights)  |2 msc 
650 7 |a Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Simple, semisimple, reductive (super)algebras  |2 msc 
650 7 |a Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Root systems  |2 msc 
650 7 |a Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Exceptional (super)algebras  |2 msc 
650 7 |a Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Solvable, nilpotent (super)algebras  |2 msc 
650 7 |a Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Automorphisms, derivations, other operators  |2 msc 
650 7 |a Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Homological methods in Lie (super)algebras  |2 msc 
650 7 |a Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Cohomology of Lie (super)algebras  |2 msc 
650 7 |a Associative rings and algebras -- Rings and algebras arising under various constructions -- Universal enveloping algebras of Lie algebras  |2 msc 
650 0 7 |a Lie-Superalgebra  |0 (DE-588)4304027-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Universelle Einhüllende  |0 (DE-588)4792961-3  |2 gnd  |9 rswk-swf 
689 0 0 |a Lie-Superalgebra  |0 (DE-588)4304027-5  |D s 
689 0 1 |a Universelle Einhüllende  |0 (DE-588)4792961-3  |D s 
689 0 |5 DE-604 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-0-8218-8504-8 
830 0 |a Graduate studies in mathematics  |v 131  |w (DE-604)BV009739289  |9 131 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024952384&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-024952384 

Datensatz im Suchindex

DE-19_call_number 1601/SK 340 M989
DE-19_location 95
DE-BY-UBM_katkey 4647251
DE-BY-UBM_media_number 41618246580014
_version_ 1823055049609183232
adam_text Titel: Lie superalgebras and enveloping algebras Autor: Musson, Ian M Jahr: 2012 Contents Preface xv Chapter 1. Introduction 1 §1.1. Basic Definitions 1 §1.2. Simple Lie Superalgebras 3 §1.3. Classification of Classical Simple Lie Superalgebras 8 §1.4. Exercises 9 Chapter 2. The Classical Simple Lie Superalgebras. I 11 §2.1. Introduction 11 §2.2. Lie Superalgebras of Type A(m,n) 12 §2.3. The Orthosymplectic Lie Superalgebras 14 2.3.1. The Lie Superalgebras 0Sp(2m + 1,2ra) 15 2.3.2. The Lie Superalgebras osp(2m, 2n) 16 2.3.3. The Lie Superalgebras 0Sp(2,2n - 2) 16 §2.4. The Strange Lie Superalgebras p(n) and q(n) 17 2.4.1. The Lie Superalgebras p(n) 17 2.4.2. The Lie Superalgebras q(n) 17 §2.5. Rationality Issues 19 §2.6. The Killing Form 19 §2.7. Exercises 20 Chapter 3. Borel Subalgebras and Dynkin-Kac Diagrams 25 §3.1. Introduction 25 §3.2. Cartan Subalgebras and Borel-Penkov-Serganova Subalgebras 28 §3.3. Flags, Shuffles, and Borel Subalgebras 30 §3.4. Simple Roots and Dynkin-Kac Diagrams 38 3.4.1. Definitions and Low Rank Cases 38 3.4.2. From Borel Subalgebras and Shuffles to Simple Roots 39 3.4.3. From Simple Roots to Diagrams 41 3.4.4. Back from Diagrams to Shuffles and Simple Roots 44 3.4.5. Distinguished Simple Roots and Diagrams 47 3.4.6. Cartan Matrices 48 3.4.7. Connections with Representation Theory 50 §3.5. Odd Reflections 51 §3.6. Borel Subalgebras in Types A(l,l), p(n), and q(n) 55 3.6.1. Lie Superalgebras of Type A(1,1) 55 3.6.2. The Lie Superalgebra p(n) 58 3.6.3. The Lie Superalgebra q(n) 63 §3.7. Exercises 64 Chapter 4. The Classical Simple Lie Superalgebras. II 69 §4.1. Introduction and Preliminaries 69 §4.2. The Lie Superalgebras D(2,1; a) 71 §4.3. Alternative Algebras 75 §4.4. Octonions and the Exceptional Lie Superalgebra (2(3) 78 §4.5. Fierz Identities and the Exceptional Lie Superalgebra F(4) 82 §4.6. Borel Subalgebras versus BPS-subalgebras 88 §4.7. Exercises 88 Chapter 5. Contragredient Lie Superalgebras 95 §5.1. Realizations and the Algebras q(A, t) 96 §5.2. Contragredient Lie Superalgebras: First Results 101 5.2.1. The Center, Root Space Decomposition, and Antiautomorphism 101 5.2.2. Equivalent Matrices 104 5.2.3. Integrability and Kac-Moody Superalgebras 107 5.2.4. Serre Relations 108 §5.3. Identifying Contragredient Lie Superalgebras 109 5.3.1. The Exceptional Lie Superalgebras 110 5.3.2. The Nonexceptional Lie Superalgebras 111 §5.4. Invariant Bilinear Forms on Contragredient Lie Superalgebras 112 5.4.1. The Invariant Form 112 §5.5. Automorphisms of Contragredient Lie Superalgebras 115 5.5.1. Semisimple Lie Algebras 115 5.5.2. Automorphisms Preserving Cartan and Borel Subalgebras 116 5.5.3. Diagram and Diagonal Automorphisms 119 5.5.4. The Structure of H and (Aut g)° 120 5.5.5. More on Diagram Automorphisms 121 5.5.6. Outer Automorphisms 124 5.5.7. Automorphisms of Type A Lie Superalgebras 125 §5.6. Exercises 127 Chapter 6. The PBW Theorem and Filtrations on Enveloping Algebras 131 §6.1. The Poincare-Birkhoff-Witt Theorem 131 §6.2. Free Lie Superalgebras and Witt s Theorem 135 §6.3. Filtered and Graded Rings 136 §6.4. Supersymmetrization 138 §6.5. The Clifford Filtration 142 §6.6. The Rees Ring and Homogenized Enveloping Algebras 143 §6.7. Exercises 145 Chapter 7. Methods from Ring Theory 147 §7.1. Introduction and Review of Basic Concepts 147 7.1.1. Motivation and Hypothesis 147 7.1.2. Bimodules 148 7.1.3. Prime and Primitive Ideals 149 7.1.4. Localization 150 §7.2. Torsion-Free Bimodules, Composition Series, and Bonds 152 §7.3. Gelfand-Kirillov Dimension 154 §7.4. Restricted Extensions 161 7.4.1. Main Results 161 7.4.2. Applications 165 §7.5. Passing Properties over Bonds 166 §7.6. Prime Ideals in Z2-graded Rings and Finite Ring Extensions 170 7.6.1. Z2-graded Rings 170 7.6.2. Lying Over and Direct Lying Over 172 7.6.3. Further Results 177 §7.7. Exercises 178 Chapter 8. Enveloping Algebras of Classical Simple Lie Superalgebras 181 §8.1. Root Space and Triangular Decompositions 181 §8.2. Verma Modules and the Category O 184 8.2.1. Verma Modules 184 8.2.2. Highest Weight Modules in the Type I Case 187 8.2.3. The Category O 188 8.2.4. Central Characters and Blocks 189 8.2.5. Contravariant Forms 190 8.2.6. Base Change 192 8.2.7. Further Properties of the Category O 193 §8.3. Basic Classical Simple Lie Superalgebras and a Hypothesis 195 8.3.1. Basic Lie Superalgebras 195 8.3.2. A Hypothesis 197 §8.4. Partitions and Characters 199 §8.5. The Casimir Element 201 §8.6. Changing the Borel Subalgebra 204 §8.7. Exercises 205 Chapter 9. Verma Modules. I 207 §9.1. Introduction 207 §9.2. Universal Verma Modules and Sapovalov Elements 208 9.2.1. Basic Results and Hypotheses 208 9.2.2. Universal Verma Modules 210 9.2.3. Sapovalov Elements for Nonisotropic Roots 210 9.2.4. Sapovalov Elements for Isotropic Roots 212 §9.3. Verma Module Embeddings 213 9.3.1. Reductive Lie Algebras 213 9.3.2. Contragredient Lie Superalgebras 214 9.3.3. Typical Verma Modules 217 §9.4. Construction of Sapovalov Elements 218 §9.5. Exercises 221 Chapter 10. Verma Modules. II 223 §10.1. The Sapovalov Determinant 223 §10.2. The Jantzen Filtration 227 10.2.1. The p-adic Valuation of a Certain Determinant 227 10.2.2. The Jantzen Filtration 228 10.2.3. Evaluation of the Sapovalov Determinant 229 §10.3. The Jantzen Sum Formula 232 §10.4. Further Results 233 10.4.1. The Typical Case 233 10.4.2. Reductive Lie Algebras 233 10.4.3. Restriction of Verma Modules to go 234 §10.5. Exercises 235 Chapter 11. Schur-Weyl Duality 239 §11.1. The Double Commutant Theorem 239 §11.2. Schur s Double Centralizer Theorem 240 §11.3. Diagrams, Tableaux, and Representations of Symmetric Groups 246 §11.4. The Robinson-Schensted-Knuth Correspondence 249 §11.5. The Decomposition of W and a Basis for U 253 §11.6. The Module U as a Highest Weight Module 258 §11.7. The Robinson-Schensted Correspondence 259 §11.8. Exercises 260 Chapter 12. Supersymmetric Polynomials 263 §12.1. Introduction 263 §12.2. The Sergeev-Pragacz Formula 265 §12.3. Super Schur Polynomials and Semistandard Tableaux 272 §12.4. Some Consequences 278 §12.5. Exercises 278 Chapter 13. The Center and Related Topics 281 §13.1. The Harish-Chandra Homomorphism: Introduction 281 §13.2. The Harish-Chandra Homomorphism: Details of the Proof 284 §13.3. The Chevalley Restriction Theorem 293 §13.4. Supersymmetric Polynomials and Generators for I(h) 298 §13.5. Central Characters 299 13.5.1. Equivalence Relations for Central Characters 299 13.5.2. More on Central Characters 302 §13.6. The Ghost Center 304 §13.7. Duality in the Category O 304 §13.8. Exercises 306 Chapter 14. Finite Dimensional Representations of Classical Lie Superalgebras 307 §14.1. Introduction 307 §14.2. Conditions for Finite Dimensionality 308 §14.3. The Orthosymplectic Case 310 14.3.1. Statements of the Results 310 14.3.2. A Special Case 311 14.3.3. The General Case 314 §14.4. The Kac-Weyl Character Formula 316 §14.5. Exercises 317 Chapter 15. Prime and Primitive Ideals in Enveloping Algebras 319 §15.1. The Dixmier-Moeglin Equivalence 320 §15.2. Classical Simple Lie Superalgebras 322 15.2.1. A Theorem of Duflo and Its Superalgebra Analog 322 15.2.2. Type I Lie Superalgebras 323 §15.3. Semisimple Lie Algebras 324 15.3.1. Notation 325 15.3.2. The Characteristic Variety 326 15.3.3. Translation Functors on the Category O 329 15.3.4. Translation Maps on Primitive Ideals 332 15.3.5. Primitive Ideals for Type A Lie Algebras 337 15.3.6. The Poset of Primitive Ideals and the Kazhdan- Lusztig Conjecture 342 15.3.7. The Lie Superalgebra 0Sp(l,2n) 344 §15.4. More on Prime Ideals and Related Topics 346 15.4.1. Strongly Typical Representations, Annihilation, and Separation Theorems 346 15.4.2. Primeness of U(g) 347 15.4.3. The Unique Minimal Prime 348 15.4.4. The Goldie Rank of U(g) 349 15.4.5. Enveloping Algebras of Nilpotent and Solvable Lie Superalgebras 349 §15.5. Exercises 350 Chapter 16. Cohomology of Lie Superalgebras 355 §16.1. Introduction and Preliminaries 355 16.1.1. Complexes and Filtrations 355 §16.2. Spectral Sequences 357 16.2.1. The Spectral Sequence Associated to a Filtered Complex 357 16.2.2. Bounded Filtrations and Convergence 359 §16.3. The Standard Resolution and the Cochain Complex 361 16.3.1. The Standard Resolution 361 16.3.2. The Cochain Complex 363 §16.4. Cohomology in Low Degrees 367 §16.5. The Cup Product 369 16.5.1. Definition and Basic Properties 369 16.5.2. Examples of Cup Products 372 §16.6. The Hochschild-Serre Spectral Sequence 374 §16.7. Exercises 379 Chapter 17. Zero Divisors in Enveloping Algebras 381 §17.1. Introduction 381 §17.2. Derived Functors and Global Dimension 383 §17.3. The Yoneda Product and the Bar Resolution 386 17.3.1. The Yoneda Product 386 17.3.2. The Bar Resolution 387 §17.4. The Lofwall Algebra 389 §17.5. Proof of the Main Results 392 §17.6. Further Homological Results 398 17.6.1. Tor and Homology of Lie Superalgebras 398 17.6.2. The Auslander and Macaulay Conditions 399 §17.7. Exercises 400 Chapter 18. Affine Lie Superalgebras and Number Theory 403 §18.1. Some Identities 403 §18.2. Affine Kac-Moody Lie Superalgebras 405 §18.3. Highest Weight Modules and the Affine Weyl Group 412 §18.4. The Casimir Operator 414 §18.5. Character Formulas 418 §18.6. The Jacobi Triple Product Identity 420 §18.7. Basic Classical Simple Lie Superalgebras 422 §18.8. The Case g= sl(2,1) 425 §18.9. The Case g= osp(3,2) 428 §18.10. Exercises 430 Appendix A. 433 §A.l. Background from Lie Theory 433 A. 1.1. Root Systems 433 A. 1.2. The Weyl Group 434 A. 1.3. Reductive Lie Algebras 435 A.1.4. A Theorem of Harish-Chandra 436 §A.2. Hopf Algebras and Z2-Graded Structures 437 A.2.1. Hopf Algebras 437 A.2.2. Remarks on Z2-Graded Structures: The Rule Of Signs 440 A.2.3. Some Constructions with U(g)-Modules 443 A.2.4. The Supersymmetric and Superexterior Algebras 446 A.2.5. Actions of the Symmetric Group 447 §A.3. Some Ring Theoretic Background 449 A.3.1. The Diamond Lemma 449 A.3.2. Clifford Algebras 452 A.3.3. Ore Extensions 455 §A.4. Exercises 456 Appendix B. 463 Bibliography 471 Index 485
any_adam_object 1
author Musson, Ian M. 1953-
author_GND (DE-588)173254004
author_facet Musson, Ian M. 1953-
author_role aut
author_sort Musson, Ian M. 1953-
author_variant i m m im imm
building Verbundindex
bvnumber BV040095710
callnumber-first Q - Science
callnumber-label QA252
callnumber-raw QA252.3
callnumber-search QA252.3
callnumber-sort QA 3252.3
callnumber-subject QA - Mathematics
classification_rvk SK 340
ctrlnum (OCoLC)794590510
(DE-599)BVBBV040095710
dewey-full 510
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 510 - Mathematics
dewey-raw 510
dewey-search 510
dewey-sort 3510
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03102nam a2200565 cb4500</leader><controlfield tag="001">BV040095710</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210118 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">120412s2012 xxud||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2011044064</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780821868676</subfield><subfield code="c">alk. paper</subfield><subfield code="9">978-0-8218-6867-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)794590510</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040095710</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA252.3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Musson, Ian M.</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)173254004</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lie superalgebras and enveloping algebras</subfield><subfield code="c">Ian M. Musson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, RI</subfield><subfield code="b">American Math. Soc.</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 488 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate studies in mathematics</subfield><subfield code="v">131</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie superalgebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Universal enveloping algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Universal enveloping (super)algebras</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Representations, algebraic theory (weights)</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Simple, semisimple, reductive (super)algebras</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Root systems</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Exceptional (super)algebras</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Solvable, nilpotent (super)algebras</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Automorphisms, derivations, other operators</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Homological methods in Lie (super)algebras</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Cohomology of Lie (super)algebras</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Associative rings and algebras -- Rings and algebras arising under various constructions -- Universal enveloping algebras of Lie algebras</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Superalgebra</subfield><subfield code="0">(DE-588)4304027-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Universelle Einhüllende</subfield><subfield code="0">(DE-588)4792961-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lie-Superalgebra</subfield><subfield code="0">(DE-588)4304027-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Universelle Einhüllende</subfield><subfield code="0">(DE-588)4792961-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-0-8218-8504-8</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate studies in mathematics</subfield><subfield code="v">131</subfield><subfield code="w">(DE-604)BV009739289</subfield><subfield code="9">131</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=024952384&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024952384</subfield></datafield></record></collection>
id DE-604.BV040095710
illustrated Illustrated
indexdate 2025-02-03T17:28:01Z
institution BVB
isbn 9780821868676
language English
lccn 2011044064
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-024952384
oclc_num 794590510
open_access_boolean
owner DE-384
DE-824
DE-19
DE-BY-UBM
DE-188
DE-11
DE-355
DE-BY-UBR
owner_facet DE-384
DE-824
DE-19
DE-BY-UBM
DE-188
DE-11
DE-355
DE-BY-UBR
physical XX, 488 S. graph. Darst.
publishDate 2012
publishDateSearch 2012
publishDateSort 2012
publisher American Math. Soc.
record_format marc
series Graduate studies in mathematics
series2 Graduate studies in mathematics
spellingShingle Musson, Ian M. 1953-
Lie superalgebras and enveloping algebras
Graduate studies in mathematics
Lie superalgebras
Universal enveloping algebras
Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Universal enveloping (super)algebras msc
Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Representations, algebraic theory (weights) msc
Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Simple, semisimple, reductive (super)algebras msc
Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Root systems msc
Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Exceptional (super)algebras msc
Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Solvable, nilpotent (super)algebras msc
Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Automorphisms, derivations, other operators msc
Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Homological methods in Lie (super)algebras msc
Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Cohomology of Lie (super)algebras msc
Associative rings and algebras -- Rings and algebras arising under various constructions -- Universal enveloping algebras of Lie algebras msc
Lie-Superalgebra (DE-588)4304027-5 gnd
Universelle Einhüllende (DE-588)4792961-3 gnd
subject_GND (DE-588)4304027-5
(DE-588)4792961-3
title Lie superalgebras and enveloping algebras
title_auth Lie superalgebras and enveloping algebras
title_exact_search Lie superalgebras and enveloping algebras
title_full Lie superalgebras and enveloping algebras Ian M. Musson
title_fullStr Lie superalgebras and enveloping algebras Ian M. Musson
title_full_unstemmed Lie superalgebras and enveloping algebras Ian M. Musson
title_short Lie superalgebras and enveloping algebras
title_sort lie superalgebras and enveloping algebras
topic Lie superalgebras
Universal enveloping algebras
Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Universal enveloping (super)algebras msc
Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Representations, algebraic theory (weights) msc
Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Simple, semisimple, reductive (super)algebras msc
Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Root systems msc
Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Exceptional (super)algebras msc
Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Solvable, nilpotent (super)algebras msc
Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Automorphisms, derivations, other operators msc
Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Homological methods in Lie (super)algebras msc
Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Cohomology of Lie (super)algebras msc
Associative rings and algebras -- Rings and algebras arising under various constructions -- Universal enveloping algebras of Lie algebras msc
Lie-Superalgebra (DE-588)4304027-5 gnd
Universelle Einhüllende (DE-588)4792961-3 gnd
topic_facet Lie superalgebras
Universal enveloping algebras
Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Universal enveloping (super)algebras
Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Representations, algebraic theory (weights)
Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Simple, semisimple, reductive (super)algebras
Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Root systems
Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Exceptional (super)algebras
Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Solvable, nilpotent (super)algebras
Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Automorphisms, derivations, other operators
Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Homological methods in Lie (super)algebras
Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Cohomology of Lie (super)algebras
Associative rings and algebras -- Rings and algebras arising under various constructions -- Universal enveloping algebras of Lie algebras
Lie-Superalgebra
Universelle Einhüllende
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024952384&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV009739289
work_keys_str_mv AT mussonianm liesuperalgebrasandenvelopingalgebras