Bayesian reasoning and machine learning

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Barber, David 1968- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Cambridge [u.a.] Cambridge Univ. Press 2012
Ausgabe:1. publ.
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a22000002c 4500
001 BV039953933
003 DE-604
005 20150916
007 t|
008 120313s2012 xx ad|| |||| 00||| eng d
020 |a 9780521518147  |c Print  |9 978-0-521-51814-7 
035 |a (OCoLC)778803579 
035 |a (DE-599)BSZ339421207 
040 |a DE-604  |b ger 
041 0 |a eng 
049 |a DE-11  |a DE-91G  |a DE-703  |a DE-824  |a DE-473  |a DE-634  |a DE-20  |a DE-83  |a DE-739  |a DE-706 
084 |a SK 830  |0 (DE-625)143259:  |2 rvk 
084 |a ST 300  |0 (DE-625)143650:  |2 rvk 
084 |a DAT 708f  |2 stub 
084 |a MAT 624f  |2 stub 
100 1 |a Barber, David  |d 1968-  |e Verfasser  |0 (DE-588)1014941148  |4 aut 
245 1 0 |a Bayesian reasoning and machine learning  |c David Barber 
250 |a 1. publ. 
264 1 |a Cambridge [u.a.]  |b Cambridge Univ. Press  |c 2012 
300 |a XXIV, 697 S.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
500 |a Hier auch später erschienene, unveränderte Nachdrucke 
650 4 |a Datenverarbeitung 
650 4 |a Mathematik 
650 0 7 |a Datenaufbereitung  |0 (DE-588)4148865-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Mathematik  |0 (DE-588)4037944-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Maschinelles Lernen  |0 (DE-588)4193754-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Bayes-Verfahren  |0 (DE-588)4204326-8  |2 gnd  |9 rswk-swf 
653 |a Bayesian statistical decision theory / Data processing 
653 |a Machine learning / Mathematics 
689 0 0 |a Bayes-Verfahren  |0 (DE-588)4204326-8  |D s 
689 0 1 |a Datenaufbereitung  |0 (DE-588)4148865-9  |D s 
689 0 |5 DE-604 
689 1 0 |a Maschinelles Lernen  |0 (DE-588)4193754-5  |D s 
689 1 1 |a Mathematik  |0 (DE-588)4037944-9  |D s 
689 1 |5 DE-604 
856 4 2 |m Digitalisierung UB Bamberg  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024811811&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-024811811 

Datensatz im Suchindex

DE-473_call_number 61/SK 830 GA 10520
642/SK 830 GA 10520a
DE-473_location 6
7
DE-BY-TUM_call_number 0104 DAT 708f 2012 B 2083
0303 DAT 708f 2012 L 1101
DE-BY-TUM_katkey 1860159
DE-BY-TUM_location 01
03
DE-BY-TUM_media_number 040071410989
040071470845
040071470834
040071470812
040071470801
040071470798
040071470776
040071470765
040071470754
040071470743
040071470732
040071470721
040071470710
040071470709
040071470696
040071470685
040071470674
040071470663
040071470652
040071470787
040071470823
040071470856
040071470867
DE-BY-UBG_katkey 2896639
DE-BY-UBG_media_number 013901246750
TEMP1959349
_version_ 1824052728958025728
adam_text CONTENTS Preface xv List of notation xx BRMLtoolbox xxi I Inference in probabilistic models 1 Probabilistic reasoning 3 1.1 Probability refresher 1.1.1 Interpreting conditional probability 1.1.2 Probability tables 1.2 Probabilistic reasoning 1.3 Prior, likelihood and posterior 1.3.1 Two dice: what were the individual scores? 1.4 Summary 1.5 Code 1.6 Exercises 2 Basic graph concepts 22 2.1 Graphs 2.2 Numerically encoding graphs 2.2.1 Edge list 2.2.2 Adjacency matrix 2.2.3 Clique matrix 2.3 Summary 2.4 Code 2.5 Exercises 3 Belief networks 29 3.1 The benefits of structure 3.1.1 Modelling independencies 3.1.2 Reducing the burden of specification 3.2 Uncertain and unreliable evidence 3.2.1 Uncertain evidence 3.2.2 Unreliable evidence 3.3 Belief networks 3.3.1 Conditional independence 3.3.2 The impact of collisions 3.3.3 Graphical path manipulations for independence 3.3.4 d-separation 3.3.5 Graphical and distributional in/dependence 3.3.6 Markov equivalence in belief networks 3.3.7 Belief networks have limited expressibility 3.4 Causality 3.4.1 Simpson s paradox 3.4.2 The do-calculus 3.4.3 Influence diagrams and the do-calculus 3.5 Summary 3.6 Code 3.7 Exercises Graphical models 4.1 Graphical models 4.2 Markov networks 4.2.1 Markov properties 4.2.2 Markov random fields 4.2.3 Hammersley-Cliiford theorem 4.2.4 Conditional independence using Markov networks 4.2.5 Lattice models 4.3 Chain graphical models 4.4 Factor graphs 4.4.1 Conditional independence in factor graphs 4.5 Expressiveness of graphical models 4.6 Summary 4.7 Code 4.8 Exercises 58 VI Contents 5 Efficient inference in trees 77 5.1 Marginal inference 5.1.1 Variable elimination in a Markov chain and message passing 5.1.2 The sum-product algorithm on factor graphs 5.1.3 Dealing with evidence 5.1.4 Computing the marginal likelihood 5.1.5 The problem with loops 5.2 Other forms of inference 5.2.1 Max-product 5.2.2 Finding the N most probable states 5.2.3 Most probable path and shortest path 5.2.4 Mixed inference 5.3 Inference in multiply connected graphs 5.3.1 Bucket elimination 5.3.2 Loop-cut conditioning 5.4 Message passing for continuous distributions 5.5 Summary 5.6 Code 5.7 Exercises 6 The junction tree algorithm 6.1 Clustering variables 6.1.1 Reparameterisation 6.2 Clique graphs 6.2.1 Absorption 6.2.2 Absorption schedule on clique trees 6.3 Junction trees 6.3.1 The running intersection property 6.4 Constructing a junction tree for singly connected distributions 6.4.1 Morálisadon 6.4.2 Forming the clique graph 6.4.3 Forming a junction tree from a clique graph 6.4.4 Assigning potentials to cliques 6.5 Junction trees for multiply connected distributions 6.5.1 Triangulation algorithms 6.6 The junction tree algorithm 6.6 Л Remarks on the JTA 102 6.6.2 Computing the normalisation constant of a distribution 6.6.3 The marginal likelihood 6.6.4 Some small JTA examples 6.6.5 Shafer-Shenoy propagation 6.7 Finding the most likely state 6.8 Reabsorption: converting a junction tree to a directed network 6.9 The need for approximations 6.9.1 Bounded width junction trees 6.10 Summary 6.11 Code 6.12 Exercises Making decisions 7.1 Expected utility 7.1.1 Utility of money 7.2 Decision trees 7.3 Extending Bayesian networks for decisions 7.3.1 Syntax of influence diagrams 7.4 Solving influence diagrams 7.4.1 Messages on an ID 7.4.2 Using a junction tree 7.5 Markov decision processes 7.5.1 Maximising expected utility by message passing 7.5.2 Bellman s equation 7.6 Temporally unbounded MDPs 7.6.1 Value iteration 7.6.2 Policy iteration 7.6.3 A curse of dimensionality 7.7 Variational inference and planning 7.8 Financial matters 7.8.1 Options pricing and expected utility 7.8.2 Binomial options pricing model 7.8.3 Optimal investment 7.9 Further topics 7.9.1 Partially observable MDPs 7.9.2 Reinforcement learning 7.10 Summary 7.11 Code 7.12 Exercises 127 Contents VII II Learning in probabilistic models 8 Statistics for machine learning 165 8.1 Representing data 8.1.1 Categorical 8.1.2 Ordinal 8.1.3 Numerical 8.2 Distributions 8.2.1 The Kullback-Leibler divergence KL(q p) 8.2.2 Entropy and information 8.3 Classical distributions 8.4 Multivariate Gaussian 8.4.1 Completing the square 8.4.2 Conditioning as system reversal 8.4.3 Whitening and centring 8.5 Exponential family 8.5.1 Conjugate priors 8.6 Learning distributions 8.7 Properties of maximum likelihood 8.7.1 Training assuming the correct model class 8.7.2 Training when the assumed model is incorrect 8.7.3 Maximum likelihood and the empirical distribution 8.8 Learning a Gaussian 8.8.1 Maximum likelihood training 8.8.2 Bayesian inference of the mean and variance 8.8.3 Gauss-gamma distribution 8.9 Summary 8.10 Code 8.11 Exercises 9 Learning as inference 199 9.1 Learning as inference 9.1.1 Learning the bias of a coin 9.1.2 Making decisions 9.1.3 A continuum of parameters 9.1.4 Decisions based on continuous intervals 9.2 Bayesian methods and ML -П 9.3 Maximum likelihood training of belief networks 9.4 Bayesian belief network training 9.4.1 Global and local parameter independence 9.4.2 Learning binary variable tables using a Beta prior 9.4.3 Learning multivariate discrete tables using a Dirichlet prior 9.5 Structure learning 9.5.1 PC algorithm 9.5.2 Empirical independence 9.5.3 Network scoring 9.5.4 Chow-Liu trees 9.6 Maximum likelihood for undirected models 9.6.1 The likelihood gradient 9.6.2 General tabular clique potentials 9.6.3 Decomposable Markov networks 9.6.4 Exponential form potentials 9.6.5 Conditional random fields 9.6.6 Pseudo likelihood 9.6.7 Learning the structure 9.7 Summary 9.8 Code 9.9 Exercises 10 Naive Bayes 10.1 Naive Bayes and conditional independence 10.2 Estimation using maximum likelihood 10.2.1 Binary attributes 10.2.2 Multi-state variables 10.2.3 Text classification 10.3 Bayesian naive Bayes 10.4 Tree augmented naive Bayes 10.4.1 Learning tree augmented naive Bayes networks 10.5 Summary 10.6 Code 10.7 Exercises 11 Learning with hidden variables 11.1 Hidden variables and missing data 11.1.1 Why hidden/missing variables can complicate proceedings 11.1.2 The missing at random assumption 243 256 VIII Contents 11 Л .3 Maximum likelihood H . 1.4 Identifiability issues 11.2 Expectation maximisation 11.2.1 Variational EM 11.2.2 Classical EM 11.2.3 Application to belief networks 11.2.4 General case 11.2.5 Convergence 11.2.6 Application to Markov networks 11.3 Extensions of EM 11.3.1 Partial M-step 11.3.2 Partial E-step 11.4 A failure case for EM 11.5 Variational Bayes 11.5.1 EM is a special case of variational Bayes 11.5.2 An example: VB for the Asbestos-Smoking-Cancer network 11.6 Optimising the likelihood by gradient methods 11.6.1 Undirected models 11.7 Summary 11.8 Code 11.9 Exercises 12 Bayesian model selection 12.1 Comparing models the Bayesian way 12.2 Illustrations: coin tossing 12.2. 1 A discrete parameter space 12.2.2 A continuous parameter space 12.3 Occam s razor and Bayesian complexity penalisation 12.4 A continuous example: curve fitting 12.5 Approximating the model likelihood 12.5.1 Laplace s method 12.5.2 Bayes information criterion 12.6 Bayesian hypothesis testing for outcome analysis 12.6.1 Outcome analysis 12.6.2 Нішіф: model likelihood 12.6.3 Яяте.· model likelihood 12.6.4 Dependent outcome analysis 12.6.5 Is classifier A better than B? 12.7 Summary 12.8 Code 12.9 Exercises III Machine learning 284 13 Machine learning concepts 305 13.1 Styles of learning 13.1.1 S upervised learn і ng 13.1.2 Unsupervised learning 13.1.3 Anomaly detection 13.1.4 Online (sequential) learning 13.1.5 Interacting with the environment 13.1.6 Semi-supervised learning 13.2 Supervised learning 13.2.1 Utility and loss 13.2.2 Using the empirical distribution 13.2.3 Bayesian decision approach 13.3 Bayes versus empirical decisions 13.4 Summary 13.5 Exercises 14 Nearest neighbour classification 322 14.1 Do as your neighbour does 14.2 AT-nearest neighbours 14.3 A probabilistic interpretation of nearest neighbours 14.3.1 When your nearest neighbour is far away 14.4 Summary 14.5 Code 14.6 Exercises 15 Unsupervised linear dimension reduction 329 15.1 High-dimensional spaces - low-dimensional manifolds 15.2 Principal components analysis 15.2.1 Deriving the optimal linear reconstruction 15.2.2 Maximum variance criterion 15.2.3 PCA algorithm 15.2.4 PCA and nearest neighbours classification 15.2.5 Comments on PCA Contents IX 15.3 High-dimensional data 15.3.1 Eigen-decomposition for N < D 15.3.2 PCA via singular value decomposition 15.4 Latent semantic analysis 15.4.1 Information retrieval 15.5 PCA with missing data 15.5.1 Finding the principal directions 15.5.2 Collaborative filtering using PCA with missing data 15.6 Matrix decomposition methods 15.6.1 Probabilistic latent semantic analysis 15.6.2 Extensions and variations 15.6.3 Applications of PLSA/NMF 15.7 Kernel PCA 15.8 Canonical correlation analysis 15.8.1 SVD formulation 15.9 Summary 15.10 Code 15.11 Exercises 16 Supervised linear dimension reduction 359 16.1 Supervised linear projections 16.2 Fisher s linear discriminant 16.3 Canonical variâtes 16.3.1 Dealing with the nullspace 16.4 Summary 16.5 Code 16.6 Exercises 17 Linear models 367 17.1 Introduction: fitting a straight line 17.2 Linear parameter models for regression 17.2.1 Vector outputs 17.2.2 Régularisation 17.2.3 Radial basis functions 17.3 The dual representation and kernels 17.3.1 Regression in the dual space 17.4 Linear parameter models for classification 17.4.1 Logistic regression Π .4.2 Beyond first-order gradient ascent 17.4.3 Avoiding overconfident classification 17.4.4 Multiple classes 17.4.5 The kernel trick for classification 17.5 Support vector machines 17.5.1 Maximum margin linear classifier 17.5.2 Using kernels 17.5.3 Performing the optimisation 17.5.4 Probabilistic interpretation 17.6 Soft zero-one loss for outlier robustness 17.7 Summary 17.8 Code 17.9 Exercises 18 Bayesian linear models 18.1 Regression with additive Gaussian noise 18.1.1 Bayesian linear parameter models 18.1.2 Determining hyperparameters: ML-II 18.1.3 Learning the hyperparameters using EM 18.1.4 Hyperparameter optimisation: using the gradient 18.1.5 Validation likelihood 18.1.6 Prediction and model averaging 18.1.7 Sparse linear models 18.2 Classification 18.2.1 Hyperparameter optimisation 18.2.2 Laplace approximation 18.2.3 Variational Gaussian approximation 18.2.4 Local variational approximation 18.2.5 Relevance vector machine for classification 18.2.6 Multi-class case 18.3 Summary 18.4 Code 18.5 Exercises 392 Contents 19 Gaussian processes 412 19.1 Non-parametric prediction 19.1.1 From parametric to non-parametric 19.1.2 From Bayesian linear models to Gaussian processes 19.1.3 A prior on functions 19.2 Gaussian process prediction 19.2.1 Regression with noisy training outputs 19.3 Covariance functions 19.3.1 Making new covariance functions from old 19.3.2 Stationary covariance functions 19.3.3 Non-stationary covariance functions 19.4 Analysis of covariance functions 19.4.1 Smoothness of the functions 19.4.2 Mercer kernels 19.4.3 Fourier analysis for stationary kernels 19.5 Gaussian processes for classification 19.5.1 Binary classification 19.5.2 Laplace s approximation 19.5.3 Hyperparameter optimisation 19.5.4 Multiple classes 19.6 Summary 19.7 Code 19.8 Exercises 20 Mixture models 432 20.1 Density estimation using mixtures 20.2 Expectation maximisation for mixture models 20.2.1 Unconstrained discrete tables 20.2.2 Mixture of product of Bernoulli distributions 20.3 The Gaussian mixture model 20.3.1 EM algorithm 20.3.2 Practical issues 20.3.3 Classification using Gaussian mixture models 20.3.4 The Parzen estimator 20.3.5 K-means 20.3.6 Bayesian mixture models 20.3.7 Semi-supervised learning 20.4 Mixture of experts 20.5 Indicator models 20.5.1 Joint indicator approach: factorised prior 20.5.2 Polya prior 20.6 Mixed membership models 20.6.1 Latent Dirichlet allocation 20.6.2 Graph-based representations of data 20.6.3 Dyadic data 20.6.4 Monadic data 20.6.5 Cliques and adjacency matrices for monadic binary data 20.7 Summary 20.8 Code 20.9 Exercises 21 Latent linear models 21.1 Factor analysis 21.1.1 Finding the optimal bias 21.2 Factor analysis: maximum likelihood 21.2.1 Eigen-approach likelihood optimisation 21.2.2 Expectation maximisation 21.3 Interlude: modelling faces 21.4 Probabilistic principal components analysis 21.5 Canonical correlation analysis and factor analysis 21.6 Independent components analysis 21.7 Summary 21.8 Code 21.9 Exercises 22 Latent ability models 22.1 The Rasch model 22.1.1 Maximum likelihood training 22.1.2 Bayesian Rasch models 22.2 Competition models 22.2.1 Bradley-Terry-Luce model 22.2.2 Elo ranking model 22.2.3 Glicko and TrueSkill 462 479 Contents xi 22.3 Summary 24.2 Auto-regressive models 22.4 Code 24.2.1 Training an AR model 22.5 Exercises 24.2.2 AR model as an OLDS 24.2.3 Time-varying AR model IV Dynamical models 242A Time-varying variance -------------------------------------------------------------- AR models 23 Discrete-State Markov models 489 24.3 Latent linear dynamical systems 23.1 Markov models 24.4 Inference 23.1.1 Equilibrium and 24ЛЛ Filterin8 stationary distribution of 24A2 SmoothinS: a Markov chain Rauch-Tung-Striebel -, ι τ с·..· »«ι ji correction method 23.1.2 Fitting Markov models -η ι э w » rmi ji 24.4.3 The likelihood 23.1.3 Mixture of Markov models ___...,, .-, ,, 24 A A Most likely state 23.2 Hidden Markov models „. . , _. . . J , -._.„, , . . . , 24.4.5 Time independence and 23.2.1 The classical inference _. . Riccati equations problems „. - T - 23.2.2 Filtering pih.Wu) 245 Leaming Imear dynamical systems 23.2.3 Parallel smoothing p{ht V,T) J4.5.1 ^inability issues „ „ . _ ,. , . 24.5.2 EM algorithm 23.2.4 Correction smoothing ь --__„ .. , ,, . ч 24.5.3 Subspace methods 23.2.5 Sampling from p{h1:T vl:T) ľ „-„,,. ... . . . 24.5.4 StructuredLDSs 23.2.6 Most likely joint state „, „ ^ -,τ. -7 n a- ■ 24.55 Bayesian LDSs 23.2.7 Prediction J 23.2.8 Self-localisation and 24-6 Switching auto-regressive kidnapped robots models 23.2.9 Natural language models 1А€>Л Inference 23.3 Learning HMMs Ж62 Maximum ^шооа 23.3.1 EM algorithm learning using EM 23.3.2 Mixture emission 24·7 Summary 23.3.3 TheHMM-GMM 24·8 Code 23.3.4 Discriminative training 24.9 Exercises 23.4 Related models 23.4.1 Explicit duration model 25 Switching linear dynamical 23.4.2 Input-output HMM Systems 547 23.4.3 Linear chain CRFs 25.1 Introduction 23.4.4 Dynamic Bayesian networks 25.2 The switching LDS 23.5 Applications 25.2.1 Exact inference is 23.5.1 Object tracking computationally intractable 23.5.2 Automatic speech recognition 25.3 Gaussian sum filtering 23.5.3 Bioinformatics 25.3.1 Continuous filtering 23.5.4 Part-of-speech tagging 25.3.2 Discrete filtering 23.6 Summary 25.3.3 The likelihood ρ(νΙ:Γ) 23.7 Code 25.3.4 Collapsing Gaussians 23.8 Exercises 25.3.5 Relation to other methods 25.4 Gaussian sum smoothing 24 ContinuOUS-State Markov models 520 25.4.1 Continuous smoothing 24.1 Observed linear dynamical 25A-2 Discrete smoothing systems 25.4.3 Collapsing the mixture 24.1.1 Stationary distribution ^4·4 Using mixtures in smoothing with noise 25.4.5 Relation to other methods xii Contents 25.5 Reset models 25.5.1 A Poisson reset model 25.5.2 Reset-HMM-LDS 25.6 Summary 25.7 Code 25.8 Exercises 26 Distributed computation 568 26.1 Introduction 26.2 Stochastic Hopfield networks 26.3 Learning sequences 26.3.1 A single sequence 26.3.2 Multiple sequences 26.3.3 Boolean networks 26.3.4 Sequence disambiguation 26.4 Tractable continuous latent variable models 26.4.1 Deterministic latent variables 26.4.2 An augmented Hopfield network 26.5 Neural models 26.5.1 Stochastically spiking neurons 26.5.2 Hopfield membrane potential 26.5.3 Dynamic synapses 26.5.4 Leaky integrate and fire models 26.6 Summary 26.7 Code 26.8 Exercises V Approximate inference 27 Sampling 587 27.1 Introduction 27.1.1 Univariate sampling 27.1.2 Rejection sampling 27.1.3 Multivariate sampling 27.2 Ancestral sampling 27.2.1 Dealing with evidence 27.2.2 Perfect sampling for a Markov network 27.3 Gibbs sampling 27.3.1 Gibbs sampling as a Markov chain 27.3.2 Structured Gibbs sampling 27.3.3 Remarks 27.4 Markov chain Monte Carlo (MCMC) 27.4.1 Markov chains 27.4.2 Metropolis-Hastings sampling 27.5 Auxiliary variable methods 27.5.1 Hybrid Monte Carlo (HMC) 27.5.2 Swendson-Wang (SW) 27.5.3 Slice sampling 27.6 Importance sampling 27.6.1 Sequential importance sampling 27.6.2 Particle filtering as an approximate forward pass 27.7 Summary 27.8 Code 27.9 Exercises 28 Deterministic approximate inference 617 28.1 Introduction 28.2 The Laplace approximation 28.3 Properties of Kullback- Leibler variational inference 28.3.1 Bounding the normalisation constant 28.3.2 Bounding the marginal likelihood 28.3.3 Bounding marginal quantities 28.3.4 Gaussian approximations using KL divergence 28.3.5 Marginal and moment matching properties of minimising KL(p q) 28.4 Variational bounding using KL(q p) 28.4.1 Pairwise Markov random field 28.4.2 General mean-field equations 28.4.3 Asynchronous updating guarantees approximation improvement 28.4.4 Structured variational approximation 28.5 Local and KL variational approximations 28.5.1 Local approximation 28.5.2 KL variational approximation 28.6 Mutual information maximisation: a KL variational approach Contents XIII 28.6.1 The information maximisation algorithm 28.6.2 Linear Gaussian decoder 28.7 Loopy belief propagation 28.7.1 Classical BP on an undirected graph 28.7.2 Loopy BP as a variational procedure 28.8 Expectation propagation 28.9 MAP for Markov networks 28.9.1 Pairwise Markov networks 28.9.2 Attractive binary Markov networks 28.9.3 Potts model 28.10 Further reading 28.11 Summary 28.12 Code 28.13 Exercises Appendix A: Background mathematics 655 A.I Linear algebra A. 2 Multivariate calculus A.3 Inequalities A.4 Optimisation A.5 Multivariate optimisation A.6 Constrained optimisation using Lagrange multipliers References 675 Index 689 Colour plate section between pp. 360 and 361
any_adam_object 1
author Barber, David 1968-
author_GND (DE-588)1014941148
author_facet Barber, David 1968-
author_role aut
author_sort Barber, David 1968-
author_variant d b db
building Verbundindex
bvnumber BV039953933
classification_rvk SK 830
ST 300
classification_tum DAT 708f
MAT 624f
ctrlnum (OCoLC)778803579
(DE-599)BSZ339421207
discipline Informatik
Mathematik
edition 1. publ.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02040nam a22005052c 4500</leader><controlfield tag="001">BV039953933</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150916 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">120313s2012 xx ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521518147</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-521-51814-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)778803579</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BSZ339421207</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 708f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 624f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Barber, David</subfield><subfield code="d">1968-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1014941148</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bayesian reasoning and machine learning</subfield><subfield code="c">David Barber</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIV, 697 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenaufbereitung</subfield><subfield code="0">(DE-588)4148865-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bayes-Verfahren</subfield><subfield code="0">(DE-588)4204326-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Bayesian statistical decision theory / Data processing</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Machine learning / Mathematics</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bayes-Verfahren</subfield><subfield code="0">(DE-588)4204326-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Datenaufbereitung</subfield><subfield code="0">(DE-588)4148865-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bamberg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=024811811&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024811811</subfield></datafield></record></collection>
id DE-604.BV039953933
illustrated Illustrated
indexdate 2025-02-14T17:56:55Z
institution BVB
isbn 9780521518147
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-024811811
oclc_num 778803579
open_access_boolean
owner DE-11
DE-91G
DE-BY-TUM
DE-703
DE-824
DE-473
DE-BY-UBG
DE-634
DE-20
DE-83
DE-739
DE-706
owner_facet DE-11
DE-91G
DE-BY-TUM
DE-703
DE-824
DE-473
DE-BY-UBG
DE-634
DE-20
DE-83
DE-739
DE-706
physical XXIV, 697 S. Ill., graph. Darst.
publishDate 2012
publishDateSearch 2012
publishDateSort 2012
publisher Cambridge Univ. Press
record_format marc
spellingShingle Barber, David 1968-
Bayesian reasoning and machine learning
Datenverarbeitung
Mathematik
Datenaufbereitung (DE-588)4148865-9 gnd
Mathematik (DE-588)4037944-9 gnd
Maschinelles Lernen (DE-588)4193754-5 gnd
Bayes-Verfahren (DE-588)4204326-8 gnd
subject_GND (DE-588)4148865-9
(DE-588)4037944-9
(DE-588)4193754-5
(DE-588)4204326-8
title Bayesian reasoning and machine learning
title_auth Bayesian reasoning and machine learning
title_exact_search Bayesian reasoning and machine learning
title_full Bayesian reasoning and machine learning David Barber
title_fullStr Bayesian reasoning and machine learning David Barber
title_full_unstemmed Bayesian reasoning and machine learning David Barber
title_short Bayesian reasoning and machine learning
title_sort bayesian reasoning and machine learning
topic Datenverarbeitung
Mathematik
Datenaufbereitung (DE-588)4148865-9 gnd
Mathematik (DE-588)4037944-9 gnd
Maschinelles Lernen (DE-588)4193754-5 gnd
Bayes-Verfahren (DE-588)4204326-8 gnd
topic_facet Datenverarbeitung
Mathematik
Datenaufbereitung
Maschinelles Lernen
Bayes-Verfahren
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024811811&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT barberdavid bayesianreasoningandmachinelearning