Linear mixed models for longitudinal data

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Verbeke, Geert (VerfasserIn), Molenberghs, Geert (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: New York, NY [u.a.] Springer 2009
Ausgabe:Repr.
Schriftenreihe:Springer series in statistics
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV039936980
003 DE-604
005 20190527
007 t|
008 120306s2009 xxud||| |||| 00||| eng d
010 |a 2010483807 
020 |a 9781441902993  |9 978-1-4419-0299-3 
035 |a (OCoLC)785837216 
035 |a (DE-599)BVBBV039936980 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
044 |a xxu  |c US 
049 |a DE-19  |a DE-83  |a DE-20 
084 |a QH 233  |0 (DE-625)141548:  |2 rvk 
084 |a SK 830  |0 (DE-625)143259:  |2 rvk 
084 |a SK 840  |0 (DE-625)143261:  |2 rvk 
084 |a 62J12  |2 msc 
100 1 |a Verbeke, Geert  |e Verfasser  |4 aut 
245 1 0 |a Linear mixed models for longitudinal data  |c Geert Verbeke ; Geert Molenberghs 
250 |a Repr. 
264 1 |a New York, NY [u.a.]  |b Springer  |c 2009 
300 |a XXII, 568 S.  |b graph. Darst.  |c 25 cm 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Springer series in statistics 
500 |a Includes bibliographical references (p. [523]-553) and index 
650 4 |a Linear models (Statistics) 
650 4 |a Longitudinal method 
650 0 7 |a Gemischtes Modell  |0 (DE-588)4156565-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Statistischer Test  |0 (DE-588)4077852-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Lineares Modell  |0 (DE-588)4134827-8  |2 gnd  |9 rswk-swf 
689 0 0 |a Lineares Modell  |0 (DE-588)4134827-8  |D s 
689 0 1 |a Gemischtes Modell  |0 (DE-588)4156565-4  |D s 
689 0 2 |a Statistischer Test  |0 (DE-588)4077852-6  |D s 
689 0 |5 DE-604 
700 1 |a Molenberghs, Geert  |e Verfasser  |4 aut 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024795118&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-024795118 

Datensatz im Suchindex

DE-19_call_number 0599/QH 233 V477+7
0001/8 12-2364
0599/QH 233 V477+3
0599/QH 233 V477+2
1502/SW 4.6 VERB
0599/QH 233 V477+4
0599/QH 233 V477+8
0599/QH 233 V477+5
0500/QH 233 V477(.009)+2
0599/QH 233 V477
0500/QH 233 V477(.009)
0599/QH 233 V477+6
DE-19_location 80
0
70
DE-BY-UBM_katkey 4579284
DE-BY-UBM_media_number 41621894090019
41619137560010
41619176300018
41619176320012
41619152620015
41621626820016
41619176330014
41619152640019
41619152630017
41632153430014
41619176310010
41619176290015
_version_ 1823054943682035712
adam_text Titel: Linear mixed models for longitudinal data Autor: Verbeke, Geert Jahr: 2009 Contents Preface vii Acknowledgments ix 1 Introduction 1 2 Examples 7 2.1 The Rat Data.......................... 7 2.2 The Toenail Data (TDO)................... 9 2.3 The Baltimore Longitudinal Study of Aging (BLSA) .... 10 2.3.1 The Prostate Data................... 11 2.3.2 The Hearing Data................... 14 2.4 The Vorozole Study ...................... 15 2.5 Heights of Schoolgirls ..................... 16 2.6 Growth Data.......................... 16 xii Contents 2.7 Mastitis in Dairy Cattle.................... 18 3 A Model for Longitudinal Data 19 3.1 Introduction........................... 19 3.2 A Two-Stage Analysis..................... 20 3.2.1 Stage 1 ......................... 20 3.2.2 Stage 2......................... 20 3.2.3 Example: The Rat Data................ 21 3.2.4 Example: The Prostate Data............. 21 3.2.5 Two-Stage Analysis.................. 22 3.3 The General Linear Mixed-Effects Model .......... 23 3.3.1 The Model....................... 23 3.3.2 Example: The Rat Data................ 25 3.3.3 Example: The Prostate Data............. 26 3.3.4 A Model for the Residuai Covariance Structure ... 26 4 Exploratory Data Analysis 31 4.1 Introduction........................... 3* 4.2 Exploring the Marginai Distribution............. 31 4.2.1 The Average Evolution ................ 31 4.2.2 The Variance Structure................ 33 4.2.3 The Correlation Structure............... 34 4.3 Exploring Subject-Specific Profiles.............. 35 oc 4.3.1 Measuring the Overall Goodness-of-Fit........ 4.3.2 Testing for the Need of a Model Extension ..... 37 4.3.3 Example: The Rat Data................ 38 4.3.4 Example: The Prostate Data............. 39 Contents xiii 5 Estimation of the Marginai Model 41 5.1 Introduction........................... 41 5.2 Maximum Likelihood Estimation............... 42 5.3 Restricted Maximum Likelihood Estimation ........ 43 5.3.1 Variance Estimation in Normal Populations..... 43 5.3.2 Estimation of Residuai Variance in Linear Regression 43 5.3.3 REML Estimation for the Linear Mixed Model ... 44 5.3.4 Justification of REML Estimation.......... 46 5.3.5 Comparison Between ML and REML Estimation 46 5.4 Model-Fitting Procedures................... 47 5.5 Example: The Prostate Data................. 48 5.6 Estimation Problems...................... 50 5.6.1 Small Variance Componente.............. 50 5.6.2 Model Misspecifications................ 52 6 Inference for the Marginai Model 55 6.1 Introduction........................... 55 6.2 Inference for the Fixed Effects................. 55 6.2.1 Approximate Wald Tests ............... 56 6.2.2 Approximate t-Tests and F-Tests........... 56 6.2.3 Example: The Prostate Data............. 57 6.2.4 Robust Inference.................... 61 6.2.5 Likelihood Ratio Tests................. 62 6.3 Inference for the Variance Components............ 64 6.3.1 Approximate Wald Tests ............... 64 6.3.2 Likelihood Ratio Tests................. 65 6.3.3 Example: The Rat Data................ 66 xiv Contents 6.3.4 Marginai Testing for the Need of Random Effects . . 69 6.3.5 Example: The Prostate Data............. 72 6.4 Information Criteria...................... 74 7 Inference for the Random Effects 77 7.1 Introduction........................... 77 7.2 Empirical Bayes Inference................... 78 7.3 Henderson s Mixed-Model Equations............. 79 7.4 Best Linear Unbiased Prediction (BLUP).......... 80 7.5 Shrinkage............................ 80 7.6 Example: The Random-Intercepts Model........... 81 7.7 Example: The Prostate Data................. 82 7.8 The Normality Assumption for Random Effects....... 83 7.8.1 Introduction ...................... 83 7.8.2 Impact on EB Estimates ............... 85 7.8.3 Impact on the Estimation of the Marginai Model . . 87 7.8.4 Checking the Normality Assumption......... 89 8 Fitting Linear Mixed Models with SAS 93 8.1 Introduction........................... 93 8.2 The SAS Program....................... 94 8.2.1 The PROC MIXED Statement............ 95 8.2.2 The CLASS Statement................. 96 8.2.3 The MODEL Statement................ 96 8.2.4 The ID Statement................... 97 8.2.5 The RANDOM Statement............... 97 8.2.6 The REPEATED Statement ............. 98 Contents xv 8.2.7 The CONTRAST Statement............. 101 8.2.8 The ESTIMATE Statement.............. 101 8.2.9 The MARE Statement................. 102 8.2.10 Some Additional Statements and Options...... 102 8.3 The SAS Output........................ 104 8.3.1 Information on the Iteration Procedure....... 104 8.3.2 Information on the Model Fit............. 105 8.3.3 Information Criteria.................. 107 8.3.4 Inference for the Variance Components........ 107 8.3.5 Inference for the Fixed Effects ............ Ili 8.3.6 Inference for the Random Effects........... 113 8.4 Note on the Mean Parameterization............. 114 8.5 The RANDOM and REPEATED Statements........ 117 8.6 PROC MIXED versus PROC GLM ............. 119 9 General Guidelines for Model Building 121 9.1 Introduction........................... 121 9.2 Selection of a Preliminary Mean Structure ......... 123 9.3 Selection of a Preliminary Random-Effects Structure .... 125 9.4 Selection of a Residuai Covariance Structure ........ 128 9.5 Model Reduction........................ 132 10 Exploring Serial Correlation 135 10.1 Introduction........................... 135 10.2 An Informai Check for Serial Correlation........... 136 10.3 Flexible Models for Serial Correlation............ 137 10.3.1 Introduction ...................... 137 xvi Contents 10.3.2 Fractional Polynomials.................I37 10.3.3 Example: The Prostate Data.............138 10.4 The Semi-Variogram......................141 10.4.1 Introduction ...................... 141 10.4.2 The Semi-Variogram for Random-Intercepts Models 142 10.4.3 Example: The Vorozole Study............. I44 10.4.4 The Semi-Variogram for Random-Effects Models . . I44 10.4.5 Example: The Prostate Data............. I47 10.5 SomeRemarks......................... l48 11 Locai Influence for the Linear Mixed Model 151 11.1 Introduction ..........................151 11.2 Locai Influence.........................153 11.3 The Detection of Influential Subjects.............158 11.4 Example: The Prostate Data.................162 11.5 Locai Influence Under REML Estimation..........l67 12 The Heterogeneity Model I69 12.1 Introduction........................... 169 12.2 The Heterogeneity Model................... 171 12.3 Estimation of the Heterogeneity Model............ I73 12.4 Classification of Longitudinal Profiles............. 177 12.5 Goodness-of-Fit Checks.................... 178 12.6 Example: The Prostate Data................. 180 12.7 Example: The Heights of Schoolgirls............. I83 13 Conditional Linear Mixed Models 189 13.1 Introduction ..........................189 Contents xvii 13.2 A Linear Mixed Model for the Hearing Data......... 190 13.3 Conditional Linear Mixed Models............... 194 13.4 Applied to the Hearing Data ................. 197 13.5 Relation with Fixed-Effects Models.............. 198 14 Exploring Incomplete Data 201 15 Joint Modeling of Measurements and Missingness 209 15.1 Introduction........................... 209 15.2 The Impact of Incompleteness................. 210 15.3 Simple ad hoc Methods.................... 211 15.4 Modeling Incompleteness ................... 212 15.5 Terminology........................... 214 15.6 Missing Data Patterns..................... 215 15.7 Missing Data Mechanisms................... 215 15.8 Ignorability........................... 217 15.9 A Special Case: Dropout.................... 218 16 Simple Missing Data Methods 221 16.1 Introduction........................... 221 16.2 Complete Case Analysis.................... 223 16.3 Simple Forms of Imputation.................. 223 16.3.1 Last Observation Carried Forward.......... 224 16.3.2 Imputing Unconditional Means............ 225 16.3.3 Buck s Method: Conditional Mean Imputation . . . 225 16.3.4 Discussion of Imputation Techniques......... 226 16.4 Available Case Methods.................... 227 16.5 MCAR Analysis of Toenail Data............... 227 xviii Contents 17 Selection Models 231 17.1 Introduction...........................231 17.2 A Selection Model for the Toenail Data...........233 17.2.1 MAR Analysis.....................233 17.2.2 MNAR analysis.....................234 17.3 Scope of Ignorability......................239 17.4 Growth Data..........................240 17.4.1 Analysis of Complete Growth Data..........240 17.4.2 Frequentist Analysis of Incomplete Growth Data . . 256 17.4.3 Likelihood Analysis of Incomplete Growth Data . . . 257 17.4.4 Missingness Process for the Growth Data......267 17.5 A Selection Model for Nonrandom Dropout.........269 17.6 A Selection Model for the Vorozole Study..........270 18 Pattern-Mixture Models 275 18.1 Introduction........................... 275 18.1.1 A Simple Illustration.................. 275 18.1.2 A Paradox ....................... 278 18.2 Pattern-Mixture Models.................... 280 18.3 Pattern-Mixture Model for the Toenail Data......... 281 18.4 A Pattern-Mixture Model for the Vorozole Study...... 287 18.5 Some Reflections........................ 291 19 Sensitivity Analysis for Selection Models 295 19.1 Introduction...........................295 19.2 A Modified Selection Model for Nonrandom Dropout .... 297 19.3 Locai Influence.........................298 Contents xix 19.3.1 Review of the Theory................. 299 19.3.2 Applied to the Model of Diggle and Kenward .... 300 19.3.3 Special Case: Compound Symmetry......... 302 19.3.4 Serial Correlation.................... 306 19.4 Analysis of the Rat Data ................... 307 19.5 Mastitis in Dairy Cattle.................... 312 19.5.1 Informai Sensitivity Analysis............. 312 19.5.2 Locai Influence Approach............... 319 19.6 Alternative Locai Influence Approaches ........... 326 19.7 Random-coefficient-based Models............... 328 19.8 Concluding Remarks...................... 330 20 Sensitivity Analysis for Pattern-Mixture Models 331 20.1 Introduction........................... 331 20.2 Pattern-Mixture Models and MAR.............. 332 20.2.1 MAR and ACMV ................... 333 20.2.2 Nonmonotone Patterns: A Counterexample..... 335 20.3 Multiple Imputation...................... 336 20.3.1 Parameter and Precision Estimation......... 338 20.3.2 Hypothesis Testing................... 338 20.4 Pattern-Mixture Models and Sensitivity Analysis...... 339 20.5 Identifying Restrictions Strategies .............. 343 20.5.1 Strategy Outline.................... 343 20.5.2 Identifying Restrictions................ 344 20.5.3 ACMV Restrictions.................. 347 20.5.4 Drawing from the Conditional Densities....... 350 20.6 Analysis of the Vorozole Study................ 352 xx Contents 20.6.1 Fitting a Model..................... 352 20.6.2 Hypothesis Testing................... 366 20.6.3 Model Reduction.................... 371 20.7 Thoughts............................ 373 21 How Ignorable Is Missing At Random ? 375 21.1 Introduction...........................375 21.2 Information and Sampling Distributions...........377 21.3 Illustration...........................379 21.4 Example.............................383 21.5 Implications for PROC MIXED................385 22 The Expectation-Maximization Algorithm 387 23 Design Considerations 391 23.1 Introduction........................... 391 23.2 Power Calculations Under Linear Mixed Models....... 392 23.3 Example: The Rat Data.................... 393 23.4 Power Calculations When Dropout Is to Be Expected ... 394 23.5 Example: The Rat Data.................... 397 23.5.1 Constant Pj,k k, Varying rij ............. 399 23.5.2 Constant pjtk kì Constant n, ............ 401 23.5.3 Increasing pJ lk| fc over Time, Constant rij...... 402 24 Case Studies 405 24.1 Blood Pressures ........................405 24.2 The Heat Shock Study.....................411 24.2.1 Introduction ......................411 Contents xxi 24.2.2 Analysis of Heat Shock Data............. 415 24.3 The Validation of Surrogate Endpoints from Multiple Trials 420 24.3.1 Introduction ...................... 420 24.3.2 Validation Criteria................... 421 24.3.3 Notation and Motivating Examples.......... 424 24.3.4 A Meta-Analytic Approach.............. 429 24.3.5 Data Analysis...................... 434 24.3.6 Computational Issues................. 439 24.3.7 Extensions ....................... 442 24.3.8 Reflections on Surrogacy................ 443 24.3.9 Prediction Intervals .................. 444 24.3.10 SAS Code for Random-Effects Model........ 445 24.4 The Milk Protein Content Trial................ 446 24.4.1 Introduction ...................... 446 24.4.2 Informai Sensitivity Analysis............. 448 24.4.3 Formai Sensitivity Analysis.............. 457 24.5 Hepatitis B Vaccination.................... 470 24.5.1 Time Evolution of Antibodies............. 472 24.5.2 Prediction at Year 12 ................. 481 24.5.3 SAS Code for Vaccination Models.......... 482 Appendix A Software 485 A.l The SAS System........................ 485 A.l.l Standard Applications................. 485 A. 1.2 New Features in SAS Version 7.0........... 485 xxii Contents A.2 Fitting Mixed Models Using MLwiN............. 489 A.3 Fitting Mixed Models Using SPlus.............. 493 A.3.1 Standard SPlus Functions............... 494 A. 3.2 OS WALD for Nonrandom Nonresponse....... 497 B Technical Details for Sensitivity Analysis 515 B.l Locai Influence: Derivation of Components of Ai...... 515 B.2 Proof of Theorem 20.1..................... 518 References 523 Index 554
any_adam_object 1
author Verbeke, Geert
Molenberghs, Geert
author_facet Verbeke, Geert
Molenberghs, Geert
author_role aut
aut
author_sort Verbeke, Geert
author_variant g v gv
g m gm
building Verbundindex
bvnumber BV039936980
classification_rvk QH 233
SK 830
SK 840
ctrlnum (OCoLC)785837216
(DE-599)BVBBV039936980
discipline Mathematik
Wirtschaftswissenschaften
edition Repr.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01890nam a2200493zc 4500</leader><controlfield tag="001">BV039936980</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190527 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">120306s2009 xxud||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2010483807</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441902993</subfield><subfield code="9">978-1-4419-0299-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)785837216</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV039936980</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 233</subfield><subfield code="0">(DE-625)141548:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 840</subfield><subfield code="0">(DE-625)143261:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">62J12</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Verbeke, Geert</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linear mixed models for longitudinal data</subfield><subfield code="c">Geert Verbeke ; Geert Molenberghs</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Repr.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 568 S.</subfield><subfield code="b">graph. Darst.</subfield><subfield code="c">25 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer series in statistics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. [523]-553) and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear models (Statistics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Longitudinal method</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gemischtes Modell</subfield><subfield code="0">(DE-588)4156565-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistischer Test</subfield><subfield code="0">(DE-588)4077852-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineares Modell</subfield><subfield code="0">(DE-588)4134827-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineares Modell</subfield><subfield code="0">(DE-588)4134827-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Gemischtes Modell</subfield><subfield code="0">(DE-588)4156565-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Statistischer Test</subfield><subfield code="0">(DE-588)4077852-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Molenberghs, Geert</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=024795118&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024795118</subfield></datafield></record></collection>
id DE-604.BV039936980
illustrated Illustrated
indexdate 2025-02-03T17:28:01Z
institution BVB
isbn 9781441902993
language English
lccn 2010483807
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-024795118
oclc_num 785837216
open_access_boolean
owner DE-19
DE-BY-UBM
DE-83
DE-20
owner_facet DE-19
DE-BY-UBM
DE-83
DE-20
physical XXII, 568 S. graph. Darst. 25 cm
publishDate 2009
publishDateSearch 2009
publishDateSort 2009
publisher Springer
record_format marc
series2 Springer series in statistics
spellingShingle Verbeke, Geert
Molenberghs, Geert
Linear mixed models for longitudinal data
Linear models (Statistics)
Longitudinal method
Gemischtes Modell (DE-588)4156565-4 gnd
Statistischer Test (DE-588)4077852-6 gnd
Lineares Modell (DE-588)4134827-8 gnd
subject_GND (DE-588)4156565-4
(DE-588)4077852-6
(DE-588)4134827-8
title Linear mixed models for longitudinal data
title_auth Linear mixed models for longitudinal data
title_exact_search Linear mixed models for longitudinal data
title_full Linear mixed models for longitudinal data Geert Verbeke ; Geert Molenberghs
title_fullStr Linear mixed models for longitudinal data Geert Verbeke ; Geert Molenberghs
title_full_unstemmed Linear mixed models for longitudinal data Geert Verbeke ; Geert Molenberghs
title_short Linear mixed models for longitudinal data
title_sort linear mixed models for longitudinal data
topic Linear models (Statistics)
Longitudinal method
Gemischtes Modell (DE-588)4156565-4 gnd
Statistischer Test (DE-588)4077852-6 gnd
Lineares Modell (DE-588)4134827-8 gnd
topic_facet Linear models (Statistics)
Longitudinal method
Gemischtes Modell
Statistischer Test
Lineares Modell
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024795118&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT verbekegeert linearmixedmodelsforlongitudinaldata
AT molenberghsgeert linearmixedmodelsforlongitudinaldata