NMR of biomolecules towards mechanistic systems biology

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Bertini, Ivano (HerausgeberIn)
Format: Buch
Sprache:English
Veröffentlicht: Weinheim Wiley-Blackwell 2012
Schlagworte:
Online-Zugang:Inhaltstext
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV039877353
003 DE-604
005 20130710
007 t
008 120209s2012 ad|| |||| 00||| eng d
015 |a 11,N30  |2 dnb 
016 7 |a 1013615476  |2 DE-101 
020 |a 9783527328505  |9 978-3-527-32850-5 
035 |a (OCoLC)794523456 
035 |a (DE-599)DNB1013615476 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-11  |a DE-703  |a DE-91G  |a DE-20  |a DE-355  |a DE-19 
082 0 |a 572.36  |2 22//ger 
084 |a VG 9500  |0 (DE-625)147241:253  |2 rvk 
084 |a WC 2600  |0 (DE-625)148071:  |2 rvk 
084 |a WC 3460  |0 (DE-625)148086:  |2 rvk 
084 |a CHE 808f  |2 stub 
084 |a 570  |2 sdnb 
084 |a 540  |2 sdnb 
084 |a CHE 244f  |2 stub 
245 1 0 |a NMR of biomolecules  |b towards mechanistic systems biology  |c ed. by Ivano Bertini ... 
264 1 |a Weinheim  |b Wiley-Blackwell  |c 2012 
300 |a XXXVIII, 612 S.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
650 0 7 |a NMR-Spektroskopie  |0 (DE-588)4075421-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Biomolekül  |0 (DE-588)4135124-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Systembiologie  |0 (DE-588)4809615-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Biomolekül  |0 (DE-588)4135124-1  |D s 
689 0 1 |a NMR-Spektroskopie  |0 (DE-588)4075421-2  |D s 
689 0 2 |a Systembiologie  |0 (DE-588)4809615-5  |D s 
689 0 |5 DE-604 
700 1 |a Bertini, Ivano  |4 edt 
856 4 2 |m X:MVB  |q text/html  |u http://deposit.dnb.de/cgi-bin/dokserv?id=3855504&prov=M&dok_var=1&dok_ext=htm  |3 Inhaltstext 
856 4 2 |m DNB Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024736553&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-024736553 

Datensatz im Suchindex

DE-BY-TUM_call_number 0303/CHE 808f 2012 L 1055+5
0303/CHE 808f 2012 L 1055
0303/CHE 808f 2012 L 1055+4
0303/CHE 808f 2012 L 1055+2
0304/CHE 808f 2012 B 1593
0303/CHE 808f 2012 L 1055+3
0302/CHE 808f 2012 B 1593
DE-BY-TUM_katkey 1856859
DE-BY-TUM_media_number 040030494563
040030494609
040030494610
040030494596
040030494574
040030494585
040071384511
_version_ 1816713775967895552
adam_text IMAGE 1 CONTENTS PREFACE X X I LIST O F CONTRIBUTORS X X I I I LIST O F ABBREVIATIONS X X I X PART ONE INTRODUCTION 1 1 NMR AND ITS PLACE IN MECHANISTIC SYSTEMS BIOLOGY 3 IVANO BERTINI, KATHLEEN S. MCCREEVY, AND GIACOMO PARIGI 2 STRUCTURE O F BIOMOLECULES: FUNDAMENTALS 7 2.1 STRUCTURAL FEATURES O F PROTEINS 7 LUCIA BAND AND FRANCESCO CANTINI 2.1.1 INTRODUCTION: FROM PRIMARY TO QUATERNARY STRUCTURE 7 2.1.2 GEOMETRICAL AND CONFORMATIONAL PROPERTIES 8 2.1.2.1 BACKBONE DIHEDRAL ANGLES 8 2.1.2.2 SIDE-CHAIN DIHEDRAL ANGLES 9 2.1.3 SECONDARY STRUCTURE ELEMENTS I N PROTEINS 9 2.1.4 PREDICTION O F SECONDARY STRUCTURE 13 2.1.5 STRUCTURAL MOTIFS AND STRUCTURAL DOMAINS - COMBINATION O F SECONDARY STRUCTURAL ELEMENTS AND STRUCTURAL MOTIFS 2.1.6 TYPES O F FOLDS AND THEIR CLASSIFICATION 15 2.1.6.1 FOLDS O F THE A CLASS 15 2.1.6.2 FOLDS IN THE |3 CLASS 16 2.1.6.3 FOLDS IN THE A/|3 CLASS 17 2.1.6.4 FOLDS IN THE A + ( 3 CLASS 17 2.1.7 TERTIARY STRUCTURE 18 2.1.8 QUATERNARY STRUCTURE 19 2.2 NUCLEIC ACIDS 21 MIRKO CEVEC, HENDRIK R.A. JONKER, SENADA NOZINOVIC, CHRISTIAN RICHTER, AND HARALD SCHWALBE 2.2.1 INTRODUCTION 21 2.2.1.1 CONFORMATIONS 22 2.2.2 DNA STRUCTURE 24 2.2.2.1 B-DNA AND DERIVATIVES 24 2.2.2.2 A-DNA 25 2.2.2.3 Z-DNA 25 2.2.2.4 NONSTANDARD DNA STRUCTURES 25 2.2.2.4.1 CIRCULAR DNA 25 2.2.2.4.2 HELICAL JUNCTION 26 2.2.2.4.3 TRIPLE HELIX 26 2.2.2.4.4 I-MOTIF 26 HTTP://D-NB.INFO/1013615476 IMAGE 2 V I CONTENTS 2.2.2.4.5 QUADRUPLEX DNA 26 2.2.3 RNA STRUCTURE 2 7 2.2.3.1 REGULAR RNA STRUCTURE - A-FORM HELICES 28 2.2.3.2 MISMATCHES, BULGES, AND UNUSUAL BASE PAIRING 29 2.2.3.3 REVERSAL AND ALTERATION O F STRAND DIRECTION: COMMONLY OBSERVED LOOP AND TURN MOTIFS 29 2.2.3.3.1 U-TURN 29 2.2.3.3.2 K-TURN 29 2.2.3.3.3 C-LOOP 2 9 2.2.3.3.4 E-LOOP 30 2.2.3.4 TETRALOOPS AND TETRALOOP-RECEPTOR CONTACT 30 2.2.3.5 HIGHER-ORDER RNA TERTIARY STRUCTURE ELEMENTS: COAXIAL STACKING MOTIFS 31 2.2.3.6 DNA-RNA HYBRIDS 31 3 WHAT CAN BE LEARNED ABOUT THE STRUCTURE AND DYNAMICS O F BIOMOLECULES FROM NMR 33 3.1 PROTEINS STUDIED BY NMR 33 LUCIO FERELLA, ANTONIO ROSATO, AND PAOLA TURANO 3.1.1 WHY NMR STRUCTURES? 33 3.1.2 NMR BUNDLE 37 3.1.3 PROTEIN DYNAMICS 41 3.1.4 INTERMOLECULAR INTERACTIONS INVOLVING PROTEINS 44 3.2 NUCLEIC ACIDS STUDIED BY NMR 47 JANEZ PLAVEC 3.2.1 STRUCTURE, MOBILITY, AND FUNCTION 47 PART TWO ROLE O F NMR IN THE STUDY O F THE STRUCTURE AND DYNAMICS O F BIOMOLECULES 51 4 DETERMINATION O F PROTEIN STRUCTURE AND DYNAMICS 53 LUCIO FERELLA, ANTONIO ROSATO, AND PAOLA TURANO 4.1 DETERMINATION O F PROTEIN STRUCTURES 53 4.1.1 RESONANCE ASSIGNMENT 53 4.2 NMR RESTRAINTS 58 4.2.1 DISTANCE RESTRAINTS 58 4.2.2 DIHEDRAL ANGLES 59 4.2.3 RESIDUAL DIPOLAR COUPLINGS 61 4.3 STRUCTURE CALCULATIONS 65 4.3.1 TRADITIONAL 65 4.3.2 AUTOMATED NOESY ASSIGNMENT 69 4.3.3 ENERGY REFINEMENT O F PROTEIN STRUCTURES 70 4.3.4 CHEMICAL SHIFT-BASED APPROACHES FOR PROTEIN STRUCTURE DETERMINATION 71 4.4 VALIDATION O F PROTEIN STRUCTURES 72 4.4.1 EXPERIMENTAL DATA 72 4.4.2 GEOMETRIC QUALITY 74 4.5 PROTEIN DYNAMICS AND NMR OBSERVABLES 76 4.5.1 NMR OBSERVABLES AFFECTED BY DYNAMICS 76 4.5.2 NMR EXPERIMENTS TO MEASURE DYNAMICS AND THEIR INTERPRETATION 78 4.6 PROTOCOLS 83 4.6.1 SAMPLE LABELING 83 4.6.2 NMR ASSIGNMENT 83 4.6.3 MANUAL COLLECTION O F RESTRAINTS 86 4.6.4 STRUCTURE CALCULATIONS 87 4.6.5 STRUCTURE REFINEMENT 89 IMAGE 3 CONTENTS | VII 4.6.6 CHEMICAL SHIFT-BASED STRUCTURE CALCULATIONS 90 4.6.7 STRUCTURE VALIDATION 90 4.6.8 PROTEIN DYNAMICS 91 4.7 TROUBLESHOOTING 92 4.7.1 DATA COLLECTION 92 4.7.2 STRUCTURE CALCULATIONS 93 FURTHER READING 94 5 DNA 97 JANEZ PIAVEC 5.1 NMR SPECTROSCOPY O F DNA 97 5.2 ASSESSMENT O F THE FOLDING TOPOLOGY 99 5.3 RESONANCE ASSIGNMENT THROUGH SEQUENTIAL AND INTERSTRAND INTERACTIONS 100 5.4 PSEUDOROTATION O F DEOXYRIBOFURANOSE RINGS 104 5.5 BACKBONE CONFORMATION 105 5.6 NATURAL ABUNDANCE NUCLEOBASE SUBSTITUTIONS 106 5.7 NATURAL ABUNDANCE HETERONUCLEAR EXPERIMENTS 106 5.8 SITE-SPECIFIC LOW ISOTOPIC ENRICHMENT 107 5.9 TRANSLATIONAL DIFFUSION COEFFICIENTS 107 5.10 DETERMINATION O F THREE-DIMENSIONAL STRUCTURE 107 5.11 SEARCH FOR TRANSIENT STRUCTURES 109 5.12 PROTOCOLS 110 5.12.1 SAMPLE PREPARATION AND INITIAL NMR EXPERIMENTS 110 5.12.2 STOICHIOMETRIC ANALYSIS THROUGH TRANSLATIONAL DIFFUSION 111 5.12.3 SEQUENTIAL ASSIGNMENT 111 5.12.4 ASSESSMENT O F THE PREFERRED SUGAR PUCKER 112 5.12.5 CONFORMATIONS ALONG THE BACKBONE 112 5.12.6 NUCLEOBASE SUBSTITUTIONS AND SITE-SPECIFIC LOW 13C/15N ISOTOPIC ENRICHMENT 112 5.12.7 TOPOLOGY AND ATOMIC-DETAIL THREE-DIMENSIONAL STRUCTURE DETERMINATION 113 5.13 EXAMPLE EXPERIMENTS AND TROUBLESHOOTING 114 FURTHER READING 115 6 RNA 119 RICHARD STEFL AND VLADIMIR SKIENAR 6.1 NMR SPECTROSCOPY O F RNA 119 6.2 PREPARATION O F RNA SAMPLES FOR NMR 120 6.2.1 IN VITRO TRANSCRIPTION USING T7 RNA POLYMERASE 120 6.2.2 IN VIVO RECOMBINANT RNA SYNTHESIS 120 6.2.3 CHEMICAL SYNTHESIS 120 6.2.4 SEGMENTAL LABELING 121 6.3 PROBING O F THE RNA FOLD 121 6.4 ASSESSMENT O F THE SPECTRAL RESOLUTION 122 6.5 STRATEGY FOR THE RESONANCE ASSIGNMENT 123 6.5.1 HYDROGEN BOND FORMATION AND BASE PAIR IDENTIFICATION 123 6.5.2 THROUGH-BOND-TYPE EXPERIMENTS - BASE SPIN SYSTEM IDENTIFICATION 124 6.5.3 THROUGH-BOND-TYPE EXPERIMENTS - SUGAR SPIN SYSTEM IDENTIFICATION 124 6.5.4 SEQUENTIAL CONNECTIVITIES 125 6.6 COLLECTION OF STRUCTURAL INFORMATION 126 6.6.1 COLLECTION O F DISTANCE-DEPENDENT STRUCTURAL RESTRAINTS 126 6.6.2 COLLECTION OF TORSION-ANGLE-DEPENDENT STRUCTURAL RESTRAINTS 127 6.6.3 COLLECTION O F LONG-RANGE STRUCTURAL RESTRAINTS 127 6.7 STRUCTURAL CALCULATION O F RNA 128 6.8 ASSESSMENT O F QUALITY O F NMR STRUCTURES 129 6.9 PROTOCOLS 129 IMAGE 4 VIII CONTENTS 6.9.1 FLOWCHARTS 130 6.9.1.1 SAMPLE PREPARATION 130 6.9.1.2 COLLECTION O F THE EXPERIMENTAL DATA 130 6.9.1.3 STRUCTURE CALCULATION 131 6.9.2 PROTOCOL FOR IN VITRO TRANSCRIPTION USING BACTERIOPHAGE T7 RNA POLYMERASE 132 6.9.2.1 TEMPLATE DESIGN 132 6.9.2.2 TRANSCRIPTION PROTOCOL 133 6.9.2.3 PURIFICATION O F RNA 134 6.9.2.4 SIMPLE PROTOCOL FOR BACTERIOPHAGE T7 RNA POLYMERASE PREPARATION 134 6.10 TROUBLESHOOTING 135 FURTHER READING 135 7 INTRINSICALLY DISORDERED PROTEINS 137 ISABELLA C. FELLI, ROBERTA PIERATTELLI, AND PETER TOMPA 7.1 INTRINSICALLY DISORDERED PROTEINS 137 7.1.1 W H E N THE CONCEPT WAS FIRST INTRODUCED 137 7.1.2 FUNCTIONS AND FUNCTIONAL ADVANTAGES ASSOCIATED WITH DISORDER 138 7.2 IMPORTANCE O F NMR TO STUDY IDPS 140 7.3 STRUCTURAL AND DYNAMIC INFORMATION ON IDPS - NMR OBSERVABLES 141 7.3.1 REDUCED CHEMICAL SHIFT DISPERSION AND SEQUENCESPECIFIC ASSIGNMENT 141 7.3.2 CHEMICAL SHIFTS AND SECONDARY STRUCTURAL PROPENSITIES 142 7.3.3 ADDITIONAL OBSERVABLES AND CONFORMATIONAL AVERAGING 143 7.3.4 SCALAR COUPLINGS 143 7.3.5 RESIDUAL DIPOLAR COUPLINGS 143 7.3.6 SOLVENT EXPOSURE 144 7.3.7 1 N RELAXATION AND HETERONUCLEAR NOES 144 7.3.8 PARAMAGNETIC RELAXATION RATE ENHANCEMENTS 145 7.3.9 PROTON-PROTON NOES 145 7.3.10 RELEVANCE O F STRUCTURAL DISORDER IN IN VIVO AND IN-CELL STUDIES O F IDPS 146 7.4 PROTOCOLS 146 7.4.1 USE O F BIOINFORMATIC TOOLS AND DATABASES 146 7.4.2 USE O F NMR IN THE CHARACTERIZATION O F IDPS 148 7.5 TROUBLESHOOTING 150 7.5.1 BIOINFORMATICS CAN HELP! 150 7.5.2 UNDERSTANDING THE FUNCTION O F UNFOLDED PROTEIN REGIONS 151 7.5.3 DOES IN VITRO REFLECT IN VIVO BEHAVIOR? 152 FURTHER READING 152 8 PARAMAGNETIC MOLECULES 155 IVANO BERTINI, CLAUDIO LUCHINAT, AND CIACOMO PARIGI 8.1 PARAMAGNETISM-ASSISTED NMR 155 8.2 SCALAR AND DIPOLAR ELECTRON SPIN-NUCLEAR SPIN INTERACTIONS: HYPERFINE SHIFT 157 8.2.1 CONTACT CONTRIBUTIONS TO THE HYPERFINE SHIFT 157 8.2.2 PSEUDOCONTACT CONTRIBUTIONS TO THE HYPERFINE SHIFT 158 8.3 SCALAR AND DIPOLAR ELECTRON SPIN-NUCLEAR SPIN INTERACTIONS: PRE 159 8.4 INDIRECT ELECTRON SPIN-NUCLEAR SPIN EFFECTS: PARAMAGNETISM-INDUCED RDCS 161 8.5 CROSS-CORRELATION BETWEEN CURIE AND DIPOLAR RELAXATION 162 8.6 "GOOD" METAL IONS AND "BAD" METAL IONS 163 8.7 PARAMAGNETISM-BASED DRUG DISCOVERY 164 8.8 PROTOCOLS 165 8.8.1 COLLECTING THE PARAMAGNETISM-BASED RESTRAINTS 165 8.8.2 PROTOCOLS TO EXTRACT STRUCTURAL INFORMATION FROM THE PCS, PRDC, PRE AND PCCR 166 IMAGE 5 CONTENTS IX 8.8.3 PROTOCOLS FOR PROTEIN-PROTEIN INTERACTIONS 167 8.8.4 PROTOCOLS FOR THE ANALYSIS O F CONFORMATIONAL FREEDOM IN TWO-DOMAIN PROTEINS 168 8.8.5 EXAMPLE EXPERIMENT 169 8.9 TROUBLESHOOTING 169 8.9.1 TIPS AND TRICKS TO OPTIMIZE SIGNAL DETECTION IN PARAMAGNETIC SYSTEMS 169 8.9.2 SELECTION O F THE PARAMAGNETIC ION 170 8.9.3 SWITCHING BETWEEN DIAMAGNETIC AND PARAMAGNETIC SYSTEMS 170 FURTHER READING 170 PART THREE ROLE O F NMR IN THE STUDY O F THE STRUCTURE AND DYNAMICS O F BIOMOLECULAR INTERACTIONS 173 9 NMR METHODOLOGIES FOR THE ANALYSIS O F PROTEIN-PROTEIN INTERACTIONS 175 TOBIAS MADL AND MICHAEL SATTLER 9.1 INTRODUCTION 175 9.2 DYNAMICS AND LIGAND BINDING 176 9.3 GENERAL STRATEGY 177 9.4 OVERVIEW O F METHODS 178 9.4.1 SAMPLE PREPARATION 178 9.4.2 STRUCTURES O F DOMAINS/SUBUNITS 179 9.4.3 INTERFACES 180 9.4.3.1 CHEMICAL SHIFT PERTURBATIONS (CSPS) 180 9.4.3.2 NOES 180 9.4.3.3 CROSS-SATURATION 181 9.4.3.4 DIFFERENTIAL LINE-BROADENING 181 9.4.3.5 HYDROGEN EXCHANGE 182 9.4.3.6 SOLVENT PRES 182 9.4.4 DOMAIN/SUBUNIT ORIENTATION 183 9.4.4.1 NMR RELAXATION DATA 183 9.4.4.2 RESIDUAL DIPOLAR COUPLINGS (RDCS) 184 9.4.4.3 PARAMAGNETIC RESTRAINTS 184 9.4.5 STRUCTURE CALCULATIONS 185 9.5 OUTLOOK 186 9.6 PROTOCOLS FOR THE ANALYSIS O F PROTEIN COMPLEXES 186 9.6.1 SPIN LABELING AND PARAMAGNETIC TAGGING 186 9.6.2 STRUCTURES O F THE INDIVIDUAL DOMAINS/SUBUNITS 188 9.6.3 OPTIMIZING CONDITIONS FOR STRUCTURAL STUDIES O F THE PROTEIN COMPLEX 189 9.6.4 DETECTION O F DYNAMICS 189 9.6.5 DETERMINING INTERACTION INTERFACES USING SOLVENT PRES 189 9.6.6 STRUCTURE CALCULATION APPROACH 191 9.6.7 EXAMPLE EXPERIMENT 193 9.7 TROUBLESHOOTING 194 FURTHER READING 194 10 METAL-MEDIATED INTERACTIONS 197 SIMONE CIOFI-BAFFONI 10.1 THEORETICAL BACKGROUND 197 10.2 PROTOCOL FOR THE STRUCTURAL DETERMINATION O F A METAL-MEDIATED COMPLEX 200 10.2.1 OPTIMIZATION O F EXPERIMENTAL CONDITIONS TO OBTAIN THE PROTEIN-PROTEIN COMPLEX 200 10.2.2 TITRATIONS TO MAP PROTEIN-PROTEIN INTERFACES AND OBTAIN BINDING CHARACTERISTICS 201 10.2.3 MODELING 201 10.2.4 DEFINITION O F METAL COORDINATION 201 10.2.5 DETERMINATION O F THREE-DIMENSIONAL STRUCTURE 202 IMAGE 6 10.3 EXAMPLE EXPERIMENT 202 10.4 TROUBLESHOOTING 202 FURTHER READING 203 11 PROTEIN-PARAMAGNETIC PROTEIN INTERACTIONS 205 PETER H.J. KEIZERS, YOSHITAKA HIRUMA, A N D MARCELLUS UBBINK 11.1 PARAMAGNETIC SOURCES IN PROTEIN COMPLEXES 205 11.2 TYPES O F NMR RESTRAINTS OBTAINED FROM PARAMAGNETIC CENTERS 206 11.3 PROTEIN COMPLEXES 207 11.3.1 STRUCTURES O F PROTEIN COMPLEXES 207 11.3.2 DYNAMICS IN PROTEIN COMPLEXES 208 11.3.2.1 PLASTOCYANIN AND CYTOCHROME / 209 11.3.2.2 CYTOCHROME C A N D CYTOCHROME C PEROXIDASE 209 11.3.2.3 HISTIDINE PHOSPHOCARRIER PROTEIN AND ENZYME I 209 11.3.2.4 ADRENODOXIN AND CYTOCHROME C 210 11.3.2.5 CALMODULIN DOMAIN DYNAMICS 211 11.4 PROTOCOLS 211 11.4.1 PROTEIN TITRATIONS TO OBTAIN THE KJ AND A BINDING MAP 211 11.4.2 PARAMAGNETIC TAGGING AND USE O F PARAMAGNETS I N NMR 212 11.4.3 ENSEMBLE MODELING 214 11.5 EXAMPLE EXPERIMENT 215 11.6 TROUBLESHOOTING 215 FURTHER READING 217 12 PROTEIN-RNA INTERACTIONS 219 VIJAYALAXMI MANOHARAN, JOSE MANUEL PEREZ-CANADILLAS, AND ANDRES RAMOS 12.1 INTRODUCTION 219 12.1.1 POST-TRANSCRIPTIONAL REGULATION AND RNA RECOGNITION DOMAINS 219 12.1.2 PROTEIN-RNA INTERFACES 219 12.2 NMR METHODOLOGY 221 12.2.1 USING NMR TO INVESTIGATE PROTEIN-RNA INTERACTIONS 221 12.2.2 MAPPING INTERACTION SITES 222 12.2.2.1 CHEMICAL SHIFT PERTURBATION 222 12.2.2.2 CROSS-SATURATION 223 12.2.2.3 PARAMAGNETIC RELAXATION ENHANCEMENT 224 12.2.3 AFFINITY AND SPECIFICITY 226 12.2.3.1 DETERMINING DISSOCIATION CONSTANTS 226 12.2.3.2 DETERMINING STOICHIOMETRY 226 12.2.3.3 SCAFFOLD-INDEPENDENT ANALYSIS 2 2 7 12.2.4 HIGH-RESOLUTION STRUCTURE DETERMINATION AND DYNAMICS 2 2 7 12.3 PROTOCOLS AND TROUBLESHOOTING 228 12.3.1 PREPARATION O F PROTEIN-RNA COMPLEXES 228 12.3.1.1 MATERIALS AND SAMPLE PREPARATION 229 12.3.1.2 TROUBLESHOOTING 229 12.3.2 PROTOCOL AND EXAMPLE EXPERIMENT 1: CALCULATING THE AFFINITY O F A PROTEIN-RNA INTERACTION 230 12.3.2.1 MATERIALS AND SAMPLE PREPARATION 230 12.3.2.2 TROUBLESHOOTING 231 12.3.3 PROTOCOL AND EXAMPLE EXPERIMENT 2: PARAMAGNETIC LABELING 232 12.3.3.1 MATERIALS AND SAMPLE PREPARATION 233 T 12.3.3.2 TROUBLESHOOTING 233 12.3.4 PROTOCOL AND EXAMPLE EXPERIMENT 3: SIA 234 12.3.4.1 MATERIALS AND SAMPLE PREPARATION 234 12.3.4.2 TROUBLESHOOTING 235 FURTHER READING 235 IMAGE 7 CONTENTS | X I 13 PROTEIN-DNA INTERACTIONS 239 LIDIJA KOVACIC AND ROLF BOELENS 13.1 STATE O F THE ART 239 13.2 CONCLUSIONS AND PERSPECTIVES 242 13.3 PROTOCOLS 243 13.3.1 SAMPLE PREPARATION 243 13.3.2 NMR METHODOLOGY 244 13.3.3 IDENTIFICATION O F THE INTERACTION SURFACES 247 13.3.4 STRUCTURE CALCULATIONS 250 13.4 TROUBLESHOOTING 251 FURTHER READING 252 PART FOUR NMR IN DRUG DISCOVERY 253 14 HIGH-THROUGHPUT SCREENING AND FRAGMENT-BASED DESIGN: GENERAL CONSIDERATIONS FOR LEAD DISCOVERY AND OPTIMIZATION 255 MAURIZIO PELLECCHIA 14.1 HIGH-THROUGHPUT SCREENING AND FRAGMENT-BASED DESIGN 255 14.2 GENERAL ASPECTS O F NMR SPECTROSCOPY I N HIT IDENTIFICATION AND OPTIMIZATION PROCESSES 257 14.3 CHEMICAL SHIFT PERTURBATION AS A SCREENING METHOD 261 FURTHER READING 263 15 LIGAND-OBSERVED NMR IN FRAGMENT-BASED APPROACHES 265 PAWEI SLEDZ, CHRIS ABELL, AND ALESSIO CIULLI 15.1 LIGAND-OBSERVED NMR SPECTROSCOPY 265 15.2 ON THE TRANSIENT BINDING O F SMALL MOLECULES TO THE PROTEIN 266 15.3 QUESTIONS ASKED BY LIGAND-BASED FRAGMENT SCREENING 267 15.3.1 DIRECT YES/NO BINDING EXPERIMENTS 268 15.3.1.1 STD 269 15.3.1.2 WATERLOGSY 270 15.3.1.3 RELAXATION-EDITED ONE-DIMENSIONAL EXPERIMENTS 271 15.3.2 AFFINITY MEASUREMENTS AND AFFINITY-ORIENTED SCREENING 271 15.3.3 INFORMATION O N THE BINDING MODE 272 15.4 SUMMARY 274 15.5 PROTOCOLS 274 15.5.1 GENERAL ASPECTS O F SAMPLE PREPARATION 274 15.5.2 PREPARING SAMPLES 275 15.5.3 PULSE SEQUENCES 276 15.5.4 AUTOMATION 276 15.6 EXAMPLE EXPERIMENTS 276 15.6.1 ONE-DIMENSIONAL DIRECT BINDING EXPERIMENTS 276 15.6.2 COMPETITION NMR SCREENING EXPERIMENTS 277 15.6.3 TWO-DIMENSIONAL ILOE BINDING EXPERIMENTS 278 15.7 TROUBLESHOOTING 278 15.7.1 SAMPLE PREPARATION 278 15.7.2 EXPERIMENTAL SETUP 280 FURTHER READINGS 280 16 INTERACTIONS O F METALLODRUGS WITH DNA 283 HONG-KE LIU AND PETER J. SADLER 16.1 METALLODRUGS AND DNA INTERACTIONS 283 16.1.1 METALLODRUGS 283 16.1.2 GENERAL FEATURES O F METALLODRUG-DNA INTERACTIONS 284 16.1.3 NMR TECHNIQUES AND METALLODRUG-DNA INTERACTIONS 285 16.2 COORDINATIVE BINDING 286 16.3 GROOVE BINDING 289 IMAGE 8 XII CONTENTS 16.3.1 MAJOR GROOVE BINDING 289 16.3.2 MINOR GROOVE BINDING 289 16.4 INTERCALATION AND INSERTION 290 16.4.1 METALLO-INTERCALATORS 290 16.4.2 DNA INSERTION AND METALLO-INSERTERS 291 16.5 DUAL BINDING (COORDINATION AND INTERCALATION) 291 16.5.1 INTERCALATION BY METALLODRUG WITH A-BONDED INTERCALATOR 291 16.5.2 INTERCALATION BY METALLODRUG WITH JI-BONDED INTERCALATOR 292 16.6 PROTOCOLS 293 16.6.1 DETERMINATION O F THE COORDINATIVE BINDING SITES 293 16.6.2 DETECTION O F INTERCALATION AND INSERTION 294 16.6.3 DETECTION O F METALLODRUG-DNA GROOVE-BINDING INTERACTIONS 294 16.6.4 EXAMPLE EXPERIMENT 294 16.7 TRICKS AND TROUBLESHOOTING 294 FURTHER READING 295 17 RNA AS A DRUG TARGET 299 JAN-PETER FERNER, ELKE DUCHARDT FERNER, JORG RINNENTHAL, JANINA BUCK, JENS WOHNERT, AND HARALD SCHWALBE 17.1 RNA AS A TARGET FOR SMALL MOLECULES 299 17.2 CHEMICAL SHIFT PERTURBATION AND PARAMAGNETIC RELAXATION ENHANCEMENT 301 17.3 NUCLEAR OVERHAUSER EFFECT-BASED METHODS 304 17.4 FLUORINE LABELING O F RNA 304 17.5 LIGAND-BASED METHODS 305 17.6 PROTOCOLS 306 17.6.1 DETERMINATION O F THE COOPERATIVITY BETWEEN MG 2 + BINDING SITES IN RNA BY CSP ANALYSIS 306 17.6.2 LIGAND-BINDING SITE MAPPING BY CSP TRACKING 308 17.6.3 MAPPING MG2 + - B I N D I N G SITES IN RNA USING MNCL 2 PRE EXPERIMENTS 308 17.6.4 LIGAND-BINDING SITE MAPPING BY NOE METHODS 308 17.6.5 MAPPING OUTER SPHERE MG 2 + - B I N D I N G SITES BY CO (NH 3) 3 + 6 N O E S Y EXPERIMENTS 311 17.7 TROUBLESHOOTING 312 FURTHER READING 313 18 FLUORINE NMR SPECTROSCOPY FOR BIOCHEMICAL SCREENING IN DRUG DISCOVERY 315 CLAUDIO DALVIT 18.1 ENZYMATIC INHIBITION MECHANISMS 316 18.2 II-EABS 317 18.2.1 ONE SUBSTRATE AND ONE ENZYME 318 18.2.2 ONE SUBSTRATE A N D ONE ENZYME I N THE PRESENCE O F SERUM ALBUMIN AND/ OR ENZYMES O F THE CYTOCHROME P450 SUPERFAMILY 318 18.2.3 ONE SUBSTRATE WITH MULTIPLE ENZYMES 319 18.2.4 MULTIPLE SUBSTRATES WITH ONE ENZYME 320 18.2.5 MULTIPLE SUBSTRATES WITH MULTIPLE ENZYMES 320 18.2.6 APPLICATION TO FUNCTIONAL GENOMICS 321 18.3 COMPARISON O F N-FABS WITH OTHER BIOPHYSICAL TECHNIQUES 322 18.4 OUTLOOK 323 18.5 PROTOCOLS 323 18.5.1 PROTOCOL FOR SETUP O F THE N-FABS ASSAY 323 18.5.2 PROTOCOL FOR A SCREENING RUN WITH RZ-FABS 324 18.5.3 PROTOCOL FOR MEASURING THE IC 50 O F IDENTIFIED INHIBITORS 325 18.5.4 EXAMPLE EXPERIMENT 326 IMAGE 9 CONTENTS XIII 18.6 TROUBLESHOOTING 326 FURTHER READING 327 19 N MR O F PEPTIDES 329 JOHANNES C. BECK, ANDREAS O. FRANK, AND HORST KESSLER 19.1 INTRODUCTION 329 19.2 RESONANCE ASSIGNMENT 330 19.3 STEREOSTRUCTURE AND CONFORMATIONAL RESTRAINTS 330 19.3.1 NOES AND ROES 331 19.3.2 3 / COUPLING CONSTANTS 332 19.3.3 RESIDUAL DIPOLAR COUPLINGS 332 19.4 STRUCTURE CALCULATION 333 19.5 IMPORTANCE O F PEPTIDE CONFORMATIONS FOR BIOLOGICAL ACTIVITY 334 19.6 PROTOCOLS 334 19.6.1 RESONANCE ASSIGNMENT 334 19.6.2 ROESY: EXTRACTION O F ACCURATE DISTANCES 336 19.6.3 3 / COUPLINGS: USE IN STRUCTURE DETERMINATION AND USEFUL EXPERIMENTS 337 19.6.4 MODELING O F THE STRUCTURE 339 19.6.4.1 DISTANCE GEOMETRY 340 19.6.4.2 MD 340 19.7 TROUBLESHOOTING 342 FURTHER READING 343 PART FIVE SOLID-STATE NMR 345 20 BIOMOLECULAR SOLID-STATE NMR/BASICS 347 EMELINE BARBET-MASSIN AND CUIDO PINTACUDA 20.1 INTRODUCTION 347 20.2 NMR HAMILTONIAN 347 20.3 MAGIC ANGLE SPINNING 349 20.4 CROSS-POLARIZATION 350 20.5 HETERONUCLEAR 1 H DECOUPLING 350 20.6 DIPOLAR RECOUPLING 351 20.7 RECENT PROGRESS: NEW PROBES - ULTRAFAST MAS - HIGH MAGNETIC FIELDS 354 20.8 PROTOCOLS 355 20.8.1 HARDWARE SETUP 355 20.8.2 MAGIC ANGLE SETTING 356 20.8.3 ADAMANTANE 356 20.8.3.1 MAS SPINNING 356 20.8.3.2 CALIBRATE THE 1 H CHANNEL 357 20.8.4 CALIBRATE THE 13C CHANNEL 357 20.8.4.1 REFERENCE THE SPECTRA 358 20.8.5 CROSS-POLARIZATION 358 20.8.5.1 SET THE SPINNING 358 20.8.5.2 CALIBRATE THE 1 H CHANNEL 358 20.8.5.3 SETUP A CROSS-POLARIZATION EXPERIMENT 358 20.8.5.4 CALIBRATE THE 13C/15N FIELDS 360 20.8.6 HETERONUCLEAR DECOUPLING SEQUENCES 360 20.8.7 DCP 360 20.8.8 RECOUPLING SEQUENCES 361 20.8.9 EXAMPLE O F AN EXPERIMENT 362 20.9 TROUBLESHOOTING 362 20.9.1 TIPS TO OPTIMIZE SIGNAL ACQUISITION AND SENSITIVITY 362 20.9.2 NARROWING THE 13C OR 15N LINEWIDTHS 363 20.9.3 RECOUPLING OPTIMIZATION 363 FURTHER READING 364 IMAGE 10 21 PROTEIN DYNAMICS IN THE SOLID STATE 367 J O Z E F R. LEWANDOWSKI A N D LYNDON EMSLEY 21.1 INTRODUCTION 367 21.2 BASIC CONCEPTS 369 21.3 COHERENT VERSUS INCOHERENT PROCESSES: DECAY IS NOT ALWAYS RELAXATION 370 21.4 DEUTERIUM AS A PROBE O F DYNAMICS 371 21.5 15N AND 13C TI - SPIN-LATTICE RELAXATION 372 21.6 PROTOCOLS 373 21.6.1 MEASURING 15N TI RELAXATION 373 21.6.2 MEASURING 13C T X RELAXATION 373 21.6.3 HETERONUCLEAR NOE 373 21.6.4 MEASURING 15N DIPOLAR-CSA CROSS-CORRELATED RELAXATION 374 21.6.5 MEASURING 15N R L E 374 21.6.6 MEASURING MOTIONALLY AVERAGED SECULAR INTERACTIONS 374 21.6.7 SLOW CONFORMATIONAL EXCHANGE 374 21.6.8 IDENTIFICATION O F HIGHLY MOBILE SITES 374 FURTHER READING 375 22 MICROCRYSTALLINE PROTEINS - AN IDEAL BENCHMARK FOR METHODOLOGY DEVELOPMENT 377 W. TRENT FRANKS, BARTH-JAN VAN ROSSUM, BENJAMIN BARDIAUX, ENRICO RAVERA, CIACOMO PARIGI, CLAUDIO LUCHINAT, AND HARTMUT OSCHKINAT 22.1 MICROCRYSTALLINE PROTEIN SAMPLE PREPARATION 377 22.2 SEQUENTIAL ASSIGNMENT O F PROTEINS 378 22.3 STRUCTURAL RESTRAINTS 380 22.3.1 DISTANCE MEASUREMENTS: CROSS-RELAXATION-LIKE TRANSFER 380 22.3.1.1 PDSD/DARR/RAD 380 22.3.1.2 CHHC AND NHHC EXPERIMENTS 381 22.3.1.3 LH-DETECTED NOE 381 22.3.2 DISTANCE MEASUREMENTS: MULTIPLE-PULSE DIPOLAR RECOUPLING 382 22.3.2.1 RFDR 382 22.3.2.2 TSAR, PAR, AND PAIN 382 22.3.2.3 REDOR 382 22.3.2.4 TEDOR 382 22.3.2.5 PROTON DIPOLAR RECOUPLING: TMREV AND LG-CP 383 22.3.3 PARAMETERS ENCODING TORSION ANGLES 383 22.3.3.1 CHEMICAL SHIFTS 383 22.3.3.2 DOUBLE DIP-SHIFT SPECTROSCOPY 383 22.3.3.3 CSA-DIPOLAR INTERACTIONS 384 22.4 PARAMAGNETIC SYSTEMS 384 22.4.1 PRE 384 22.4.2 PCS 386 22.5 BENCHMARKING O F THE SOLID-STATE NMR STRUCTURE DETERMINATION METHODOLOGY: COMPARISON O F STRUCTURE CALCULATION PROTOCOLS AND ACCURACY O F STRUCTURES 386 22.6 PROTOCOLS 389 22.6.1 THREE-DIMENSIONAL NANOCRYSTALLINE SAMPLE PREPARATION 389 22.6.2 SEQUENTIAL ASSIGNMENTS O F SOLID-STATE NMR SPECTRA 389 22.6.3 DISTANCE RESTRAINT ASSIGNMENTS WITH SOLID-STATE NMR 389 22.6.4 SECONDARY STRUCTURE PREDICTION BY TALOS 390 ( 22.6.5 DIPOLAR TENSOR, CSA, AND VECTOR ANGLE FITTING 390 22.6.6 USE O F PCS FOR STRUCTURAL RESTRAINTS: STRUCTURE O F THE CATALYTIC DOMAIN O F MMP-12 AS A N EXAMPLE 390 1 1 1 TROUBLESHOOTING 391 FURTHER READING 392 IMAGE 11 CONTENTS XV 23 STRUCTURAL STUDIES O F PROTEIN FIBRILS BY SOLID-STATE NMR 395 ANJA BOCKMANN AND BEAT H. MEIER 23.1 BACKGROUND 395 23.2 NMR SPECTRA O F FIBRILS 396 23.3 OUTLOOK 397 23.4 PROTOCOLS AND EXAMPLES 398 23.4.1 SAMPLE PREPARATION 398 23.4.2 EXPERIMENTS FOR THE RESONANCE ASSIGNMENT 398 23.4.3 EXPERIMENTS TO OBTAIN STRUCTURAL RESTRAINTS 400 23.4.4 FLEXIBLE ELEMENTS 401 23.4.5 STRUCTURE CALCULATION IN FIBRILS 402 23.5 TROUBLESHOOTING 404 FURTHER READING 405 24 SOLID-STATE NMR ON MEMBRANE PROTEINS: METHODS AND APPLICATIONS 407 A.A. CUKKEMANE, M. RENAULT, AND M. BALDUS 24.1 SOLID-STATE NMR O F MEMBRANE PROTEINS 407 24.1.1 MAGIC ANGLE SPINNING 407 24.1.2 METHODS FOR HIGH-RESOLUTION STRUCTURAL INVESTIGATION O F MEMBRANE PROTEINS 408 24.1.3 INVESTIGATION O F MEMBRANE PROTEIN TOPOLOGY 409 24.1.4 SENSITIVITY AND RESOLUTION 410 24.2 MAS APPLIED TO ION CHANNELS AND RETINAL PROTEINS 411 24.2.1 RETINAL PROTEINS 411 24.2.2 CHIMERIC POTASSIUM CHANNEL KCSA-KVL.3 411 24.3 PROTOCOLS 413 24.3.1 SAMPLE PREPARATION 413 24.3.2 ISOTOPE LABELING 414 24.3.3 RESONANCE ASSIGNMENT 415 24.3.4 COLLECTING NMR RESTRAINTS 415 24.3.5 A REAL EXPERIMENT 416 24.4 TROUBLESHOOTING 417 24.4.1 TIPS AND TRICKS IN OPTIMIZING SAMPLE PREPARATION 417 24.4.2 IMPROVING SENSITIVITY 417 FURTHER READING 417 PART SIX FRONTIERS IN NMR SPECTROSCOPY 419 25 DYNAMIC NUCLEAR POLARIZATION 421 THOMAS F. PRISNER 25.1 DYNAMIC NUCLEAR POLARIZATION AT HIGH MAGNETIC FIELDS 421 25.2 THEORETICAL BACKGROUND 422 25.2.1 OVERHAUSER EFFECT 423 25.2.2 SOLID EFFECT 425 25.2.3 THREE-SPIN CROSS-POLARIZATION: CROSS-EFFECT 425 25.2.4 MANY-SPIN CROSS-POLARIZATION: THERMAL MIXING 426 25.3 PROTOCOLS 427 25.3.1 HF LIQUID DNP SPECTROMETERS 427 25.3.2 SHUTTLE DNP 428 25.3.3 SS MAS DNP 428 25.3.4 LOW-TEMPERATURE DISSOLUTION POLARIZER 429 25.4 EXAMPLE EXPERIMENT 429 25.5 PERSPECTIVES 430 V 25.5.1 HF LIQUID DNP 430 25.5.2 SHUTTLE DNP 430 25.5.3 SS MAS DNP 430 25.5.4 DISSOLUTION DNP 431 FURTHER READING 431 IMAGE 12 26 13C DIRECT DETECTION NMR 433 ISABELLA C. FELLI AND ROBERTA PIERATTELLI 26.1 13C DIRECT DETECTION NMR FOR BIOMOLECULAR APPLICATIONS 433 26.1.1 13C NMR PROPERTIES AND APPLICATION AREAS 433 26.1.2 PROBLEM O F HOMONUCLEAR DECOUPLING IN THE DIRECT ACQUISITION DIMENSION 436 26.1.3 EXPERIMENTS FOR HIGH-RESOLUTION NMR 438 26.2 PROTOCOLS FOR EXPERIMENTAL SETUP 439 26.3 TROUBLESHOOTING 442 FURTHER READING 442 27 SPEEDING UP MULTIDIMENSIONAL NMR DATA ACQUISITION 445 BERNHARD BRUTSCHER, DOMINIQUE MARION, AND LUCIO FRYDMAN 27.1 MULTIDIMENSIONAL NMR: BASIC CONCEPTS AND FEATURES 445 27.1.1 DISCRETE DATA SAMPLING, ALIASING, AND TRUNCATION ARTIFACTS 446 27.1.2 TIME REQUIREMENTS IN N-DIMENSIONAL NMR 447 27.2 FAST METHODS I N N-DIMENSIONAL NMR 447 27.2.1 SPARSE TIME-DOMAIN DATA SAMPLING AND PROCESSING 447 27.2.1.1 SAMPLING SCHEME AND THE POINT SPREAD FUNCTION 448 27.2.1.2 SPARSE SAMPLING SCHEMES 448 27.2.1.3 ALTERNATIVE DATA PROCESSING METHODS 449 27.2.2 FAST-PULSING METHODS 451 27.2.2.1 REPETITION RATE AND EXPERIMENTAL SENSITIVITY 452 27.2.2.2 LONGITUDINAL RELAXATION ENHANCEMENT 452 27.2.2.3 ERNST ANGLE EXCITATION 453 27.2.2.4 BEST AND SOFAST EXPERIMENTS 453 27.2.3 SINGLE-SCAN "ULTRAFAST" TWO-DIMENSIONAL NMR 454 27.2.3.1 GENERAL PRINCIPLES 454 27.2.3.2 SPATIOTEMPORAL ENCODING PROCESS 455 27.2.3.3 SPATIOTEMPORAL DECODING: TWO-DIMENSIONAL NMR IN ONE SCAN 455 27.3 PROTOCOLS FOR FAST JV-DIMENSIONAL NMR AND TROUBLESHOOTING 457 27.3.1 SETTING UP A N APPROPRIATE SAMPLING GRID 457 27.3.1.1 INFORMATION-DRIVEN SPECTRAL ALIASING 458 27.3.1.2 RANDOM SPARSE SAMPLING AND MAXENT PROCESSING 458 27.3.2 PRACTICAL CONSIDERATIONS FOR THE SETUP O F FAST-PULSING EXPERIMENTS 459 27.3.3 SETTING UP A SINGLE-SCAN TWO-DIMENSIONAL EXPERIMENT 460 27.3.3.1 PROPERTIES O F DIFFERENT ENCODING SCHEMES 460 27.3.3.2 SINGLE-SCAN TWO-DIMENSIONAL NMR SPECTRUM: CHARACTERISTICS 461 27.3.4 FAST TWO-DIMENSIONAL NMR FOR SAMPLE QUALITY SCREENING AND MOLECULAR INTERACTION STUDIES 462 27.3.5 REAL-TIME TWO-DIMENSIONAL NMR MEASUREMENTS 463 FURTHER READING 465 28 METABOLOMICS 467 LEONARDO TENORI 28.1 METABOLOMICS I N SYSTEMS BIOLOGY 467 28.2 NMR AND METABOLOMICS 469 28.3 DATA ANALYSIS 471 28.4 SUCCESS IN THE APPLICATION O F METABOLOMICS 472 28.5 PROTOCOLS 473 28.5.1 SERUM EXTRACTION 473 ' 28.5.2 PLASMA EXTRACTION 473 28.5.3 URINE COLLECTION 474 28.5.4 TIP ON SAMPLES LABELING 474 28.5.5 SAMPLE PREPARATION FOR NMR ANALYSIS 474 28.5.5.1 URINE 474 IMAGE 13 28.5.5.2 SERUM/PLASMA 475 28.5.6 BUFFER RECIPES 475 28.5.7 NMR ANALYSIS (WORKING WITH A 600-MHZ BRUKER SPECTROMETER) 475 28.5.7.1 URINE 475 28.5.7.2 SERUM/PLASMA 475 28.5.8 SPECTRAL PROCESSING 476 28.5.9 BUCKETING 476 28.5.10 DATA MINING 476 28.5.11 EXAMPLE EXPERIMENT 477 28.6 TROUBLESHOOTING 477 FURTHER READING 477 29 IN-CELL PROTEIN NMR SPECTROSCOPY 479 DAVID S. BURZ, DAVID COWBURN, KAUSHIK DUTTA, AND ALEXANDER SHEKHTMAN 29.1 BACKGROUND 479 29.2 SPECIFIC APPLICATIONS 480 29.2.1 STRUCTURE DETERMINATION 481 29.2.2 PERTURBATIONS WITHIN THE CELL - H O W IN-CELL AND IN VITRO ARE DIFFERENT ENVIRONMENTS 481 29.2.3 SPECIFIC PROTEIN-PROTEIN INTERACTIONS: STINT-NMR 483 29.2.4 OTHER PROTEIN-LIGAND INTERACTIONS 484 29.2.5 POST-TRANSLATIONAL MODIFICATION - IN-CELL BIOCHEMISTRY 484 29.2.5.1 OTHER IN-CELL BIOCHEMICAL STUDIES 485 29.2.6 NUCLEIC ACIDS IN-CELL 485 29.3 CONCLUSIONS AND FUTURE DIRECTIONS 485 29.4 PROTOCOLS AND EXAMPLE EXPERIMENTS 486 29.4.1 EXPERIMENTAL DESIGN O F MULTIPLE EXPRESSION SYSTEMS IN-CELL 486 29.4.2 DETAILED STINT PROTOCOL 487 29.4.2.1 DATA ACQUISITION AND ANALYSIS 488 29.4.2.2 EXAMPLE EXPERIMENT 489 29.4.3 DETAILED SMILI-NMR PROTOCOL 489 29.4.3.1 EXAMPLE EXPERIMENT 489 29.4.4 DETAILED PROTOCOL FOR POST-TRANSLATIONAL MODIFICATION 491 29.4.4.1 EXAMPLE EXPERIMENT 491 29.5 TROUBLESHOOTING 492 29.5.1 NO SIGNAL 492 29.5.2 WEAK SIGNAL 493 29.5.3 SIGNAL IS EXTRACELLULAR 493 29.5.3.1 CONTROL EXPERIMENTS FOR PROTEIN LEAKAGE/CELL LYSIS 493 29.5.3.2 CELL VIABILITY 493 29.5.4 CELL GROWTH 493 FURTHER READING 493 30 STRUCTURAL INVESTIGATION O F CELL-FREE EXPRESSED MEMBRANE PROTEINS 497 SOLMAZ SOBHANIFAR, SINA RECKEL, FRANK LOHR, FRANK BERN HARD, AND VOLKER DOTSCH 30.1 INTRODUCTION 497 30.2 CELL-FREE EXPRESSION O F MEMBRANE PROTEINS 498 30.3 CELL-FREE EXPRESSION IN MEMBRANE-MIMETIC ENVIRONMENTS 499 30.4 STRATEGIES FOR FUNCTIONAL PROTEIN EXPRESSION 500 30.5 CELL-FREE APPROACHES FOR STRUCTURAL STUDIES 501 30.6 CELL-FREE LABELING STRATEGIES FOR BACKBONE ASSIGNMENT 502 30.7 STRUCTURE DETERMINATION WITH LIMITED NUCLEAR OVERHAUSER EFFECT LONG-DISTANCE RESTRAINTS 502 30.8 PROTOCOLS 504 30.8.1 EXTRACT 504 30.8.2 REACTION DEVICES 505 30.8.3 DNA TEMPLATE PREPARATION 506 IMAGE 14 30.8.4 DIFFERENT MODES FOR THE CELL-FREE PRODUCTION O F MEMBRANE PROTEINS 506 30.8.5 EXAMPLE EXPERIMENT 507 30.9 TROUBLESHOOTING 507 FURTHER READING 508 PART SEVEN COMPUTATIONAL ASPECTS 509 31 GRID COMPUTING 511 ANTONIO ROSATO 31.1 GRID INFRASTRUCTURE 511 31.2 E-NMR WEB PLATFORM 512 31.3 PROTOCOLS 515 31.3.1 HOW TO REGISTER WITH THE E-NMR/WENMR VO 515 31.3.2 PERFORMING A CYANA CALCULATION 516 31.3.3 REFINING A STRUCTURE WITH AMBER 516 31.4 TROUBLESHOOTING 517 FURTHER READING 518 32 PROTEIN-PROTEIN DOCKING WITH HADDOCK 521 CHRISTOPHE SCHMITZ, ADRIEN S.J. MELQUIOND, SJOERDJ. DE VRIES, EZGI KARACA, MARC FAN DIJK, PANAGIOTIS L. KASTRITIS, A N D ALEXANDRE M.J.J. BONVIN 32.1 PROTEIN-PROTEIN DOCKING: GENERAL CONCEPTS 521 32.1.1 WHY PROTEIN-PROTEIN DOCKING? 521 32.1.2 GENERAL METHODS FOR PROTEIN-PROTEIN DOCKING 522 32.2 GATHERING EXPERIMENTAL INFORMATION FOR DATA-DRIVEN DOCKING 522 32.2.1 CHEMICAL SHIFT PERTURBATIONS 523 32.2.2 CROSS-SATURATION EXPERIMENTS 524 32.2.3 HYDROGEN/DEUTERIUM EXCHANGE 524 32.2.4 INTERMOLECULAR NOES 524 32.2.5 PARAMAGNETIC RELAXATION ENHANCEMENT 524 32.2.6 PSEUDOCONTACT SHIFT 525 32.2.7 RESIDUAL DIPOLAR COUPLING 525 32.2.8 DIFFUSION ANISOTROPY 526 32.2.9 NON-NMR INFORMATION 526 32.3 HOW DOES HADDOCK USE THE INFORMATION? 526 32.3.1 INCORPORATION O F AMBIGUOUS DISTANCE RESTRAINTS 527 32.3.2 INCORPORATION O F UNAMBIGUOUS DISTANCE RESTRAINTS 527 32.3.3 INCORPORATION O F SHAPE RESTRAINTS 528 32.3.4 INCORPORATION O F ORIENTATION RESTRAINTS 528 32.3.5 SYMMETRY RESTRAINTS 528 32.3.6 ADDITIONAL DOCKING MODE 528 32.3.7 OVERVIEW O F A HADDOCK RUN 529 32.4 PROTOCOL: A GUIDED TOUR O F THE HADDOCK WEB INTERFACE 530 32.4.1 PREREQUISITE: REGISTRATION 530 32.4.2 DESCRIPTION O F THE WEB INTERFACE 531 32.4.3 ANALYSIS O F THE DOCKING RUN 533 32.5 TROUBLESHOOTING 534 32.5.1 GENERAL CONSIDERATIONS 534 32.5.2 PROBLEMS RELATED TO THE PDB FILE 534 32.5.3 PROBLEMS ENCOUNTERED DURING DOCKING 535 FURTHER READING 535 S 33 AUTOMATED PROTEIN STRUCTURE DETERMINATION METHODS 537 PAUL GUERRY AND TORSTEN HERRMANN 33.1 NMR EXPERIMENT-DRIVEN PROTEIN MODELING 537 33.2 NOE-BASED STRUCTURE DETERMINATION 538 33.2.1 CHEMICAL SHIFT AMBIGUITY 539 IMAGE 15 CONTENTS XIX 33.2.2 AMBIGUOUS DISTANCE RESTRAINTS 539 33.2.3 USING INTERMEDIATE STRUCTURES AND ELIMINATION O F ARTIFACTS 540 33.2.4 STRUCTURE CALCULATION AND ENERGY REFINEMENT 540 33.2.5 STRUCTURE VALIDATION 541 33.3 SEQUENCE-SPECIFIC RESONANCE ASSIGNMENT 541 33.4 NMR SIGNAL IDENTIFICATION 542 33.5 PERSPECTIVES 542 33.6 PROTOCOLS 543 33.7 EXAMPLE STRUCTURE DETERMINATION AND TROUBLESHOOTING 544 33.7.1 SEQUENCE-SPECIFIC RESONANCE ASSIGNMENT 545 33.7.2 AMINO ACID SEQUENCE, CIS/TRANS ISOMERIZATION, AND REDOX STATE 545 33.7.3 NOE ASSIGNMENT, STRUCTURE CALCULATION, AND STRUCTURE VALIDATION 545 FURTHER READING 546 34 NMR STRUCTURE DETERMINATION O F PROTEIN-LIGAND COMPLEXES 549 ULRICH SCHIEBORR, SRIDHAR SREERAMULU, AND HAROLD SCHWALBE 34.1 PROTEIN-LIGAND COMPLEX STRUCTURE DETERMINATION BY NMR 549 34.2 METHODS FOR HIGH-AFFINITY BINDERS 550 34.3 METHODS FOR LOW-AFFINITY BINDERS 552 34.4 PROTOCOLS AND TROUBLESHOOTING 558 FURTHER READING 561 35 SMALL ANGLE X-RAY SCATTERING/SMALL ANGLE NEUTRON SCATTERING AS METHODS COMPLEMENTARY TO NMR 563 M.V. PETOUKHOV AND D.I. SVERGUN 35.1 INTRODUCTION 563 35.2 INVARIANTS 566 35.3 A B INITIO SHAPE DETERMINATION 567 35.4 VALIDATION O F ATOMIC MODELS 568 35.5 RIGID-BODY MODELING O F QUATERNARY STRUCTURE 568 35.6 EQUILIBRIUM MIXTURES AND FLEXIBLE SYSTEMS 569 35.7 PROTOCOLS 570 35.7.1 VALIDATION O F HIGH-RESOLUTION MODELS BY SOLUTION SCATTERING 570 35.7.2 UNRESTRAINED RIGID-BODY MODELING O F A COMPLEX 571 35.7.3 RIGID-BODY MODELING WITH CONTACT RESTRAINTS FROM NMR CHEMICAL SHIFTS 572 35.7.4 RIGID-BODY MODELING O F A COMPLEX WITH ORIENTATIONAL CONSTRAINTS FROM NMR RDCS 572 35.7.5 CHARACTERIZATION O F FLEXIBLE SYSTEMS 573 35.8 TROUBLESHOOTING 573 FURTHER READING 574 REFERENCES 575 INDEX 609
any_adam_object 1
author2 Bertini, Ivano
author2_role edt
author2_variant i b ib
author_facet Bertini, Ivano
building Verbundindex
bvnumber BV039877353
classification_rvk VG 9500
WC 2600
WC 3460
classification_tum CHE 808f
CHE 244f
ctrlnum (OCoLC)794523456
(DE-599)DNB1013615476
dewey-full 572.36
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 572 - Biochemistry
dewey-raw 572.36
dewey-search 572.36
dewey-sort 3572.36
dewey-tens 570 - Biology
discipline Chemie / Pharmazie
Biologie
Chemie
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV039877353</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20130710</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">120209s2012 ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">11,N30</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1013615476</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527328505</subfield><subfield code="9">978-3-527-32850-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)794523456</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1013615476</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">572.36</subfield><subfield code="2">22//ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VG 9500</subfield><subfield code="0">(DE-625)147241:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WC 2600</subfield><subfield code="0">(DE-625)148071:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WC 3460</subfield><subfield code="0">(DE-625)148086:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 808f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">570</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">540</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 244f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">NMR of biomolecules</subfield><subfield code="b">towards mechanistic systems biology</subfield><subfield code="c">ed. by Ivano Bertini ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-Blackwell</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXVIII, 612 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">NMR-Spektroskopie</subfield><subfield code="0">(DE-588)4075421-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biomolekül</subfield><subfield code="0">(DE-588)4135124-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Systembiologie</subfield><subfield code="0">(DE-588)4809615-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Biomolekül</subfield><subfield code="0">(DE-588)4135124-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">NMR-Spektroskopie</subfield><subfield code="0">(DE-588)4075421-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Systembiologie</subfield><subfield code="0">(DE-588)4809615-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bertini, Ivano</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=3855504&amp;prov=M&amp;dok_var=1&amp;dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=024736553&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024736553</subfield></datafield></record></collection>
id DE-604.BV039877353
illustrated Illustrated
indexdate 2024-11-25T17:37:10Z
institution BVB
isbn 9783527328505
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-024736553
oclc_num 794523456
open_access_boolean
owner DE-11
DE-703
DE-91G
DE-BY-TUM
DE-20
DE-355
DE-BY-UBR
DE-19
DE-BY-UBM
owner_facet DE-11
DE-703
DE-91G
DE-BY-TUM
DE-20
DE-355
DE-BY-UBR
DE-19
DE-BY-UBM
physical XXXVIII, 612 S. Ill., graph. Darst.
publishDate 2012
publishDateSearch 2012
publishDateSort 2012
publisher Wiley-Blackwell
record_format marc
spellingShingle NMR of biomolecules towards mechanistic systems biology
NMR-Spektroskopie (DE-588)4075421-2 gnd
Biomolekül (DE-588)4135124-1 gnd
Systembiologie (DE-588)4809615-5 gnd
subject_GND (DE-588)4075421-2
(DE-588)4135124-1
(DE-588)4809615-5
title NMR of biomolecules towards mechanistic systems biology
title_auth NMR of biomolecules towards mechanistic systems biology
title_exact_search NMR of biomolecules towards mechanistic systems biology
title_full NMR of biomolecules towards mechanistic systems biology ed. by Ivano Bertini ...
title_fullStr NMR of biomolecules towards mechanistic systems biology ed. by Ivano Bertini ...
title_full_unstemmed NMR of biomolecules towards mechanistic systems biology ed. by Ivano Bertini ...
title_short NMR of biomolecules
title_sort nmr of biomolecules towards mechanistic systems biology
title_sub towards mechanistic systems biology
topic NMR-Spektroskopie (DE-588)4075421-2 gnd
Biomolekül (DE-588)4135124-1 gnd
Systembiologie (DE-588)4809615-5 gnd
topic_facet NMR-Spektroskopie
Biomolekül
Systembiologie
url http://deposit.dnb.de/cgi-bin/dokserv?id=3855504&prov=M&dok_var=1&dok_ext=htm
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024736553&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT bertiniivano nmrofbiomoleculestowardsmechanisticsystemsbiology