Green chemistry for environmental remediation

Gespeichert in:
Bibliographische Detailangaben
Format: Buch
Sprache:English
Veröffentlicht: Salem, Mass. [u.a.] Scrivener Pub. [u.a.] 2012
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Klappentext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV039869981
003 DE-604
005 20120716
007 t|
008 120206s2012 xxuad|| |||| 00||| eng d
010 |a 2011040428 
020 |a 9780470943083  |c cloth  |9 978-0-470-94308-3 
035 |a (OCoLC)714716004 
035 |a (DE-599)BVBBV039869981 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
044 |a xxu  |c US 
049 |a DE-29T  |a DE-703  |a DE-634 
050 0 |a TP155.2.E58 
082 0 |a 577/.14 
084 |a VN 9200  |0 (DE-625)147637:253  |2 rvk 
245 1 0 |a Green chemistry for environmental remediation  |c ed. by Rashmi Sanghi ... 
264 1 |a Salem, Mass. [u.a.]  |b Scrivener Pub. [u.a.]  |c 2012 
300 |a XXI, 776 S.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
500 |a Includes bibliographical references and index 
650 4 |a Nachhaltigkeit 
650 4 |a Umweltschutz 
650 4 |a Environmental chemistry  |x Industrial applications 
650 4 |a Sustainable development 
650 4 |a Environmental protection 
650 0 7 |a Grüne Chemie  |0 (DE-588)7563215-9  |2 gnd  |9 rswk-swf 
689 0 0 |a Grüne Chemie  |0 (DE-588)7563215-9  |D s 
689 0 |5 DE-604 
700 1 |a Sanghi, Rashmi  |e Sonstige  |4 oth 
856 4 2 |m Digitalisierung UB Bayreuth  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024729329&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
856 4 2 |m Digitalisierung UB Bayreuth  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024729329&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA  |3 Klappentext 
943 1 |a oai:aleph.bib-bvb.de:BVB01-024729329 

Datensatz im Suchindex

_version_ 1819787133535125504
adam_text Contents Foreword by Robert Peoples xix PART 1 Green Chemistry and Societal Sustainability 1 1. Environment and the Role of Green Chemistry 3 Rashmi Sanghi, Vandana Singh and Sanjay K. Sharma 1.1 The Environmental Concern 3 1.2 The Role of Chemistry 5 1.3 Sustainable Development 7 1.4 Era of Green Chemistry 8 1.4.1 Twelve Principles of Green Chemistry [1] 10 1.4.2 Objectives of Green Chemistry 11 1.4.3 Views of Green Chemistry Experts 12 1.4.4 Concepts Related to Green Chemistry: Cause of Confusion 17 1.4.5 International Initiatives for Green Chemistry Awareness 18 1.5 Concluding Remarks 29 Acknowledgement 30 References 30 Suggested Reading: Some Books on Green Chemistry 32 Useful Resources for Green Chemistry and their Links 33 2. The Greening of the Chemical Industry: Past, Present and Challenges Ahead 35 Fernando J. Diaz Lopez and Carlos Montalvo 2.1 Introduction 36 2.2 From Greening Technologies to Greening the Economy 38 vi Contents 2.3 A Brief Note on Business Strategy and Corporate Greening 44 2.4 The Past: An Account of the Historical Relationship Between the Chemical Industry and the Environment 46 2.5 The Present: From Pollution Control to Corporate Environmental Sustainability 51 2.6 The Future: Environmentally Sustainable Manufacturing and Eco-innovation 64 2.7 Conclusion: Greening or Sustainability in Chemical Manufacturing? 69 References 71 3. Designing Sustainable Chemical Synthesis: The Influence of Chemistry on Process Design 79 Laura A. Anderson and Michael A. Gonzalez 3.1 Introduction 79 3.2 Green Chemistry 83 3.3 Green Engineering 85 3.4 Sustainability Metrics 88 3.5 Designing a Sustainable Process 89 3.6 Merck Case Study 100 3.7 Conclusion 103 References 104 4. Green Chemical Processing in the Teaching Laboratory: Microwave Extraction of Natural Products 107 S. Verino-Issar tier, F. Visinoni, F. Chemat 4.1 Introduction 107 4.2 Microwave versus Conventional Heating 110 4.3 Experimental 111 4.3.1 Hydrodistillation (HD) Procedure 111 4.3.2 Microwave Hydrodiffusion and Gravity Procedure 112 4.3.3 Analysis of Essential Oil 113 4.4 Advantages 114 4.4.1 Green Production Rapidity 114 4.4.2 Green Production Efficiency 115 4.4.3 Green Production Courses 115 4.4.4 Green Production Messages 116 4.4.5 Safety Considerations 116 5. Contents vii 4.5 Conclusion 117 Acknowledgements 118 References 118 Ensuring Sustainability through Microscale Chemistry 119 Norita Mohamed, Mashita Abdullah and Zurida Ismail 5.1 Introduction to Microscale Chemistry 120 5.2 Development of Microscale Chemistry Experiments for Upper Secondary Schools 122 5.2.1 Microscale Chemistry Experiments 122 5.2.2 Cost-benefit Analysis 128 5.3 Teachers Evaluation 130 5.3.1 Workshops 130 5.3.2 Focused Group Discussions 130 5.4 Students Feedback 131 5.4.1 Analyses of Open Comments from Students 131 5.4.2 Interviews 132 5.5 Conclusion 134 References 135 6. Capability Development and Technology Transfer Essential for Economic Transformation 137 Surya Pandey and Amit Pandey 6.1 Introduction 138 6.2 The Importance of R&D 138 6.2.1 Research and Development Expenditure 141 6.3 Knowledge Creation and Technology Transfer 145 6.3.1 Development of an RDT Voucher System 146 6.3.2 External Engagement 146 6.3.3 Organizational RDT Planning 147 6.3.4 Structural Changes 148 6.4 Technology Transfer Future 148 6.5 Applications to Green Chemistry 149 6.6 Conclusions 150 Acknowledgements 150 References 151 viii Contents PART 2 Green Lab Technologies 153 7. Ultrasound Cavitation as a Green Processing Technique in the Design and Manufacture of Pharmaceutical Nanoemulsions in Drug Delivery System 155 Siah Ying Tang, Khang Wei Tan and Manickam Sivakumar 7.1 Introduction 156 7.2 Types of Emulsion and Principles of Nanoemulsion Formation 157 7.3 Formulation Aspects of Nanoemulsion 159 7.4 The Ultrasonic Domain 160 7.5 What is Ultrasound Cavitation? 163 7.6 Ultrasound Generation 166 7.7 Principle and Operation of Ultrasound Emulsification 167 7.8 Types of Ultrasound Emulsification: Batch and Dynamic Systems 170 7.9 Advantages of Ultrasound Emulsification 171 7.10 General Reviews of Ultrasound Emulsification 173 7.11 Nanoemulsion in Pharmaceutical Application 180 7.12 Characterization of Nanoemulsion Drug Delivery System 184 7.12.1 Particle Surface Morphology and Size Distribution 184 7.12.2 Solubility Enhancement 187 7.12.3 Drug Encapsulation and Loading Efficiency 188 7.12.4 Drug Release 189 7.12.5 Ultrasonic-mediated Drug Release 190 7.12.6 Site Specific Drug Targeting 193 7.12.7 Stability 194 7.13 Practical and Potential Applications of Nanoemulsion in Different Administration Routes 194 7.13.1 Parenteral Drug Delivery 195 7.13.2 Oral Drug Delivery 196 7.13.3 Topical Drug Delivery 199 7.14 Conclusion 200 Acknowledgement 201 References 201 Contents ix 8. Microwave-Enhanced Methods for Biodiesel Production and Other Environmental Applications 209 Veera Gnaneswar Gude, Praţulla D. Patii, Shuguang Deng, Nirmalakhandan 8.1 Introduction 210 8.2 Microwave Energy 212 8.2.1 Microwave Energy as a Heat Source 212 8.2.2 Microwave-Enhanced Biodiesel Synthesis 215 8.3 Biodiesel Production Using Different Feedstock 218 8.3.1 Biodiesel Production from Edible and Non-edible Oils 218 8.3.2 Biodiesel Production from Algae 221 8.4 Energy Consumption 229 8.4.1 Kinetics Study 231 8.4.2 Comparison Between Supercritical and Microwave Assisted Algal Biodiesel Production 233 8.5 Analysis of Algal Biomass and Biodiesel 235 8.5.1 ТЕМ Analysis of Algal Biomass 235 8.5.2 GC-MS Analysis of Algal Biodiesel from Wet Algae 236 8.5.3 TLC Analysis of Algal Biodiesel from Dry Algae 237 8.6 Current Status of the Microwave Technology for Large Scale Biodiesel Production 238 8.7 Other Microwave-enhanced Applications 240 8.7.1 Microwave Applications in Organic Synthesis 240 8.7.2 Microwave Applications for Green Environment 242 8.8 Summary 244 References 246 9. Emergence of Base Catalysts for Synthesis of Biodiesel 251 В. Singh, S.N. Upadhyay, Dinesh Mohan, Y.C. Sharma 9.1 Introduction 252 9.2 Mechanism of Heterogeneous Catalysis 252 χ Contents 9.3 Calcium Oxide and Magnesium Oxide 253 9.4 Hydrotalcite Doped Compounds 260 9.5 Alumina Loaded Compounds 269 9.6 Zeolite 278 9.7 Conclusions 284 Acknowledgement 286 References 286 10. Hydrothermal Technologies for the Production of Fuels and Chemicals from Biomass 291 D.W. Rackemann, L. Moghaddam, T.J. Rainey, CF. Fellows, P.A. Hobson and W.O.S. Doherty 10.1 Introduction 292 10.2 Thermochemical Processes for Biomass 295 10.2.1 Gasification 298 10.2.2 Pyrolysis 300 10.2.3 Direct Liquefaction 304 10.3 Green Chemistry and Hydrothermal Liquefaction 315 10.3.1 Upgrading Biocrude Oils 317 10.4 Hydro-Deoxygenation Upgrading 318 10.5 Zeolite Upgrading 320 10.5.1 Zeolite Upgrading of Pyrolysis Bio-oils 321 10.5.2 Zeolite Upgrading of Liquefaction Biocrude 323 10.5.3 Bio-oil Emulsification 323 10.5.4 Steam Reforming Bio-oil 324 10.5.5 HTU® technology 327 10.5.6 Thermal Depolymerization Process (TDP) Technology 332 10.6 Conclusions 336 References 338 11. Ionic Liquids in Green Chemistry - Prediction of Ionic Liquids Toxicity Using Different Models 343 Raquel F. M. Frade 11.1 Introduction 343 11.1.1 Ionic Liquids 343 11.1.2 Ionic Liquids: Applications 345 Contents xi 11.1.3 Ionic Liquid Toxicity 346 11.2 Conclusions 352 References 352 12. Nano-catalyst: A Second Generation Tool for Green Chemistry 357 Archna Rani, Sapna fain and Sanjay K. Sharma 12.1 Introduction 358 12.2 Nanocatalyst: An Origin of a Green Concept 358 12.3 Recent Advances in Nanocatalysis 361 12.3.1 Synthesis of Nano-catalysts 361 12.3.2 Applications 363 12.4 Challenges and Future Scope 369 12.5 Conclusion 370 Acknowledgements 370 References 370 13. Green Polymer Synthesis: An Overview on Use of Microwave-Irradiation 379 Anuradha Mishra, Rashmi Dubey 13.1 Introduction 380 13.2 Radical Polymerization 385 13.2.1 Free Radical Homopolymerization 386 13.2.2 Free Radical Copolymerizations 387 13.2.3 Synthesis of Composites by Free Radical Polymerization 390 13.2.4 Emulsion Polymerization 391 13.2.5 Controlled Radical Polymerization 392 13.3 Step Growth Polymerization 394 13.3.1 Synthesis of Poly(amide)s 395 13.3.2 Synthesis of Poly(imide)s 397 13.3.3 Synthesis of Poly(ether)s 398 13.3.4 Synthesis of Poly(ester)s 398 13.3.5 Synthesis of Poly(urea)s and Poly(urethane)s 399 13.3.6 Synthesis of Poly(anhydride)s 400 13.3.7 Synthesis of Poly(amide-imide)s, Poly (amide-ester)s, Poly(ether-ester)s, Poly(ester-imide)s, Poly (ether-imide)s, Polyiamino-quinone) and other Polycondensation Reactions 400 13.3.8 Copolymerization 402 xii Contents 13.4 Ring Opening Polymerization 402 13.4.1 Ring Opening Polymerization of Cyclic Esters 403 13.4.2 Enzyme Catalyzed Ring Opening Polymerization 405 13.4.3 Cationic/Anionic Ring Opening Polymerizations 406 13.4.4 Ring Opening Copolymerization 407 13.5 Polymer Modifications 409 13.5.1 Polymer Crosslinking/Curing 410 13.5.2 Formation of Hydrogels 411 13.5.3 Polymer Composites 412 13.5.4 Processing of Polymeric Scaffolds and Particles 413 13.5.5 Polymer Blends 414 13.6 Miscellaneous Polymer Synthesis 414 13.6.1 Syntheses of Polypeptides 415 13.7 Conclusions and Perspectives 415 References 417 PART3 Green Bio-energy Sources 425 14. Bioenergy as a Green Technology Frontier 427 Laura B. Brentner 14.1 Introduction 427 14.2 Bioenergy Life Cycles 431 14.2.1 Land-use Changes 431 14.2.2 Resource Demand (other inputs) 432 14.2.3 Process Contribution to Energy Demand (fossil fuel inputs) 434 14.3 Transportation Biofuels 435 14.3.1 Oil Crops for Biodiesel 435 14.3.2 Carbohydrate Crops for Ethanol 438 14.4 Thermochemical Conversion of Biomass 440 14.5 Biogas 442 14.5.1 Anaerobic Digestion and Methane Production 442 14.5.2 Biohydrogen 442 Contents xiii 14.6 Microbial Fuel Cells 443 14.7 Future Prospects 444 References 446 15. Biofuels as Suitable Replacement for Fossil Fuels 451 Juan Carlos Serrano-Ruiz, Juan Manuel Campeio, Rafael Luque, Antonio A. Romero 15.1 Introduction 451 15.2 Types of Biofuels and Technologies for their Production 454 15.2.1 Biodiesel 455 15.2.2 Bioalcohols 459 15.2.3 Biogas and Biohydrogen 462 15.2.4 Liquid Hydrocarbon Fuels (LHF) 463 15.3 Future Prospects and Conclusions 473 Acknowledgments 473 References 474 16. Biocatalysts for Greener Solutions 479 U. Lakshmishri, Rintu Baner jee ana Surya Pandey 16.1 Introduction 479 16.1.1 Challenges Facing Green Chemistry 481 16.2 Enzyme-Biocatalysts in Green Chemistry 482 16.2.1 Classification of Enzymes 482 16.2.2 General Applications of Enzymes 484 16.3 Utilization of Enzymes as Tools for Providing Greener Solutions 485 16.3.1 Paper and Pulp Industry 485 16.3.2 Textile Industry 486 16.3.3 Petrochemical Industry 488 16.3.4 Enzymes for Bioremediation of Persistent Organic Contaminants 491 16.3.5 Enzymes in the Pharmaceutical Industry 494 16.3.6 Tannery 496 xiv Contents 16.4 Conclusion 501 References 502 17. Lignocellulosics as a Renewable Feedstock for Chemical Industry: Chemical Hydrolysis and Pretreatment Processes 505 Ian M. O Hara, Zhanying Zhang, William O.S. Doherty and Christopher M. Fellows 17.1 Introduction 505 17.2 Lignocellulosic Biomass Structure 507 17.2.1 Cellulose 508 17.2.2 Hemicellulose 509 17.2.3 Lignin 510 17.3 Biomass Hydrolysis Processes 511 17.3.1 Concentrated Acid Hydrolysis 512 17.3.2 Dilute Acid Hydrolysis 513 17.3.3 Solid Acid Catalysts 515 17.4 Biomass Pretreatment Processes 518 17.4.1 Chemical Pretreatment 519 17.4.2 Physico-chemical Processes 531 17.4.3 Physical Pretreatment Processes 537 17.4.4 Biological Pretreatment Processes 540 17.5 Conclusions 543 References 547 18. Lignocellulosics as a Renewable Feedstock for Chemical Industry: Chemicals from Lignin 561 Christopher M. Fellows, Trevor C. Brown and 1 William O.S. Doherty 18.1 Introduction 561 18.2 Lignin Structure 562 18.3 Lignin Isolation 565 18.4 Lignin as a Macromolecular Raw Material 567 18.5 Depolymerisation/Valorisation of Lignin 570 18.5.1 Pyrolysis 572 18.5.2 Hydrogenolysis 577 18.5.3 Hydrolysis 580 18.5.4 Oxidation 583 18.5.5 Post-depolymerisation Deoxygenation 586 18.5.6 Enzymatic Depolymerisation 588 Contents xv 18.6 Conclusions 589 References 591 19. Genome Enabled Technologies in Green Chemistry 611 Puja Ravikumar and R K Singh 19.1 Introduction 612 19.2 Microbial Communities - Teamwork in Bioremediation 613 19.3 Genome Sequencing 615 19.4 Metagenomics 616 19.4.1 Limitations of Metagenomic Libraries 619 19.5 Microbial Microarrays- Genome Wide Expression Studies 620 19.6 Future Prospects 623 References 624 PART 4 Green Solutions for Remediation 627 20. Green Biotechnology for Municipal and Industrial Wastewater Treatment 629 Balasubramanian S., R.D. Tyagi, R.Y. Surampalli, and Tian C. Zhang 20.1 Introduction 630 20.2 Green Biotechnology 631 20.3 Need for Efficient/Green Biotechnology for WWT Processes 632 20.4 Application of Green Biotechnology in WWT Processes 633 20.4.1 Nutrient Removal (Phosphorus) 634 20.4.2 Foam Control from Activated Sludge Processes 634 20.4.3 Green Biotechnology to Improve Sludge Dewatering 635 20.4.4 Green Biotechnology to Improve Sludge (Aerobic and Anaerobic) Digestion 636 20.4.5 Green Biotechnology to Control Pathogens in Wastewater Sludge 637 20.5 Bioconversion of Wastewater Sludge to Value Added Products 638 xvi Contents 20.5.1 Bioenzymes (Laccases, Degradative Enzymes and Proteases) Production 638 20.5.2 Bioethanol and Biodiesel Production 643 20.5.3 Bio-fertilizer 646 20.5.4 Bioflocculants/Biopolymers 647 20.5.5 Bio-pesticides 651 20.5.6 Bio-plastics 652 20.6 Research/Development Needs and Future Prospects 655 20.7 Conclusions 655 Acknowledgement 655 References 655 21. Phytoremediation of Cadmium: A Green Approach 661 Ackmez Mudhoo 21.1 The Environmental Pollution Concern 662 21.2 Essentials of Bioremediation 662 21.3 Principles of Phytoremediation 663 21.3.1 Definition and Characterisitics of Phytoremediation 664 21.3.2 Main Types of Phytoremediation 665 21.3.3 Plant-Microbial Interactions During Phytoremediation 667 21.4 Cadmium: Properties, Toxicity and Occurence 668 21.4.1 Basic Properties of Cadmium 668 21.4.2 Cadmium Toxicity 669 21.4.3 Cadmium Occurrence 669 21.5 Phytoremediation of Cadmium 670 21.5.1 Phytoremediation of Cadmium in Contaminated Soils 671 21.5.2 Phytoremediation of Cadmium in Aqueous Media 676 21.5.3 Cadmium Hyperaccumulators 677 21.5.4 Chelating Agents in Cadmium Phytoremediation 684 21.6 Cadmium Phtoremediation and Genetic Engineering 688 Contents xvii Acknowledgement 694 References 694 22. A Closer Look at Green Glass: Remediation with Organosilica Sol-Gels Through the Application of Green Chemistry 699 Sarah B. Lockwood and Bakul С. Dave 22.1 Introduction 699 22.2 Green Chemistry and the Sol-Gel Materials 700 22.3 Organosilica Sol-Gels 704 22.3.1 Properties of Organosilica Sol-Gels 706 22.3.2 Organosilica Sol-Gels — Benign by Design 710 22.3.3 Remediation Strategies with Organosilica Sol-Gel 710 22.3.4 Selective Adsorption 712 22.3.5 Binding and Catalysis 714 22.4 Green Chemistry with Glasses—The Green side of Organosilica Sol-Gels 714 22.4.1 Environmental Remediation 715 22.4.2 Removal of Cationic Species 715 22.4.3 Removal of Anionie Species 716 22.4.4 Removal of Neutral Species 716 22.4.5 Binding and Reduction of Chromâtes 716 22.4.6 Remediation of Greenhouse Gas Via Conversion to Methanol 718 22.5 Green Chemistry and The Potential Impact of Organosilica Sol-Gels 720 22.6 Conclusions and Future Perspectives 725 References 726 23. Modification and Applications of Guar Gum in the Field of Green Chemistry 729 Sagar Pal, Sk. A. AH, G. Sen, R. P. Singh 23.1 Introduction 729 23.2 Experimental 735 23.2.1 Materials 735 23.2.2 Synthesis 736 xviii Contents 23.3 Applications 742 23.3.1 Flocculation 742 23.3.2 Drag Reduction 750 23.3.3 Rheology 755 23.4 Conclusion 757 Acknowledgement 757 References 757 Index 763 The book explains the importance of chemistry in solving environmental issues by highlighting the role green chemistry plays in making the environment clean and green by covering a wide array of topics ranging from sustainable development, microwave chemical reaction, renewable feedstocks, microbial bioremediation, and other topics that, when implemented, will advance environmental improvement. Green Chemistry for Environmental Remediation provides insight on how educators from around the world have incorporated green chemistry into their classrooms and how the principles of green chemistry can be integrated into the curriculum. The volume presents high-quality research papers as well as in-depth review articles from eminent professors, scientists, chemists, and engineers both from educational institutions and from industry. It introduces a new emerging green face of multidimensional environmental chemistry. Each chapter brings forward the latest literature and research being done in the related area. The 23 chapters are divided into 4 sections: 1. Green chemistry and societal sustainability including teaching and education of green chemistry 2. Green lab technologies and alternative solutions to conventional laboratory techniques 3. Green bio-energy sources as green technology frontiers 4. Green applications and solutions for remediation Green Chemistry for Environmental Remediation is an important resource for academic researchers, students, faculty, industrial chemists, chemical engineers, environmentalists, and anyone interested in environmental policy safeguarding the environment. Relevant industries include those in clean technology, renewable energy, biotechnology, pharmaceutical, and chemicals. Another goal of the book is to promote and generate awareness about the relationship of green chemistry with the environment amongst the younger generation who might wish to pursue a career in green chemistry. Rashmi Sanghi received her PhD from the University of Allahabad, India, in 1994. She is currently a consultant at the Indian Institute of Technology, Kanpur. Her major research interests are environmental green chemistry specializing in microbial and nanoparticle research. She has over 80 international journal publications, two patents, and two books on green chemistry to her credit. Vandana Singh received her PhD from the University of Allahabad, India, in 1986. She is currently an associate professor in the Department of Chemistry, University of Allahabad. Her research interests are in polysaccharides, polymers, and polymer composites. She has over 70 international journal publications as well as several book chapters to her credit.
any_adam_object 1
building Verbundindex
bvnumber BV039869981
callnumber-first T - Technology
callnumber-label TP155
callnumber-raw TP155.2.E58
callnumber-search TP155.2.E58
callnumber-sort TP 3155.2 E58
callnumber-subject TP - Chemical Technology
classification_rvk VN 9200
ctrlnum (OCoLC)714716004
(DE-599)BVBBV039869981
dewey-full 577/.14
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 577 - Ecology
dewey-raw 577/.14
dewey-search 577/.14
dewey-sort 3577 214
dewey-tens 570 - Biology
discipline Chemie / Pharmazie
Biologie
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01839nam a2200445zc 4500</leader><controlfield tag="001">BV039869981</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120716 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">120206s2012 xxuad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2011040428</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470943083</subfield><subfield code="c">cloth</subfield><subfield code="9">978-0-470-94308-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)714716004</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV039869981</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP155.2.E58</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">577/.14</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 9200</subfield><subfield code="0">(DE-625)147637:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Green chemistry for environmental remediation</subfield><subfield code="c">ed. by Rashmi Sanghi ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Salem, Mass. [u.a.]</subfield><subfield code="b">Scrivener Pub. [u.a.]</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 776 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nachhaltigkeit</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Umweltschutz</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Environmental chemistry</subfield><subfield code="x">Industrial applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sustainable development</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Environmental protection</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Grüne Chemie</subfield><subfield code="0">(DE-588)7563215-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Grüne Chemie</subfield><subfield code="0">(DE-588)7563215-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sanghi, Rashmi</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=024729329&amp;sequence=000003&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=024729329&amp;sequence=000004&amp;line_number=0002&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024729329</subfield></datafield></record></collection>
id DE-604.BV039869981
illustrated Illustrated
indexdate 2024-12-24T02:32:47Z
institution BVB
isbn 9780470943083
language English
lccn 2011040428
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-024729329
oclc_num 714716004
open_access_boolean
owner DE-29T
DE-703
DE-634
owner_facet DE-29T
DE-703
DE-634
physical XXI, 776 S. Ill., graph. Darst.
publishDate 2012
publishDateSearch 2012
publishDateSort 2012
publisher Scrivener Pub. [u.a.]
record_format marc
spellingShingle Green chemistry for environmental remediation
Nachhaltigkeit
Umweltschutz
Environmental chemistry Industrial applications
Sustainable development
Environmental protection
Grüne Chemie (DE-588)7563215-9 gnd
subject_GND (DE-588)7563215-9
title Green chemistry for environmental remediation
title_auth Green chemistry for environmental remediation
title_exact_search Green chemistry for environmental remediation
title_full Green chemistry for environmental remediation ed. by Rashmi Sanghi ...
title_fullStr Green chemistry for environmental remediation ed. by Rashmi Sanghi ...
title_full_unstemmed Green chemistry for environmental remediation ed. by Rashmi Sanghi ...
title_short Green chemistry for environmental remediation
title_sort green chemistry for environmental remediation
topic Nachhaltigkeit
Umweltschutz
Environmental chemistry Industrial applications
Sustainable development
Environmental protection
Grüne Chemie (DE-588)7563215-9 gnd
topic_facet Nachhaltigkeit
Umweltschutz
Environmental chemistry Industrial applications
Sustainable development
Environmental protection
Grüne Chemie
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024729329&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024729329&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT sanghirashmi greenchemistryforenvironmentalremediation