Physics of laser materials processing theory and experiment
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2011
|
Schriftenreihe: | Springer series in materials science
146 |
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV039575689 | ||
003 | DE-604 | ||
005 | 20120313 | ||
007 | t | ||
008 | 110909s2011 gw ad|| |||| 00||| eng d | ||
015 | |a 11,N04 |2 dnb | ||
016 | 7 | |a 1009641506 |2 DE-101 | |
020 | |a 9783642192425 |9 978-3-642-19242-5 | ||
020 | |a 3642192424 |9 3-642-19242-4 | ||
035 | |a (OCoLC)724844698 | ||
035 | |a (DE-599)DNB1009641506 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-11 |a DE-703 |a DE-92 |a DE-634 |a DE-29T |a DE-573 | ||
082 | 0 | |a 621.366 |2 22/ger | |
082 | 0 | |a 670 |2 22/ger | |
084 | |a UH 5750 |0 (DE-625)145705: |2 rvk | ||
084 | |a UQ 1100 |0 (DE-625)146473: |2 rvk | ||
084 | |a ZM 8000 |0 (DE-625)157143: |2 rvk | ||
084 | |a 624 |2 sdnb | ||
100 | 1 | |a Gladuš, Gennadij G. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Physics of laser materials processing |b theory and experiment |c Gennady G. Gladush ; Igor Smurov |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2011 | |
300 | |a XVIII, 534 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Springer series in materials science |v 146 | |
650 | 0 | 7 | |a Laserbearbeitung |0 (DE-588)4139080-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Laserbearbeitung |0 (DE-588)4139080-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Smurov, Igor |e Verfasser |4 aut | |
830 | 0 | |a Springer series in materials science |v 146 |w (DE-604)BV000683335 |9 146 | |
856 | 4 | 2 | |m X:MVB |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=3654971&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024427107&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-024427107 |
Datensatz im Suchindex
_version_ | 1805145162337222656 |
---|---|
adam_text |
IMAGE 1
CONTENTS
1 GENERAL PROBLEMS OF PROPAGATION OF LASER RADIATION IN GASES AND PLASMA
AND PHYSICAL PROCESSES ON THE SURFACE OF CONDENSED MEDIA 1
1 .1 PROPAGATION AND FOCUSING OF RADIATION IN VACUUM, GASES AND PLASMA 2
1.1.1 FOCUSING OF LIGHT IN VACUUM 2
1.1.2 PROPAGATION OF LASER RADIATION IN GASES AND PLASMA 4 1.2
ABSORPTION, REFLECTION, AND PROPAGATION OF RADIATION IN CAVITIES IN
CONDENSED MEDIA 8
1.2.1 FLAT SURFACE 8
1.2.2 PROPAGATION OF LASER RADIATION IN A NARROW CHANNEL IN A METAL 12
1.2.3 WAVEGUIDE RADIATION PROPAGATION REGIME 15
1.2.4 PROPAGATION OF PLANE-POLARIZED RADIATION IN A CYLINDRICAL KEYHOLE
17
1.3 PHYSICAL PROCESSES ON THE SURFACE OF CONDENSED MEDIA: THE
INTERACTION OF VAPOR WITH THE SURROUNDING GAS 20
1.3.1 MELTING 20
1.3.2 VAPORIZATION 21
1.3.3 MELTING-SOLIDIFICATION DYNAMICS TAKING VAPORIZATION INTO ACCOUNT
22
1.3.4 STATIONARY INTERACTION OF A VAPOR JET WITH THE SURROUNDING GAS 25
1.4 VAPORIZATION KINETICS AND HYDRODYNAMICS 27
1.4.1 CONDENSATION 33
1.5 INSTABILITY OF THE LASER-INDUCED VAPORIZATION OF CONDENSED MEDIA 36
REFERENCES 43
BIBLIOGRAFISCHE INFORMATIONEN HTTP://D-NB.INFO/1009641506
DIGITALISIERT DURCH
IMAGE 2
CONTENTS
MECHANISMS OF LASER PROCESSING OF METAL SURFACES 45
2. 1 THERMAL MODEL OF LASER HARDENING OF THE STEEL SURFACE 45 2.1.1
QUALITATIVE CONSIDERATION OF THE STATIONARY THERMAL MODEL OF METAL
HARDENING 46
2.1.2 COMPARISON WITH EXPERIMENTS 49
2.1.3 NUMERICAL CALCULATIONS 52
2.1.4 PROCESSING OF METAL SURFACES BY THE OSCILLATING BEAM OF A CO 2
LASER 54
2.2 HYDRODYNAMICAL MODELS OF LASER-INDUCED ALLOYING OF METAL SURFACES 57
2.2.1 ANALYSIS OF EXPERIMENTAL DATA 58
2.2.2 THEORETICAL CONSIDERATION OF MELT MOTION DURING ALLOYING OF METALS
61
2.2.3 ANALYTIC CONSIDERATION OF LIQUID METAL MOTION CAUSED BY
THERMOCAPILARY FORCES 62
2.2.4 NUMERICAL MODELLING OF A MELT FLOW DURING ALLOYING 64 2.2.5
NONLINEAR EFFECTS AND THE INSTABILITY OF THE MELT SURFACE SHAPE IN THE
MARANGONI FLOW 68
2.2.6 DEVELOPMENT OF THE MULTI-VORTEX STRUCTURE OF THE MELT FLOW 74
2.2.7 INFLUENCE OF SURFACTANTS ON HEAT-AND-MASS TRANSFER DURING LASER
ALLOYING 78
2.2.8 MASS-TRANSFER KINETICS DURING GAS-PHASE ALLOYING 80 2.2.9 ALLOYING
OF A MOVING SAMPLE SURFACE BY STATIONARY LASER RADIATION 84
2.2.10 MELT FLOW UPON PULSED AND REPETITIVELY PULSES IRRADIATION 89
2.2.11 THERMOCAPILLARY PROCESSES IN THE DYNAMICS OF GAS BUBBLES IN A
MELT POOL 91
2.3 PHYSICAL MECHANISMS OF CLADDING 94
2.4 MECHANISMS OF LASER-INDUCED SURFACE CLEANING 108
2.4.1 CLEANING OF SURFACES FROM MICROPARTICLES 109
2.4.2 LASER-INDUCED SOLID SURFACE CLEANING FROM FILMS I LL 2.4.3
PHYSICAL MODEL OF WATER SURFACE CLEANING FROM THIN FILMS OF PETROLEUM
PRODUCTS 114
2.4.4 LASER-INDUCED METAL SURFACE CLEANING FROM RADIONUCLIDES 118
2.5 MODELLING OF SELECTIVE LASER MELTING 122
2.5.1 STRUCTURES 122
2.5.2 HEAT CONDUCTION OF POWDERS IN VACUUM 123
2.5.3 CALCULATION OF THERMAL AND OPTICAL CONSTANTS OF INITIAL MATERIALS
126
2.5.4 VOLUME AND SURFACE ABSORPTION COEFFICIENTS 127
2.5.5 POWDER MIXTURES 130
2.5.6 THERMAL MODEL OF SELECTIVE LASER SINTERING 132
IMAGE 3
CONTENTS
2.5.7 INSTABILITY OF SELECTIVE LASER MELTING 135
2.5.8 THERMAL HYDRODYNAMIC MODEL OF SELECTIVE LASER SINTERING 136
REFERENCES 139
PLASMA PHENOMENA IN LASER PROCESSING OF MATERIALS 1 45 3.1 THERMAL
PROPERTIES OF THE PLASMA OF NOBLE AND MOLECULAR GASES AND METAL VAPORS
145
3.1.1 PLASMA EMISSION 149
3.2 MECHANISMS OF THE CW LASER-INDUCED BREAKDOWN OF GASES NEAR SOLID
SURFACES 150
3.2.1 STATIONARY BREAKDOWN OF GASES IN THE ABSENCE OF A TARGET 150
3.2.2 NONEQUILIBRIUM MECHANISM OF OPTICAL BREAKDOWN IN GASES NEAR A
TARGET 155
3.2.3 THERMAL MODEL OF OPTICAL BREAKDOWN IN GASES NEAR A TARGET 162
3.2.4 THEORETICAL MODEL 163
3.2.5 NUMERICAL CALCULATION OF THE THERMAL MODEL 166 3.2.6 OPTICAL
BREAKDOWN OF CHEMICALLY ACTIVE GASES NEAR A TARGET 168
3.2.7 OPTICAL BREAKDOWN DURING LASER WELDING 169
3.3 THE NUMERICAL MODEL OF AN EROSION PLUME DURING WELDING 172 3.4
OPTICAL DISCHARGE BURNING NEAR A SAMPLE SURFACE 173
3.4.1 THEORETICAL MODELS OF A CONTINUOUS OPTICAL DISCHARGE 174 3.4.2 THE
HEAT-CONDUCTION COD MODEL 177
3.4.3 COD MODEL TAKING INTO ACCOUNT THE HEAT CONDUCTION AND EMISSION OF
PLASMA 179
3.4.4 NUMERICAL CALCULATIONS OF OPTICAL DISCHARGE PARAMETERS. 182
3.4.5 THE RADIATIVE-CONDUCTIVE COD MODEL 186
3.5 LCWS AND A COD IN A GAS FLOW 187
3.5.1 LIGHT COMBUSTION WAVE 188
3.5.2 COMBUSTION WAVE SUPPORTED DUE TO THERMAL RADIATION TRANSFER 191
3.5.3 CONTINUOUS OPTICAL DISCHARGE IN A GAS FLOW 192
3.5.4 OPTICAL DISCHARGE IN A GAS-VAPOR KEYHOLE 202
3.6 LASER PLASMATRON AND DEPOSITION OF FILMS 204
3.6.1 PHYSICAL PROCESSES IN OPTICAL PLASMATRONS 204
3.6.2 HIGH-PRESSURE PLASMATRON 206
REFERENCES 208
IMAGE 4
XII CONTENTS
4 PROPERTIES AND MECHANISMS OF DEEP MELTING OF MATERIALS BY A CW LASER
BEAM 211
4.1 PHYSICAL PROCESSES PROCEEDING UPON DEEP MELTING OF FIXED SAMPLES 213
4.1.1 THE THERMAL DEEP-MELTING MODEL 213
4.1.2 MECHANICAL LIMIT OF LASER BEAM PENETRATION INTO LIQUID 215
4.1.3 PECULIARITIES OF DEEP LASER BEAM PENETRATION INTO LIQUID 221
4.2 THERMAL DEEP PENETRATION MELTING MODEL FOR A MOVING SAMPLE 224 4.2.1
PHYSICAL PROCESSES IN WELDING OF MATERIALS 224
4.2.2 DEEP MELTING OF VARIOUS MATERIALS 229
4.2.3 THERMAL EFFICIENCY OF LASER WELDING 231
4.3 HYDRODYNAMICAL PROCESSES DURING DEEP LASER-BEAM PENETRATION INTO
SOLIDS 237
4.3.1 EXPERIMENTAL STUDY OF MATERIAL MELT FLOWS 237
4.3.2 MODELS OF THE HYDRODYNAMIC FLOW UPON DEEP MELTING 243 4.3.3
INFLUENCE OF LASER RADIATION POLARIZATION AND SHIELD GAS ON LASER
WELDING PROPERTIES 245
4.3.4 ROLE OF SHIELD GASES IN DEEP MELTING OF METALS 248 4.4 MODELS OF A
GAS-VAPOR KEYHOLE OF FINITE SIZE 252
4.4.1 THERMAL DEEP-MELTING MODEL WITH A GAS-VAPOR KEYHOLE OF FINITE
DIAMETER 252
4.4.2 SELF-CONSISTENT STATIONARY LASER WELDING MODEL 254 4.4.3 STABILITY
OF A CYLINDRICAL GAS-VAPOR KEYHOLE 261
4.4.4 INSTABILITY OF THE LEADING EDGE OF A KEYHOLE 267
4.4.5 MELT POOL INSTABILITY 269
4.5 REMOTE AND HYBRID WELDING OF METALS 270
4.5.1 FEATURES OF LASER-ARC WELDING OF METALS 270
4.5.2 REMOTE WELDING OF METALS 274
4.5.3 INFLUENCE OF LASER RADIATION QUALITY ON LASER WELDING 276
REFERENCES 283
5 PHYSICS OF REMOTE AND GAS-ASSISTED CUTTING WITH LASERS 287 5. 1
MECHANISM OF REMOTE CUTTING WITH CW LASERS 288
.1 PHYSICS OF MELT REMOVAL IN DRILLING OF VERTICAL PLATES 288 .2
DRILLING OF HORIZONTAL PLATES 292
.3 SELF-CONSISTENT DRILLING MODEL 293
.4 THERMALLY THICK LIMIT 294
.5 REMOTE CUTTING 296
.6 EXPERIMENTAL TECHNIQUES AND RESULTS 298
.7 OSCILLATORY TYPE OF REMOTE CUTTING 300
.8 COMPARISON OF CALCULATED AND EXPERIMENTAL RESULTS 301 .9 DISRUPTION
OF CUTTING OPERATION 303
IMAGE 5
CONTENTS
5.2 PROPERTIES OF GAS-ASSISTED CUTTING 304
5.2.1 GAS DYNAMICS IN LASER CUTTING 305
5.2.2 NUMERICAL STUDIES OF GAS DYNAMICS 309
5.2.3 MECHANISMS OF MELT REMOVAL 313
5.2.4 INSTABILITIES AND NONSTATIONARY MECHANISMS OF MELT REMOVAL 317
5.2.5 MODELLING OF MELTING FRONT AND MELT REMOVAL IN GAS-ASSISTED
CUTTING OF METALS 320
5.2.6 PROPERTIES AND EFFICIENCY OF GAS-ASSISTED CUTTING 325 5.2.7 BEAM
POLARIZATION 329
5.2.8 MULTIPLE REFLECTIONS 335
5.3 PHYSICAL PROCESSES IN LASER CUTTING WITH AN OXYGEN JET 336 5.3.1
MODEL OF STATIONARY CUTTING OF STEEL IN AN OXYGEN JET 339 5.3.2
INSTABILITY OF LASER CUTTING IN THE OXYGEN ATMOSPHERE 340 5.3.3
EXPERIMENTAL STUDIES OF HIGH-QUALITY LASER
CUTTING OF THICK MILD STEELS WITH OXYGEN ASSIST GAS 342 REFERENCES 343
INTERACTION OF PULSED LASER RADIATION WITH MATERIALS 345 6.1 PHYSICS OF
PULSED LASER ABLATION AND DEPOSITION OF FILMS 346 6.1.1 INITIAL STAGE
348
6.1.2 ABLATION TO VACUUM 352
6.1.3 ABLATION TO BUFFER GAS 353
6.1.4 COMPARISON WITH EXPERIMENTS 355
6.1.5 ABLATION EFFICIENCY 361
6.1.6 ABLATION OF MATERIALS IRRADIATED BY ULTRASHORT LASER PULSES 363
6.2 MODELLING OF SYNTHESIS OF NANOPARTICLES UPON PULSE LASER
VAPORIZATION 365
6.2.1 DIFFUSION MODEL 367
6.2.2 RESULTS AND DISCUSSION 370
6.2.3 EROSION JET 373
REFERENCES 377
PULSED SURFACE PLASMA 379
7.1 PULSED OPTICAL BREAKDOWN NEAR A SURFACE 379
7.1.1 NONSTATIONARY THERMAL BREAKDOWN 380
7.1.2 QUASI-STATIONARY BREAKDOWN 381
7.1.3 OPTICAL BREAKDOWN IN A TARGET VAPOR JET 382
7.1.4 TWO-DIMENSIONAL AND NONEQUILIBRIUM EFFECTS IN THE PULSED BREAKDOWN
385
7.2 NONEQUILIBRIUM MECHANISMS OF THE PULSED BREAKDOWN 388
IMAGE 6
XIV CONTENTS
7.3 DYNAMICS OF A PLASMA PLUME AND ITS INTERACTION WITH A LASER BEAM 395
7.3.1 PROPAGATION MECHANISMS OF THE SURFACE PLASMA 396 7.3.2 PROPAGATION
OF A LASER-SUPPORTED DETONATION WAVE IN THE SURROUNDING GAS 399
7.3.3 REFLECTING PROPERTIES OF A PLASMA PLUME 406
7.3.4 NUMERICAL MODELLING OF A PULSED OPTICAL DISCHARGE 407 7.3.5
MODELING RESULTS 408
7.3.6 EXPANSION MECHANISMS OF PLASMAS 409
7.3.7 PLASMA TRANSPARENCY AND TRANSMISSION COEFFICIENT 413 7.3.8
COMPARISON WITH EXPERIMENTS 415
7.4 PLASMA PROCESSES IN MATERIAL VAPORS 418
7.4.1 PLASMA PROCESSES ON A TARGET SURFACE 420
7.4.2 PLASMA PROCESSES DURING VAPORIZATION OF METALS IN AIR 424
7.4.3 PLASMA PHENOMENA DURING THE DEEP PENETRATION OF A LASER BEAM INTO
A SAMPLE AND BREAKDOWN ON MICRODROPLETS 427
REFERENCES 432
8 PHYSICS OF THE DAMAGE AND DEEP MELTING OF METALS BY LASER PULSES 435
8. 1 QUALITATIVE HYDRODYNAMICAL MODEL OF LASER-INDUCED MELT REMOVAL 435
8.1.1 REMOVAL ON A MELT FROM A SHALLOW POOL 436
8.1.2 FOUNTAIN WAVE REGIME 437
8.1.3 LIQUID SPLASH REGIME 439
8.1.4 SPECIFIC DAMAGE ENERGY 441
8.1.5 NUMERICAL MODELLING OF METAL REMOVAL FROM A SHALLOW MELT POOL 443
8.2 EXPERIMENTAL STUDIES OF THE INTERACTION OF MILLISECOND LASER PULSES
WITH MATERIALS 447
8.2.1 EXPERIMENTAL STUDY OF SHALLOW DAMAGE OF MATERIALS 447 8.2.2
DEEP-PENETRATION KEYHOLE DAMAGE BY A SINGLE PULSE FROM A NEODYMIUM LASER
450
8.3 DAMAGE OF MATERIALS BY MICROSECOND AND ULTRASHORT LASER PULSES 451
8.3.1 EXPERIMENTAL STUDIES OF THE DAMAGE OF METALS BY PULSED CO 2 LASER
RADIATION 451
8.3.2 MATERIAL PROCESSING BY ULTRASHORT PULSES 454
8.3.3 THEORETICAL MODELS OF FORMATION OF DEEP KEYHOLES IN METALS BY CO 2
LASER RADIATION 458
8.3.4 WAVEGUIDE REGIME 460
IMAGE 7
CONTENTS XV
8.4 PHYSICS OF DEEP MELTING OF METALS BY PULSED RADIATION 463 8.4.1
PULSED WELDING 463
8.4.2 CONTROL OF THE DEEP PENETRATION MELTING PROCESS 466 REFERENCES 468
9 INTERACTION OF REPETITIVELY PULSED LASER RADIATION WITH MATERIALS 47 1
9. 1 MODELING OF THERMAL PROCESSES DURING REPETITIVELY PULSED
IRRADIATION OF A SAMPLE SURFACE 472
9.1.1 FEATURES OF THERMAL PROCESSES AND PHASE TRANSITIONS DURING
REPETITIVELY PULSED LASER IRRADIATION . 473 9.1.2 THERMAL MODEL OF
METAL-SURFACE HARDENING BY REPETITIVELY PULSED LASER RADIATION 477
9.2 THERMAL MODEL OF DEEP MELTING OF METALS BY REPETITIVELY PULSED LASER
RADIATION WITH LOW OFF-DUTY RATIO 480
9.2.1 THERMAL MODEL OF DEEP MELTING OF MOVING SAMPLES BY REPETITIVELY
PULSED RADIATION 480
9.2.2 THERMAL MODEL OF METAL WELDING WITH A PULSED LASER WITH LOW
OFF-DUTY RATIO 482
9.3 PHYSICAL PROCESSES DURING WELDING OF METALS BY REPETITIVELY PULSED
LASER RADIATION WITH HIGH OFF-DUTY RATIO 487
9.3.1 THEORETICAL MODEL 487
9.3.2 EXPERIMENTAL STUDIES 493
9.3.3 DYNAMICS OF A WELD POOL UPON REPETITIVELY PULSED IRRADIATION 495
9.4 DRILLING AND CUTTING OF METALS BY REPETITIVELY PULSED RADIATION .
501 9.4.1 PROPERTIES AND MECHANISM OF METAL CUTTING BY REPETITIVELY
PULSED CO 2 LASER RADIATION 501
9.4.2 GAS ASSISTED LASER CUTTING OF METALS BY REPETITIVELY PULSED
RADIATION 504
9.4.3 MODELLING OF THE INSTABILITY OF DEEP LASER-BEAM PENETRATION INTO A
MOVING TARGET 506
9.5 DAMAGE AND REMOTE CUTTING OF METALS BY A REPETITIVELY PULSED LASER
509
9.5.1 FORMULATION OF THE PROBLEM 509
9.5.2 EXPERIMENTAL RESULTS 510
9.5.3 NUMERICAL MODEL 512
9.5.4 COMPARISON OF NUMERICAL CALCULATIONS WITH EXPERIMENT. 515 9.5.5
REMOTE DAMAGE OF METALS BY RADIATION FROM HIGH-AVERAGE-POWER LASERS 518
IMAGE 8
XVI CONTENTS
9.5.6 REMOTE CUTTING MODEL FOR THICK PLATES 519
9.5.7 THIN PLATES 523
REFERENCES 526
INDEX 529 |
any_adam_object | 1 |
author | Gladuš, Gennadij G. Smurov, Igor |
author_facet | Gladuš, Gennadij G. Smurov, Igor |
author_role | aut aut |
author_sort | Gladuš, Gennadij G. |
author_variant | g g g gg ggg i s is |
building | Verbundindex |
bvnumber | BV039575689 |
classification_rvk | UH 5750 UQ 1100 ZM 8000 |
ctrlnum | (OCoLC)724844698 (DE-599)DNB1009641506 |
dewey-full | 621.366 670 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics 670 - Manufacturing |
dewey-raw | 621.366 670 |
dewey-search | 621.366 670 |
dewey-sort | 3621.366 |
dewey-tens | 620 - Engineering and allied operations 670 - Manufacturing |
discipline | Physik Elektrotechnik / Elektronik / Nachrichtentechnik Werkstoffwissenschaften / Fertigungstechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV039575689</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120313</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">110909s2011 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">11,N04</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1009641506</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642192425</subfield><subfield code="9">978-3-642-19242-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3642192424</subfield><subfield code="9">3-642-19242-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)724844698</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1009641506</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-573</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.366</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">670</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 5750</subfield><subfield code="0">(DE-625)145705:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UQ 1100</subfield><subfield code="0">(DE-625)146473:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZM 8000</subfield><subfield code="0">(DE-625)157143:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">624</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gladuš, Gennadij G.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Physics of laser materials processing</subfield><subfield code="b">theory and experiment</subfield><subfield code="c">Gennady G. Gladush ; Igor Smurov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 534 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Springer series in materials science</subfield><subfield code="v">146</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Laserbearbeitung</subfield><subfield code="0">(DE-588)4139080-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Laserbearbeitung</subfield><subfield code="0">(DE-588)4139080-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smurov, Igor</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Springer series in materials science</subfield><subfield code="v">146</subfield><subfield code="w">(DE-604)BV000683335</subfield><subfield code="9">146</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=3654971&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024427107&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024427107</subfield></datafield></record></collection> |
id | DE-604.BV039575689 |
illustrated | Illustrated |
indexdate | 2024-07-21T00:09:37Z |
institution | BVB |
isbn | 9783642192425 3642192424 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024427107 |
oclc_num | 724844698 |
open_access_boolean | |
owner | DE-11 DE-703 DE-92 DE-634 DE-29T DE-573 |
owner_facet | DE-11 DE-703 DE-92 DE-634 DE-29T DE-573 |
physical | XVIII, 534 S. Ill., graph. Darst. |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Springer |
record_format | marc |
series | Springer series in materials science |
series2 | Springer series in materials science |
spelling | Gladuš, Gennadij G. Verfasser aut Physics of laser materials processing theory and experiment Gennady G. Gladush ; Igor Smurov Berlin [u.a.] Springer 2011 XVIII, 534 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Springer series in materials science 146 Laserbearbeitung (DE-588)4139080-5 gnd rswk-swf Laserbearbeitung (DE-588)4139080-5 s DE-604 Smurov, Igor Verfasser aut Springer series in materials science 146 (DE-604)BV000683335 146 X:MVB text/html http://deposit.dnb.de/cgi-bin/dokserv?id=3654971&prov=M&dok_var=1&dok_ext=htm Inhaltstext DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024427107&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Gladuš, Gennadij G. Smurov, Igor Physics of laser materials processing theory and experiment Springer series in materials science Laserbearbeitung (DE-588)4139080-5 gnd |
subject_GND | (DE-588)4139080-5 |
title | Physics of laser materials processing theory and experiment |
title_auth | Physics of laser materials processing theory and experiment |
title_exact_search | Physics of laser materials processing theory and experiment |
title_full | Physics of laser materials processing theory and experiment Gennady G. Gladush ; Igor Smurov |
title_fullStr | Physics of laser materials processing theory and experiment Gennady G. Gladush ; Igor Smurov |
title_full_unstemmed | Physics of laser materials processing theory and experiment Gennady G. Gladush ; Igor Smurov |
title_short | Physics of laser materials processing |
title_sort | physics of laser materials processing theory and experiment |
title_sub | theory and experiment |
topic | Laserbearbeitung (DE-588)4139080-5 gnd |
topic_facet | Laserbearbeitung |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=3654971&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024427107&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000683335 |
work_keys_str_mv | AT gladusgennadijg physicsoflasermaterialsprocessingtheoryandexperiment AT smurovigor physicsoflasermaterialsprocessingtheoryandexperiment |