Introduction to functional equations theory and problem-solving strategies for mathematical competitions and beyond

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Efthimiou, Costas (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Berkeley, Calif. [u.a.] MSRI Mathematical Sciences Research Inst. [u.a.] 2011
Schriftenreihe:MSRI mathematical circles library 6
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV039122535
003 DE-604
005 20120724
007 t
008 110706s2011 |||| 00||| eng d
020 |z 9780821853146  |9 978-0-8218-5314-6 
035 |a (OCoLC)730906202 
035 |a (DE-599)BVBBV039122535 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-384  |a DE-634  |a DE-11 
082 0 |a 515/.75  |2 23 
084 |a SK 580  |0 (DE-625)143247:  |2 rvk 
100 1 |a Efthimiou, Costas  |e Verfasser  |4 aut 
245 1 0 |a Introduction to functional equations  |b theory and problem-solving strategies for mathematical competitions and beyond  |c Costas Efthimiou 
264 1 |a Berkeley, Calif. [u.a.]  |b MSRI Mathematical Sciences Research Inst. [u.a.]  |c 2011 
300 |a XIV, 363 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a MSRI mathematical circles library  |v 6 
650 4 |a Functional equations / Problems, exercises, etc 
650 7 |a General / Instructional exposition (textbooks, tutorial papers, etc.)  |2 msc 
650 7 |a General / General and miscellaneous specific topics / Problem books  |2 msc 
650 7 |a Real functions / Instructional exposition (textbooks, tutorial papers, etc.)  |2 msc 
650 7 |a Real functions / Functions of one variable / One-variable calculus  |2 msc 
650 7 |a Real functions / Functions of one variable / Iteration  |2 msc 
650 7 |a Real functions / Functions of several variables / Continuity and differentiation questions  |2 msc 
650 0 7 |a Funktionalgleichung  |0 (DE-588)4018923-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Funktionalgleichung  |0 (DE-588)4018923-5  |D s 
689 0 |5 DE-604 
830 0 |a MSRI mathematical circles library  |v 6  |w (DE-604)BV024626790  |9 6 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024141056&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-024141056 

Datensatz im Suchindex

_version_ 1804147954020253696
adam_text Titel: Introduction to functional equations Autor: Sahoo, Prasanna Jahr: 2011 Contents Preface xiii 1 Additive Cauchy Functional Equation 1 1.1 Introduction ........................ 1 1.2 Functional Equations ................... 2 1.3 Solution of Additive Cauchy Functional Equation ... 3 1.4 Discontinuous Solution of Additive Cauchy Equation . 9 1.5 Other Criteria for Linearity................ 14 1.6 Additive Functions on the Complex Plane ....... 16 1.7 Concluding Remarks ................... 19 1.8 Exercises .......................... 21 2 Remaining Cauchy Functional Equations 25 2.1 Introduction ........................ 25 2.2 Solution of the Exponential Cauchy Equation...... 25 2.3 Solution of the Logarithmic Cauchy Equation ..... 28 2.4 Solution of the Multiplicative Cauchy Equation .... 30 2.5 Concluding Remarks ................... 34 2.6 Exercises .......................... 36 3 Cauchy Equations in Several Variables 39 3.1 Introduction ........................ 39 3.2 Additive Cauchy Equations in Several Variables .... 39 3.3 Multiplicative Cauchy Equations in Several Variables . 43 3.4 Other Two Cauchy Equations in Several Variables ... 44 3.5 Concluding Remarks ................... 45 3.6 Exercises .......................... 46 4 Extension of the Cauchy Functional Equations 49 4.1 Introduction ........................ 49 4.2 Extension of Additive Functions ............. 49 4.3 Concluding Remarks ................... 55 4.4 Exercises .......................... 58 vn viii Contents 5 Applications of Cauchy Functional Equations 61 5.1 Introduction ........................ 61 5.2 Area of Rectangles..................... 62 5.3 Definition of Logarithm.................. 64 5.4 Simple and Compound Interest.............. 65 5.5 Radioactive Disintegration ................ 67 5.6 Characterization of Geometrie Distribution....... 68 5.7 Characterization of Discrete Normal Distribution ... 71 5.8 Characterization of Normal Distribution ........ 74 5.9 Concluding Remarks ................... 76 6 More Applications of Functional Equations 79 6.1 Introduction ........................ 79 6.2 Sum of Powers of Integers................. 79 6.2.1 Sum of the first n natural numbers........ 80 6.2.2 Sum of Square of the first n natural numbers . . 81 6.2.3 Sum of kth power of the first n natural numbers 81 6.3 Sum of Powers of Numbers on Arithmetic Progression . 84 6.4 Number of Possible Pairs Among n Things ....... 86 6.5 Cardinality of a Power Set ................ 88 6.6 Sum of Some Finite Series ................ 88 6.7 Concluding Remarks ................... 90 7 The Jensen Functional Equation 93 7.1 Introduction ........................ 93 7.2 Convex Function...................... 93 7.3 The Jensen Functional Equation............. 95 7.4 A Related Functional Equation.............. 99 7.5 Concluding Remarks ................... 101 7.6 Exercises .......................... 103 8 Pexider s Functional Equations 107 8.1 Introduction ........................ 107 8.2 Pexider s Equations .................... 107 8.3 Pexiderization of the Jensen Functional Equation ... 111 8.4 A Related Equation.................... 112 8.5 Concluding Remarks ................... 115 8.6 Exercises .......................... 117 9 Quadratic Functional Equation 119 9.1 Introduction ........................ 119 9.2 Biadditive Functions.................... 119 9.3 Continuous Solution of Quadratic Functional Equation 123 9.4 A Representation of Quadratic Functions ........ 126 Contents ix 9.5 Pexiderization of Quadratic Equation .......... 129 9.6 Concluding Remarks ................... 134 9.7 Exercises .......................... 139 10 d Alembert Functional Equation 143 10.1 Introduction ........................ 143 10.2 Continuous Solution of d Alembert Equation ...... 143 10.3 General Solution of d Alembert Equation ........ 149 10.4 A Charcterization of Cosine Functions.......... 157 10.5 Concluding Remarks ................... 159 10.6 Exercises .......................... 163 11 Trigonometrie Functional Equations 165 11.1 Introduction ........................ 165 11.2 Solution of a Cosine-Sine Functional Equation ..... 166 11.3 Solution of a Sine-Cosine Functional Equation ..... 170 11.4 Solution of a Sine Functional Equation ......... 173 11.5 Solution of a Sine Functional Inequality......... 183 11.6 An Elementary Functional Equation........... 184 11.7 Concluding Remarks ................... 187 11.8 Exercises .......................... 194 12 Pompeiu Functional Equation 197 12.1 Introduction ........................ 197 12.2 Solution of the Pompeiu Functional Equation...... 197 12.3 A Generalized Pompeiu Functional Equation...... 199 12.4 Pexiderized Pompeiu Functional Equation ....... 202 12.5 Concluding Remarks ................... 208 12.6 Exercises .......................... 209 13 Hosszü Functional Equation 211 13.1 Introduction ........................ 211 13.2 Hosszü Functional Equation ............... 211 13.3 A Generalization of Hosszü Equation .......... 214 13.4 Concluding Remarks ................... 222 13.5 Exercises .......................... 224 14 Davison Functional Equation 227 14.1 Introduction ........................ 227 14.2 Continuous Solution of Davison Functional Equation . 227 14.3 General Solution of Davison Functional Equation . . . 230 14.4 Concluding Remarks ................... 231 14.5 Exercises .......................... 232 x Contents 15 Abel Functional Equation 235 15.1 Introduction ........................ 235 15.2 General Solution of the Abel Functional Equation . . . 236 15.3 Concluding Remarks ................... 239 15.4 Exercises .......................... 240 16 Mean Value Type Functional Equations 243 16.1 Introduction ........................ 243 16.2 The Mean Value Theorem ................ 243 16.3 A Mean Value Type Functional Equation........ 245 16.4 Generalizations of Mean Value Type Equation ..... 247 16.5 Concluding Remarks ................... 261 16.6 Exercises .......................... 266 17 Functional Equations for Distance Measures 269 17.1 Introduction ........................ 269 17.2 Solution of Two Functional Equations.......... 273 17.3 Some Auxiliary Results .................. 278 17.4 Solution of a Generalized Functional Equation ..... 286 17.5 Concluding Remarks ................... 287 17.6 Exercises .......................... 290 18 Stability of Additive Cauchy Equation 293 18.1 Introduction ........................ 293 18.2 Cauchy Sequence and Geometrie Series ......... 294 18.3 Hyers Theorem ...................... 295 18.4 Generalizations of Hyers Theorem............ 300 18.5 Concluding Remarks ................... 305 18.6 Exercises .......................... 309 19 Stability of Exponential Cauchy Equations 313 19.1 Introduction ........................ 313 19.2 Stability of Exponential Equation ............ 313 19.3 Ger Type Stability of Exponential Equation ...... 320 19.4 Concluding Remarks ................... 322 19.5 Exercises .......................... 326 20 Stability of d Alembert and Sine Equations 329 20.1 Introduction ........................ 329 20.2 Stability of d Alembert Equation............. 329 20.3 Stability of Sine Equation................. 336 20.4 Concluding Remarks ................... 340 20.5 Exercises .......................... 345 Contents xi 21 Stability of Quadratic Functional Equations 349 21.1 Introduction ........................ 349 21.2 Stability of the Quadratic Equation ........... 349 21.3 Stability of Generalized Quadratic Equation ...... 353 21.4 Stability of a Functional Equation of Drygas ...... 360 21.5 Concluding Remarks ................... 369 21.6 Exercises .......................... 376 22 Stability of Davison Functional Equation 381 22.1 Introduction ........................ 381 22.2 Stability of Davison Functional Equation ........ 381 22.3 Generalized Stability of Davison Equation ....... 384 22.4 Concluding Remarks ................... 387 22.5 Exercises .......................... 390 23 Stability of Hosszü Functional Equation 391 23.1 Introduction ........................ 391 23.2 Stability of Hosszü Functional Equation......... 392 23.3 Stability of Pexiderized Hosszü Functional Equation . . 394 23.4 Concluding Remarks ................... 401 23.5 Exercises .......................... 403 24 Stability of Abel Functional Equation 405 24.1 Introduction ........................ 405 24.2 Stability Theorem ..................... 405 24.3 Concluding Remarks ................... 409 24.4 Exercises .......................... 415 Bibliography 417 Index 441
any_adam_object 1
author Efthimiou, Costas
author_facet Efthimiou, Costas
author_role aut
author_sort Efthimiou, Costas
author_variant c e ce
building Verbundindex
bvnumber BV039122535
classification_rvk SK 580
ctrlnum (OCoLC)730906202
(DE-599)BVBBV039122535
dewey-full 515/.75
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515/.75
dewey-search 515/.75
dewey-sort 3515 275
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02065nam a2200433 cb4500</leader><controlfield tag="001">BV039122535</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120724 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">110706s2011 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780821853146</subfield><subfield code="9">978-0-8218-5314-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)730906202</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV039122535</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.75</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 580</subfield><subfield code="0">(DE-625)143247:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Efthimiou, Costas</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to functional equations</subfield><subfield code="b">theory and problem-solving strategies for mathematical competitions and beyond</subfield><subfield code="c">Costas Efthimiou</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berkeley, Calif. [u.a.]</subfield><subfield code="b">MSRI Mathematical Sciences Research Inst. [u.a.]</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 363 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">MSRI mathematical circles library</subfield><subfield code="v">6</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional equations / Problems, exercises, etc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">General / Instructional exposition (textbooks, tutorial papers, etc.)</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">General / General and miscellaneous specific topics / Problem books</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Real functions / Instructional exposition (textbooks, tutorial papers, etc.)</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Real functions / Functions of one variable / One-variable calculus</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Real functions / Functions of one variable / Iteration</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Real functions / Functions of several variables / Continuity and differentiation questions</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalgleichung</subfield><subfield code="0">(DE-588)4018923-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktionalgleichung</subfield><subfield code="0">(DE-588)4018923-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">MSRI mathematical circles library</subfield><subfield code="v">6</subfield><subfield code="w">(DE-604)BV024626790</subfield><subfield code="9">6</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=024141056&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024141056</subfield></datafield></record></collection>
id DE-604.BV039122535
illustrated Not Illustrated
indexdate 2024-07-09T23:59:26Z
institution BVB
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-024141056
oclc_num 730906202
open_access_boolean
owner DE-384
DE-634
DE-11
owner_facet DE-384
DE-634
DE-11
physical XIV, 363 S.
publishDate 2011
publishDateSearch 2011
publishDateSort 2011
publisher MSRI Mathematical Sciences Research Inst. [u.a.]
record_format marc
series MSRI mathematical circles library
series2 MSRI mathematical circles library
spelling Efthimiou, Costas Verfasser aut
Introduction to functional equations theory and problem-solving strategies for mathematical competitions and beyond Costas Efthimiou
Berkeley, Calif. [u.a.] MSRI Mathematical Sciences Research Inst. [u.a.] 2011
XIV, 363 S.
txt rdacontent
n rdamedia
nc rdacarrier
MSRI mathematical circles library 6
Functional equations / Problems, exercises, etc
General / Instructional exposition (textbooks, tutorial papers, etc.) msc
General / General and miscellaneous specific topics / Problem books msc
Real functions / Instructional exposition (textbooks, tutorial papers, etc.) msc
Real functions / Functions of one variable / One-variable calculus msc
Real functions / Functions of one variable / Iteration msc
Real functions / Functions of several variables / Continuity and differentiation questions msc
Funktionalgleichung (DE-588)4018923-5 gnd rswk-swf
Funktionalgleichung (DE-588)4018923-5 s
DE-604
MSRI mathematical circles library 6 (DE-604)BV024626790 6
HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024141056&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
spellingShingle Efthimiou, Costas
Introduction to functional equations theory and problem-solving strategies for mathematical competitions and beyond
MSRI mathematical circles library
Functional equations / Problems, exercises, etc
General / Instructional exposition (textbooks, tutorial papers, etc.) msc
General / General and miscellaneous specific topics / Problem books msc
Real functions / Instructional exposition (textbooks, tutorial papers, etc.) msc
Real functions / Functions of one variable / One-variable calculus msc
Real functions / Functions of one variable / Iteration msc
Real functions / Functions of several variables / Continuity and differentiation questions msc
Funktionalgleichung (DE-588)4018923-5 gnd
subject_GND (DE-588)4018923-5
title Introduction to functional equations theory and problem-solving strategies for mathematical competitions and beyond
title_auth Introduction to functional equations theory and problem-solving strategies for mathematical competitions and beyond
title_exact_search Introduction to functional equations theory and problem-solving strategies for mathematical competitions and beyond
title_full Introduction to functional equations theory and problem-solving strategies for mathematical competitions and beyond Costas Efthimiou
title_fullStr Introduction to functional equations theory and problem-solving strategies for mathematical competitions and beyond Costas Efthimiou
title_full_unstemmed Introduction to functional equations theory and problem-solving strategies for mathematical competitions and beyond Costas Efthimiou
title_short Introduction to functional equations
title_sort introduction to functional equations theory and problem solving strategies for mathematical competitions and beyond
title_sub theory and problem-solving strategies for mathematical competitions and beyond
topic Functional equations / Problems, exercises, etc
General / Instructional exposition (textbooks, tutorial papers, etc.) msc
General / General and miscellaneous specific topics / Problem books msc
Real functions / Instructional exposition (textbooks, tutorial papers, etc.) msc
Real functions / Functions of one variable / One-variable calculus msc
Real functions / Functions of one variable / Iteration msc
Real functions / Functions of several variables / Continuity and differentiation questions msc
Funktionalgleichung (DE-588)4018923-5 gnd
topic_facet Functional equations / Problems, exercises, etc
General / Instructional exposition (textbooks, tutorial papers, etc.)
General / General and miscellaneous specific topics / Problem books
Real functions / Instructional exposition (textbooks, tutorial papers, etc.)
Real functions / Functions of one variable / One-variable calculus
Real functions / Functions of one variable / Iteration
Real functions / Functions of several variables / Continuity and differentiation questions
Funktionalgleichung
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024141056&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV024626790
work_keys_str_mv AT efthimioucostas introductiontofunctionalequationstheoryandproblemsolvingstrategiesformathematicalcompetitionsandbeyond