An introduction to groups and lattices finite groups and positive definite rational lattices

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Griess, Robert L. 1945- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Somerville, Mass. International Press 2011
Beijing Higher Education Press
Schriftenreihe:Advanced lectures in mathematics 15
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV039109963
003 DE-604
005 20111027
007 t|
008 110630s2011 xx |||| 00||| eng d
020 |a 9781571462060  |c (pbk.)  |9 978-1-57146-206-0 
035 |a (OCoLC)734100195 
035 |a (DE-599)BSZ337198284 
040 |a DE-604  |b ger 
041 0 |a eng 
049 |a DE-20  |a DE-824  |a DE-19 
084 |a SK 170  |0 (DE-625)143221:  |2 rvk 
084 |a SK 230  |0 (DE-625)143225:  |2 rvk 
084 |a SK 260  |0 (DE-625)143227:  |2 rvk 
100 1 |a Griess, Robert L.  |d 1945-  |e Verfasser  |0 (DE-588)120024128  |4 aut 
245 1 0 |a An introduction to groups and lattices  |b finite groups and positive definite rational lattices  |c by Robert L. Griess 
264 1 |a Somerville, Mass.  |b International Press  |c 2011 
264 1 |a Beijing  |b Higher Education Press 
300 |a IV, 251 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Advanced lectures in mathematics  |v 15 
650 0 7 |a Endliche Gruppe  |0 (DE-588)4014651-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Verband  |g Mathematik  |0 (DE-588)4062565-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Endliche Gruppe  |0 (DE-588)4014651-0  |D s 
689 0 1 |a Verband  |g Mathematik  |0 (DE-588)4062565-5  |D s 
689 0 |5 DE-604 
830 0 |a Advanced lectures in mathematics  |v 15  |w (DE-604)BV024628521  |9 15 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022653699&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-022653699 

Datensatz im Suchindex

DE-19_call_number 1601/SK 260 G848
DE-19_location 95
DE-BY-UBM_katkey 4796085
DE-BY-UBM_media_number 41620581730010
_version_ 1823055282889031680
adam_text CONTENTS 1 INTRODUCTION................................................... 1 1.1 OUTLINE OF THE BOOK.......................................... 2 1.2 SUGGESTIONS FOR FURTHER READING................................ 3 1.3 NOTATIONS, BACKGROUND, CONVENTIONS............................ 5 2 BILINEAR FORMS, QUADRATIC FORMS AND THEIR ISOMETRY GROUPS. . 7 2.1 STANDARD RESULTS ON QUADRATIC FORMS AND REFLECTIONS, I............ 9 2.1.1 PRINCIPAL IDEAL DOMAINS (PIDS).......................... 10 2.2 LINEAR ALGEBRA.............................................. 11 2.2.1 INTERPRETATION OF NONSINGULARITY......................... 11 2.2.2 EXTENSION OF SCALARS ................................... 13 2.2.3 CYCLICITY OF THE VALUES OF A RATIONAL BILINEAR FORM.......... 13 2.2.4 GRAM MATRIX ......................................... 14 2.3 DISCRIMINANT GROUP.......................................... 16 2.4 RELATIONS BETWEEN A LATTICE AND SUBLATTICES...................... 18 2.5 INVOLUTIONS ON QUADRATIC SPACES ............................... 19 2.6 STANDARD RESULTS ON QUADRATIC FORMS AND REFLECTIONS, II........... 20 2.6.1 INVOLUTIONS ON LATTICES.................................. 20 2.7 SCALED ISOMETRIES: NORM DOUBLERS AND TRIPLERS ................... 23 3 GENERAL RESULTS ON FINITE GROUPS AND INVARIANT LATTICES ...... 25 3.1 DISCRETENESS OF RATIONAL LATTICES................................ 25 3.2 FINITENESS OF THE ISOMETRY GROUP............................... 25 3.3 CONSTRUCTION OF A G-INVARIANT BILINEAR FORM..................... 26 3.4 SEMIDIRECT PRODUCTS AND WREATH PRODUCTS....................... 27 3.5 ORTHOGONAL DECOMPOSITION OF LATTICES........................... 28 4 ROOT LATTICES OF TYPES A, D, E................................ 31 4.1 BACKGROUND FROM LIE THEORY.................................. 31 4.2 ROOT LATTICES, THEIR DUALS AND THEIR ISOMETRY GROUPS.............. 32 4.2.1 DEFINITION OF THE A N LATTICES ............................ 33 II CONTENTS 4.2.2 DEFINITION OF THE D N LATTICES ............................ 34 4.2.3 DEFINITION OF THE E N LATTICES ............................ 34 4.2.4 ANALYSIS OF THE A N ROOT LATTICES ......................... 34 4.2.5 ANALYSIS OF THE D N ROOT LATTICES......................... 37 4.2.6 MORE ON THE ISOMETRY GROUPS OF TYPE D N ................. 39 4.2.7 ANALYSIS OF THE E N ROOT LATTICES ......................... 41 5 HERMITE AND MINKOWSKI FUNCTIONS............................. 49 5.1 SMALL RANKS AND SMALL DETERMINANTS............................ 51 5.1.1 TABLE FOR THE MINKOWSKI AND HERMITE FUNCTIONS........... 52 5.1.2 CLASSIFICATIONS OF SMALL RANK, SMALL DETERMINANT LATTICES .... 53 5.2 UNIQUENESS OF THE LATTICES EQ, E 7 AND EG ....................... 54 5.3 MORE SMALL RANKS AND SMALL DETERMINANTS....................... 57 6 CONSTRUCTIONS OF LATTICES BY USE OF CODES..................... 61 6.1 DEFINITIONS AND BASIC RESULTS.................................. 61 6.1.1 A CONSTRUCTION OF THE JSG-LATTICE WITH THE BINARY [8,4,4] CODE 62 6 . 1.2 A CONSTRUCTION OF THE FG-LATTICE WITH THE TERNARY [4,2,3] CODE 64 6.2 THE PROOFS.................................................. 64 6.2.1 ABOUT POWER SETS, BOOLEAN SUMS AND QUADRATIC FORMS...... 64 6 . 2.2 UNIQUENESS OF THE BINARY [ 8 ,4,4] CODE.................... 65 6.2.3 REED-MULLER CODES.....................................TL 6 6.2.4 UNIQUENESS OF THE TETRACODE............................. 67 6.2.5 THE AUTOMORPHISM GROUP OF THE TETRACODE................ 67 6 . 2.6 ANOTHER CHARACTERIZATION OF [ 8 ,4, 4]2 ..................... 69 6.2.7 UNIQUENESS OF THE UG-LATTICE IMPLIES UNIQUENESS OF THE BINARY [ 8 ,4,4] CODE.................................... 69 6.3 CODES OVER F 7 AND A (MOD 7)-CONSTRUCTION OF EG ................. 70 6.3.1 THE A. 6 -LATTICE........................................ 71 7 GROUP THEORY AND REPRESENTATIONS............................ 73 7.1 FINITE GROUPS ............................................... 73 7.2 EXTRASPECIAL P-GROUPS........................................ 75 7.2.1 EXTRASPECIAL GROUPS AND CENTRAL PRODUCTS................. 75 7.2.2 A NORMAL FORM IN AN EXTRASPECIAL GROUP .................. 77 7.2.3 A CLASSIFICATION OF EXTRASPECIAL GROUPS.................... 77 7.2.4 AN APPLICATION TO AUTOMORPHISM GROUPS OF EXTRASPECIAL GROUPS............................................... 79 7.3 GROUP REPRESENTATIONS........................................ 79 7.3.1 REPRESENTATIONS OF EXTRASPECIAL P-GROUPS.................. 80 7.3.2 CONSTRUCTION OF THE BRW GROUPS........................ 82 7.3.3 TENSOR PRODUCTS....................................... 85 7.4 REPRESENTATION OF THE BRW GROUP G ........................... 86 7.4.1 BRW GROUPS AS GROUP EXTENSIONS........................ 88 CONTENTS III 8 OVERVIEW OF THE BARNES-WALL LATTICES.......................... 91 8.1 SOME PROPERTIES OF THE SERIES.................................. 91 8.2 COMMUTATOR DENSITY......................................... 93 8.2.1 EQUIVALENCE OF 2/4-, 3/4-GENERATION AND COMMUTATOR DENSITY FOR DIH$ ...................................... 93 8.2.2 EXTRASPECIAL GROUPS AND COMMUTATOR DENSITY.............. 96 9 CONSTRUCTION AND PROPERTIES OF THE BARNES-WALL LATTICES...... 99 9.1 THE BARNES-WALL SERIES AND THEIR MINIMAL VECTORS................ 99 9.2 UNIQUENESS FOR THE BW LATTICES................................101 9.3 PROPERTIES OF THE BRW GROUPS ................................102 9.4 APPLICATIONS TO CODING THEORY.................................103 9.5 MORE ABOUT MINIMUM VECTORS.................................104 10 EVEN UNIMODULAR LATTICES IN SMALL DIMENSIONS.................. 107 10.1 CLASSIFICATIONS OF EVEN UNIMODULAR LATTICES......................107 10.2 CONSTRUCTIONS OF SOME NIEMEIER LATTICES........................108 10.2.1 CONSTRUCTION OF A LEECH LATTICE..........................109 10.3 BASIC THEORY OF THE GOLAY CODE................................ILL 10.3.1 CHARACTERIZATION OF CERTAIN REED-MULLER CODES.............ILL 10.3.2 ABOUT THE GOLAY CODE .................................112 10.3.3 THE OCTAD TRIANGLE AND DODECADS........................113 10.3.4 A UNIQUENESS THEOREM FOR THE GOLAY CODE.................116 10.4 MINIMAL VECTORS IN THE LEECH LATTICE ...........................116 10.5 FIRST PROOF OF UNIQUENESS OF THE LEECH LATTICE....................117 10.6 INITIAL RESULTS ABOUT THE LEECH LATTICE ..........................118 10 . 6.1 AN AUTOMORPHISM WHICH MOVES THE STANDARD FRAME........118 10.7 TURYN-STYLE CONSTRUCTION OF A LEECH LATTICE......................119 10.8 EQUIVARIANT UNIMODULARIZATIONS OF EVEN LATTICES..................121 11 PIECES OF EIGHT ................................................125 11.1 LEECH TRIOS AND OVERLATTICES...................................125 11.2 THE ORDER OF THE GROUP O(A)..................................128 11.3 THE SIMPLICITY OF M 24 ........................................130 11.4 SUBLATTICES OF LEECH AND SUBGROUPS OF THE ISOMETRY GROUP.........132 11.5 INVOLUTIONS ON THE LEECH LATTICE ...............................134 REFERENCES.........................................................137 INDEX..............................................................143 APPENDIX A THE FINITE SIMPLE GROUPS 149
any_adam_object 1
author Griess, Robert L. 1945-
author_GND (DE-588)120024128
author_facet Griess, Robert L. 1945-
author_role aut
author_sort Griess, Robert L. 1945-
author_variant r l g rl rlg
building Verbundindex
bvnumber BV039109963
classification_rvk SK 170
SK 230
SK 260
ctrlnum (OCoLC)734100195
(DE-599)BSZ337198284
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01651nam a2200397 cb4500</leader><controlfield tag="001">BV039109963</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20111027 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">110630s2011 xx |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781571462060</subfield><subfield code="c">(pbk.)</subfield><subfield code="9">978-1-57146-206-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)734100195</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BSZ337198284</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 170</subfield><subfield code="0">(DE-625)143221:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Griess, Robert L.</subfield><subfield code="d">1945-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120024128</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to groups and lattices</subfield><subfield code="b">finite groups and positive definite rational lattices</subfield><subfield code="c">by Robert L. Griess</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Somerville, Mass.</subfield><subfield code="b">International Press</subfield><subfield code="c">2011</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Beijing</subfield><subfield code="b">Higher Education Press</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">IV, 251 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Advanced lectures in mathematics</subfield><subfield code="v">15</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Endliche Gruppe</subfield><subfield code="0">(DE-588)4014651-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verband</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4062565-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Endliche Gruppe</subfield><subfield code="0">(DE-588)4014651-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Verband</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4062565-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Advanced lectures in mathematics</subfield><subfield code="v">15</subfield><subfield code="w">(DE-604)BV024628521</subfield><subfield code="9">15</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=022653699&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-022653699</subfield></datafield></record></collection>
id DE-604.BV039109963
illustrated Not Illustrated
indexdate 2025-02-03T17:41:49Z
institution BVB
isbn 9781571462060
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-022653699
oclc_num 734100195
open_access_boolean
owner DE-20
DE-824
DE-19
DE-BY-UBM
owner_facet DE-20
DE-824
DE-19
DE-BY-UBM
physical IV, 251 S.
publishDate 2011
publishDateSearch 2011
publishDateSort 2011
publisher International Press
Higher Education Press
record_format marc
series Advanced lectures in mathematics
series2 Advanced lectures in mathematics
spellingShingle Griess, Robert L. 1945-
An introduction to groups and lattices finite groups and positive definite rational lattices
Advanced lectures in mathematics
Endliche Gruppe (DE-588)4014651-0 gnd
Verband Mathematik (DE-588)4062565-5 gnd
subject_GND (DE-588)4014651-0
(DE-588)4062565-5
title An introduction to groups and lattices finite groups and positive definite rational lattices
title_auth An introduction to groups and lattices finite groups and positive definite rational lattices
title_exact_search An introduction to groups and lattices finite groups and positive definite rational lattices
title_full An introduction to groups and lattices finite groups and positive definite rational lattices by Robert L. Griess
title_fullStr An introduction to groups and lattices finite groups and positive definite rational lattices by Robert L. Griess
title_full_unstemmed An introduction to groups and lattices finite groups and positive definite rational lattices by Robert L. Griess
title_short An introduction to groups and lattices
title_sort an introduction to groups and lattices finite groups and positive definite rational lattices
title_sub finite groups and positive definite rational lattices
topic Endliche Gruppe (DE-588)4014651-0 gnd
Verband Mathematik (DE-588)4062565-5 gnd
topic_facet Endliche Gruppe
Verband Mathematik
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022653699&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV024628521
work_keys_str_mv AT griessrobertl anintroductiontogroupsandlatticesfinitegroupsandpositivedefiniterationallattices