Mathematical theory of elasticity of quasicrystals and its applications

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Fan, Tianyou (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Heidelberg [u.a.] Springer 2011
Schlagworte:
Online-Zugang:Inhaltstext
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV037280914
003 DE-604
005 20110630
007 t|
008 110315s2011 xx ad|| |||| 00||| eng d
015 |a 10,N26  |2 dnb 
016 7 |a 1003791263  |2 DE-101 
020 |a 9783642146428  |c GB. : ca. EUR 139.05 (freier Pr.), ca. sfr 216.00 (freier Pr.)  |9 978-3-642-14642-8 
020 |a 9787030256690  |9 978-7-03-025669-0 
035 |a (OCoLC)724185942 
035 |a (DE-599)DNB1003791263 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-11 
082 0 |a 530.412  |2 22/ger 
084 |a UQ 8750  |0 (DE-625)146603:  |2 rvk 
084 |a 530  |2 sdnb 
100 1 |a Fan, Tianyou  |e Verfasser  |0 (DE-588)144023717  |4 aut 
245 1 0 |a Mathematical theory of elasticity of quasicrystals and its applications  |c Tianyou Fan 
264 1 |a Heidelberg [u.a.]  |b Springer  |c 2011 
300 |a XII, 363 S.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
650 0 7 |a Elastizitätstheorie  |0 (DE-588)4123124-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Quasikristall  |0 (DE-588)4202613-1  |2 gnd  |9 rswk-swf 
689 0 0 |a Quasikristall  |0 (DE-588)4202613-1  |D s 
689 0 1 |a Elastizitätstheorie  |0 (DE-588)4123124-7  |D s 
689 0 |5 DE-604 
856 4 2 |m X:MVB  |q text/html  |u http://deposit.dnb.de/cgi-bin/dokserv?id=3495870&prov=M&dok_var=1&dok_ext=htm  |3 Inhaltstext 
856 4 2 |m DNB Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021193720&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-021193720 

Datensatz im Suchindex

_version_ 1819772575891324928
adam_text IMAGE 1 CONTENTS PREFACE CHAPTER 1 CRYSTALS 1 1.1 PERIODICITY OF CRYSTAL STRUCTURE, CRYSTAL CELL 1 1.2 THREE-DIMENSIONAL LATTICE TYPES 1 1.3 SYMMETRY AND POINT GROUPS 3 1.4 RECIPROCAL LATTICE 5 1.5 APPENDIX OF CHAPTER 1: SOME BASIC CONCEPTS 6 REFERENCES 10 CHAPTER 2 FRAMEWORK OF THE CLASSICAL THEORY OF ELASTICITY 13 2.1 REVIEW ON SOME BASIC CONCEPTS 13 2.2 BASIC ASSUMPTIONS OF THEORY OF ELASTICITY 16 2.3 DISPLACEMENT AND DEFORMATION 17 2.4 STRESS ANALYSIS AND EQUATIONS OF MOTION 18 2.5 GENERALIZED HOOKE S LAW 19 2.6 ELASTODYNAMICS, WAVE MOTION 23 2.7 SUMMARY 23 REFERENCES 24 CHAPTER 3 QUASICRYSTAL AND ITS PROPERTIES 25 3.1 DISCOVERY OF QUASICRYSTAL 25 3.2 STRUCTURE AND SYMMETRY OF QUASICRYSTALS 27 3.3 A BRIEF INTRODUCTION ON PHYSICAL PROPERTIES OF QUASICRYSTALS 29 3.4 ONE-, TWO- AND THREE-DIMENSIONAL QUASICRYSTALS 30 3.5 TWO-DIMENSIONAL QUASICRYSTALS AND PLANAR QUASICRYSTALS 30 REFERENCES 30 CHAPTER 4 THE PHYSICAL BASIS OF ELASTICITY OF QUASICRYSTALS 35 4.1 PHYSICAL BASIS OF ELASTICITY OF QUASICRYSTALS 35 4.2 DEFORMATION TENSORS 36 4.3 STRESS TENSORS AND THE EQUATIONS OF MOTION 38 4.4 FREE ENERGY AND ELASTIC CONSTANTS 40 4.5 GENERALIZED HOOKE S LAW 42 4.6 BOUNDARY CONDITIONS AND INITIAL CONDITIONS 42 4.7 A BRIEF INTRODUCTION ON RELEVANT MATERIAL CONSTANTS OF QUASICRYSTALS 43 4.8 SUMMARY AND MATHEMATICAL SOLVABILITY OF BOUNDARY VALUE OR INITIAL- BIBLIOGRAFISCHE INFORMATIONEN HTTP://D-NB.INFO/1003791263 DIGITALISIERT DURCH IMAGE 2 VIA CONTENTS BOUNDARY VALUE PROBLEM 44 4.9 APPENDIX OF CHAPTER 4: DESCRIPTION ON PHYSICAL BASIS OF ELASTICITY OF QUASICRYSTALS BASED ON THE LANDAU DENSITY WAVE THEORY 46 REFERENCES 50 CHAPTER 5 ELASTICITY THEORY OF ONE-DIMENSIONAL QUASICRYSTALS AND SIMPLIFICATION 53 5.1 ELASTICITY OF HEXAGONAL QUASICRYSTALS 54 5.2 DECOMPOSITION OF THE PROBLEM INTO PLANE AND ANTI-PLANE PROBLEMS 56 5.3 ELASTICITY OF MONOCLINIC QUASICRYSTALS 58 5.4 ELASTICITY OF ORTHORHOMBIC QUASICRYSTALS 61 5.5 TETRAGONAL QUASICRYSTALS 62 5.6 THE SPACE ELASTICITY OF HEXAGONAL QUASICRYSTALS 63 5.7 OTHER RESULTS OF ELASTICITY OF ONE-DIMENSIONAL QUASICRYSTALS 65 REFERENCES 65 CHAPTER 6 ELASTICITY OF TWO-DIMENSIONAL QUASICRYSTALS AND SIMPLIFICATION 67 6.1 BASIC EQUATIONS OF PLANE ELASTICITY OF TWO-DIMENSIONAL QUASICRYSTALS: POINT GROUPS 5M AND 10MM IN FIVE- AND TEN-FOLD SYMMETRIES 71 6.2 SIMPLIFICATION OF THE BASIC EQUATION SET: DISPLACEMENT POTENTIAL FUNCTION METHOD 76 6.3 SIMPLIFICATION OF THE BASIC EQUATIONS SET: STRESS POTENTIAL FUNCTION METHOD 79 6.4 PLANE ELASTICITY OF POINT GROUP 5, 5 PENTAGONAL AND POINT GROUP 10, 10 DECAGONAL QUASICRYSTALS 81 6.5 PLANE ELASTICITY OF POINT GROUP 12MM OF DODECAGONAL QUASICRYSTALS 85 6.6 PLANE ELASTICITY OF POINT GROUP 8MM OF OCTAGONAL QUASICRYSTALS, DISPLACEMENT POTENTIAL 89 6.7 STRESS POTENTIAL OF POINT GROUP 5,5 PENTAGONAL AND POINT GROUP 10, 10 DECAGONAL QUASICRYSTALS 94 6.8 STRESS POTENTIAL OF POINT GROUP 8MM OCTAGONAL QUASICRYSTALS 95 6.9 ENGINEERING AND MATHEMATICAL ELASTICITY OF QUASICRYSTALS 98 REFERENCES * 101 CHAPTER 7 APPLICATION I: SOME DISLOCATION AND INTERFACE PROBLEMS AND SOLUTIONS IN ONE- AND TWO-DIMENSIONAL QUASICRYSTALS - 103 7.1 DISLOCATIONS IN ONE-DIMENSIONAL HEXAGONAL QUASICRYSTALS 104 7.2 DISLOCATIONS IN QUASICRYSTALS WITH POINT GROUPS 5M AND 10MM SYMMETRIES 106 7.3 DISLOCATIONS IN QUASICRYSTALS WITH POINT GROUPS 5,5 FIVE-FOLD AND 10, IMAGE 3 CONTENTS IX 10 TEN-FOLD SYMMETRIES 112 7.4 DISLOCATIONS IN QUASICRYSTALS WITH EIGHT-FOLD SYMMETRY 117 7.5 DISLOCATIONS IN DODECAGONAL QUASICRYSTALS 120 7.6 INTERFACE BETWEEN QUASICRYSTAL AND CRYSTAL 120 7.7 CONCLUSION AND DISCUSSION 124 REFERENCES 124 CHAPTER 8 APPLICATION II: SOLUTIONS OF NOTCH AND CRACK PROBLEMS OF ONE-AND TWO-DIMENSIONAL QUASICRYSTALS 127 8.1 CRACK PROBLEM AND SOLUTION OF ONE-DIMENSIONAL QUASICRYSTALS 128 8.2 CRACK PROBLEM IN FINITE-SIZED ONE-DIMENSIONAL QUASICRYSTALS 134 8.3 GRIFFITH CRACK PROBLEMS IN POINT GROUPS 5M AND 10MM QUASICRYSTALS BASED ON DISPLACEMENT POTENTIAL FUNCTION METHOD 139 8.4 STRESS POTENTIAL FUNCTION FORMULATION AND COMPLEX VARIABLE FUNCTION METHOD FOR SOLVING NOTCH AND CRACK PROBLEMS OF QUASICRYSTALS OF POINT GROUPS 5, 5 AND 10, 10 145 8.5 SOLUTIONS OF CRACK/NOTCH PROBLEMS OF TWO-DIMENSIONAL OCTAGONAL QUASICRYSTALS 152 8.6 OTHER SOLUTIONS OF CRACK PROBLEMS IN ONE-AND TWO-DIMENSIONAL QUASICRYSTALS 153 8.7 APPENDIX OF CHAPTER 8: DERIVATION OF SOLUTION OF SECTION 8.1 154 REFERENCES 156 CHAPTER 9 THEORY OF ELASTICITY OF THREE-DIMENSIONAL QUASICRYSTALS AND ITS APPLICATIONS 159 9.1 BASIC EQUATIONS OF ELASTICITY OF ICOSAHEDRAL QUASICRYSTALS 160 9.2 ANTI-PLANE ELASTICITY OF ICOSAHEDRAL QUASICRYSTALS AND PROBLEM OF INTERFACE BETWEEN QUASICRYSTAL AND CRYSTAL 164 9.3 PHONON-PHASON DECOUPLED PLANE ELASTICITY OF ICOSAHEDRAL QUASICRYSTALS 168 9.4 PHONON-PHASON COUPLED PLANE ELASTICITY OF ICOSAHEDRAL QUASICRYSTALS- DISPLACEMENT POTENTIAL FORMULATION 169 9.5 PHONON-PHASON COUPLED PLANE ELASTICITY OF ICOSAHEDRAL QUASICRYSTALS- STRESS POTENTIAL FORMULATION 172 9.6 A STRAIGHT DISLOCATION IN AN ICOSAHEDRAL QUASICRYSTAL 173 9.7 AN ELLIPTIC NOTCH/GRIFFITH CRACK IN AN ICOSAHEDRAL QUASICRYSTAL 178 9.8 ELASTICITY OF CUBIC QUASICRYSTALS-THE ANTI-PLANE AND AXISYMMETRIC DEFORMATION 185 IMAGE 4 X CONTENTS REFERENCES 189 CHAPTER 10 DYNAMICS OF ELASTICITY AND DEFECTS OF QUASICRYSTALS 191 10.1 ELASTODYNAMICS OF QUASICRYSTALS FOLLOWED THE BAK S ARGUMENT 192 10.2 ELASTODYNAMICS OF ANTI-PLANE ELASTICITY FOR SOME QUASICRYSTALS 192 10.3 MOVING SCREW DISLOCATION IN ANTI-PLANE ELASTICITY 194 10.4 MODE III MOVING GRIFFITH CRACK IN ANTI-PLANE ELASTICITY 197 10.5 ELASTO-/HYDRO-DYNAMICS OF QUASICRYSTALS AND APPROXIMATE ANALYTIC SOLUTION FOR MOVING SCREW DISLOCATION IN ANTI-PLANE ELASTICITY 199 10.6 ELASTO-/HYDRO-DYNAMICS AND SOLUTIONS OF TWO-DIMENSIONAL DECAGONAL QUASICRYSTALS 206 10.7 ELASTO-/HYDRO-DYNAMICS AND APPLICATIONS TO FRACTURE DYNAMICS OF ICOSAHEDRAL QUASICRYSTALS 216 10.8 APPENDIX OF CHAPTER 10: THE DETAIL OF FINITE DIFFERENCE SCHEME 221 REFERENCES 225 CHAPTER 11 COMPLEX VARIABLE FUNCTION METHOD FOR ELASTICITY OF QUASICRYSTALS 229 11.1 HARMONIC AND QUASI-BIHARMONIC EQUATIONS IN ANTI-PLANE ELASTICITY OF ONE-DIMENSIONAL QUASICRYSTALS 230 11.2 BIHARMONIC EQUATIONS IN PLANE ELASTICITY OF POINT GROUP 12MM TWO- DIMENSIONAL QUASICRYSTALS 230 11.3 THE COMPLEX VARIABLE FUNCTION METHOD OF QUADRUPLE HARMONIC EQUATIONS AND APPLICATIONS IN TWO-DIMENSIONAL QUASICRYSTALS 231 11.4 COMPLEX VARIABLE FUNCTION METHOD FOR SEXTUPLE HARMONIC EQUATION AND APPLICATIONS TO ICOSAHEDRAL QUASICRYSTALS 243 11.5 COMPLEX ANALYSIS AND SOLUTION OF QUADRUPLE QUASIHARMONIC EQUATION 253 11.6 CONCLUSION AND DISCUSSION 254 REFERENCES 255 CHAPTER 12 VARIATIONAL PRINCIPLE OF ELASTICITY OF QUASICRYSTALS, NUMERICAL ANALYSIS AND APPLICATIONS 257 12.1 BASIC RELATIONS OF PLANE ELASTICITY OF TWO-DIMENSIONAL QUASICRYSTALS 258 12.2 GENERALIZED VARIATIONAL PRINCIPLE FOR STATIC ELASTICITY OF QUASICRYSTALS 259 12.3 FINITE ELEMENT METHOD * * * 263 12.4 NUMERICAL EXAMPLES 267 REFERENCES * 272 CHAPTER 13 SOME MATHEMATICAL PRINCIPLES ON SOLUTIONS OF ELASTICITY OF QUASICRYSTALS 273 13.1 UNIQUENESS OF SOLUTION OF ELASTICITY OF QUASICRYSTALS 273 IMAGE 5 CONTENTS XI 13.2 GENERALIZED LAX-MILGRAM THEOREM 275 13.3 MATRIX EXPRESSION OF ELASTICITY OF THREE-DIMENSIONAL QUASICRYSTALS 278 13.4 THE WEAK SOLUTION OF BOUNDARY VALUE PROBLEM OF ELASTICITY OF QUASICRYSTALS 282 13.5 THE UNIQUENESS OF WEAK SOLUTION 283 13.6 CONCLUSION AND DISCUSSION 286 REFERENCES 286 CHAPTER 14 NONLINEAR BEHAVIOUR OF QUASICRYSTALS 289 14.1 MACROSCOPIC BEHAVIOUR OF PLASTIC DEFORMATION OF QUASICRYSTALS 290 14.2 POSSIBLE SCHEME OF PLASTIC CONSTITUTIVE EQUATIONS 292 14.3 NONLINEAR ELASTICITY AND ITS FORMULATION 294 14.4 NONLINEAR SOLUTIONS BASED ON SIMPLE MODELS 295 14.5 NONLINEAR ANALYSIS BASED ON THE GENERALIZED ESHELBY THEORY 301 14.6 NONLINEAR ANALYSIS BASED ON THE DISLOCATION MODEL 305 14.7 CONCLUSION AND DISCUSSION 309 14.8 APPENDIX OF CHAPTER 14: SOME MATHEMATICAL DETAILS 309 REFERENCES 314 CHAPTER 15 FRACTURE THEORY OF QUASICRYSTALS 317 15.1 LINEAR FRACTURE THEORY OF QUASICRYSTALS 317 15.2 MEASUREMENT OF G W 320 15.3 NONLINEAR FRACTURE MECHANICS 322 15.4 DYNAMIC FRACTURE 323 15.5 MEASUREMENT OF FRACTURE TOUGHNESS AND RELEVANT MECHANICAL PARAMETERS OF QUASICRYSTALLINE MATERIAL 325 REFERENCES 327 CHAPTER 16 REMARKABLE CONCLUSION 329 REFERENCES 330 MAJOR APPENDIX: ON SOME MATHEMATICAL MATERIALS 333 APPENDIX I OUTLINE OF COMPLEX VARIABLE FUNCTIONS AND SOME ADDITIONAL CALCULATIONS 333 A.I.I COMPLEX FUNCTIONS, ANALYTIC FUNCTIONS 334 A.I.2 CAUCHY S FORMULA 335 A.I.3 POLES 337 A.I.4 RESIDUE THEOREM 337 A.I.5 ANALYTIC EXTENSION 340 A.I.6 CONFORMAL MAPPING 340 A.I.7 ADDITIONAL DERIVATION OF SOLUTION (8.2-19) 341 A.I.8 ADDITIONAL DERIVATION OF SOLUTION (11.3-53) 342 IMAGE 6 XII CONTENTS A.I.9 DETAIL OF COMPLEX ANALYSIS OF GENERALIZED COHESIVE FORCE MODEL FOR PLANE ELASTICITY OF TWO-DIMENSIONAL POINT GROUPS 5M, 10MM AND 10, 10 QUASICRYSTALS 345 A.I.10 ON THE CALCULATION OF INTEGRAL (9.2-14) 347 APPENDIX II DUAL INTEGRAL EQUATIONS AND SOME ADDITIONAL CALCULATIONS 348 A.II.L DUAL INTEGRAL EQUATIONS 348 A.II.2 ADDITIONAL DERIVATION ON THE SOLUTION OF DUAL INTEGRAL EQUATIONS (8.3-8) 353 A.II.3 ADDITIONAL DERIVATION ON THE SOLUTION OF DUAL INTEGRAL EQUATIONS (9.8-8) 355 REFERENCES 357 I N D EX 359
any_adam_object 1
author Fan, Tianyou
author_GND (DE-588)144023717
author_facet Fan, Tianyou
author_role aut
author_sort Fan, Tianyou
author_variant t f tf
building Verbundindex
bvnumber BV037280914
classification_rvk UQ 8750
ctrlnum (OCoLC)724185942
(DE-599)DNB1003791263
dewey-full 530.412
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 530 - Physics
dewey-raw 530.412
dewey-search 530.412
dewey-sort 3530.412
dewey-tens 530 - Physics
discipline Physik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01691nam a2200409 c 4500</leader><controlfield tag="001">BV037280914</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20110630 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">110315s2011 xx ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">10,N26</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1003791263</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642146428</subfield><subfield code="c">GB. : ca. EUR 139.05 (freier Pr.), ca. sfr 216.00 (freier Pr.)</subfield><subfield code="9">978-3-642-14642-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9787030256690</subfield><subfield code="9">978-7-03-025669-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)724185942</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1003791263</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.412</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UQ 8750</subfield><subfield code="0">(DE-625)146603:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fan, Tianyou</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)144023717</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical theory of elasticity of quasicrystals and its applications</subfield><subfield code="c">Tianyou Fan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Heidelberg [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 363 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elastizitätstheorie</subfield><subfield code="0">(DE-588)4123124-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quasikristall</subfield><subfield code="0">(DE-588)4202613-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quasikristall</subfield><subfield code="0">(DE-588)4202613-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Elastizitätstheorie</subfield><subfield code="0">(DE-588)4123124-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=3495870&amp;prov=M&amp;dok_var=1&amp;dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=021193720&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-021193720</subfield></datafield></record></collection>
id DE-604.BV037280914
illustrated Illustrated
indexdate 2024-12-24T00:22:01Z
institution BVB
isbn 9783642146428
9787030256690
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-021193720
oclc_num 724185942
open_access_boolean
owner DE-11
owner_facet DE-11
physical XII, 363 S. Ill., graph. Darst.
publishDate 2011
publishDateSearch 2011
publishDateSort 2011
publisher Springer
record_format marc
spellingShingle Fan, Tianyou
Mathematical theory of elasticity of quasicrystals and its applications
Elastizitätstheorie (DE-588)4123124-7 gnd
Quasikristall (DE-588)4202613-1 gnd
subject_GND (DE-588)4123124-7
(DE-588)4202613-1
title Mathematical theory of elasticity of quasicrystals and its applications
title_auth Mathematical theory of elasticity of quasicrystals and its applications
title_exact_search Mathematical theory of elasticity of quasicrystals and its applications
title_full Mathematical theory of elasticity of quasicrystals and its applications Tianyou Fan
title_fullStr Mathematical theory of elasticity of quasicrystals and its applications Tianyou Fan
title_full_unstemmed Mathematical theory of elasticity of quasicrystals and its applications Tianyou Fan
title_short Mathematical theory of elasticity of quasicrystals and its applications
title_sort mathematical theory of elasticity of quasicrystals and its applications
topic Elastizitätstheorie (DE-588)4123124-7 gnd
Quasikristall (DE-588)4202613-1 gnd
topic_facet Elastizitätstheorie
Quasikristall
url http://deposit.dnb.de/cgi-bin/dokserv?id=3495870&prov=M&dok_var=1&dok_ext=htm
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021193720&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT fantianyou mathematicaltheoryofelasticityofquasicrystalsanditsapplications