Stochastic differential equations in infinite dimensions with applications to stochastic partial differential equations

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gawarecki, Leszek (VerfasserIn), Mandrekar, Vidyadhar 1939- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Berlin Springer [2011]
Schriftenreihe:Probability and its applications
Schlagworte:
Online-Zugang:Inhaltstext
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV037219689
003 DE-604
005 20210324
007 t|
008 110210s2011 xx |||| 00||| eng d
015 |a 10,N36  |2 dnb 
016 7 |a 1006508031  |2 DE-101 
020 |a 9783642161933  |c GB. : ca. EUR 53.45 (freier Pr.), ca. sfr 72.00 (freier Pr.)  |9 978-3-642-16193-3 
024 3 |a 9783642161933 
028 5 2 |a 80021320 
035 |a (OCoLC)845953241 
035 |a (DE-599)DNB1006508031 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-19  |a DE-824  |a DE-11  |a DE-20 
082 0 |a 519.22  |2 22/ger 
084 |a SK 820  |0 (DE-625)143258:  |2 rvk 
084 |a 510  |2 sdnb 
100 1 |a Gawarecki, Leszek  |e Verfasser  |0 (DE-588)1126283908  |4 aut 
245 1 0 |a Stochastic differential equations in infinite dimensions  |b with applications to stochastic partial differential equations  |c Leszek Gawarecki, Vidyadhar Mandrekar 
264 1 |a Berlin  |b Springer  |c [2011] 
264 4 |c © 2011 
300 |a xvi, 291 Seiten 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Probability and its applications 
650 0 7 |a Dimension unendlich  |0 (DE-588)4474010-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Stochastische Differentialgleichung  |0 (DE-588)4057621-8  |2 gnd  |9 rswk-swf 
689 0 0 |a Stochastische Differentialgleichung  |0 (DE-588)4057621-8  |D s 
689 0 1 |a Dimension unendlich  |0 (DE-588)4474010-4  |D s 
689 0 |5 DE-604 
700 1 |a Mandrekar, Vidyadhar  |d 1939-  |e Verfasser  |0 (DE-588)1013611721  |4 aut 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-3-642-16194-0 
856 4 2 |m X:MVB  |q text/html  |u http://deposit.dnb.de/cgi-bin/dokserv?id=3532045&prov=M&dok_var=1&dok_ext=htm  |3 Inhaltstext 
856 4 2 |m DNB Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021133597&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-021133597 

Datensatz im Suchindex

_version_ 1819722478280245248
adam_text IMAGE 1 CONTENTS PART I STOCHASTIC DIFFERENTIAL EQUATIONS IN INFINITE DIMENSIONS 1 PARTIAL DIFFERENTIAL EQUATIONS AS EQUATIONS IN INFINITE DIMENSIONS . 3 1.1 THE HEAT EQUATION AS AN ABSTRACT CAUCHY PROBLEM 3 1.2 ELEMENTS OF SEMIGROUP THEORY 5 1.3 COMMONLY USED FUNCTION SPACES 10 1.4 THE ABSTRACT CAUCHY PROBLEM 11 1.5 THE VARIATIONAL METHOD 15 2 STOCHASTIC CALCULUS 17 2.1 HILBERT-SPACE-VALUED PROCESS, MARTINGALES, AND CYLINDRICAL WIENER PROCESS 17 2.1.1 CYLINDRICAL AND HILBERT-SPACE-VALUED GAUSSIAN RANDOM VARIABLES 17 2.1.2 CYLINDRICAL AND Q-WIENER PROCESSES 19 2.1.3 MARTINGALES IN A HILBERT SPACE 21 2.2 STOCHASTIC INTEGRAL WITH RESPECT TO A WIENER PROCESS 23 2.2.1 ELEMENTARY PROCESSES 25 2.2.2 STOCHASTIC ITO INTEGRAL FOR ELEMENTARY PROCESSES 26 2.2.3 STOCHASTIC ITO INTEGRAL WITH RESPECT TO A Q-WIENER PROCESS 34 2.2.4 STOCHASTIC ITO INTEGRAL WITH RESPECT TO CYLINDRICAL WIENER PROCESS 44 2.2.5 THE MARTINGALE REPRESENTATION THEOREM 49 2.2.6 STOCHASTIC FUBINI THEOREM 57 2.3 THE ITO FORMULA 61 2.3.1 THE CASE OF A SS-WIENER PROCESS 61 2.3.2 THE CASE OF A CYLINDRICAL WIENER PROCESS 69 3 STOCHASTIC DIFFERENTIAL EQUATIONS 73 3.1 STOCHASTIC DIFFERENTIAL EQUATIONS AND THEIR SOLUTIONS 73 3.2 SOLUTIONS UNDER LIPSCHITZ CONDITIONS 84 3.3 A SPECIAL CASE 103 BIBLIOGRAFISCHE INFORMATIONEN HTTP://D-NB.INFO/1006508031 DIGITALISIERT DURCH IMAGE 2 CONTENTS 3.4 MARKOV PROPERTY AND UNIQUENESS 107 3.5 DEPENDENCE OF THE SOLUTION ON THE INITIAL VALUE I LL 3.6 KOLMOGOROV S BACKWARD EQUATION 117 3.7 LIPSCHITZ-TYPE APPROXIMATION OF CONTINUOUS COEFFICIENTS 125 3.8 EXISTENCE OF WEAK SOLUTIONS UNDER CONTINUITY ASSUMPTION . . .. 128 3.9 COMPACT SEMIGROUPS AND EXISTENCE OF MARTINGALE SOLUTIONS . . . . 135 3.10 MILD SOLUTIONS TO SSDES DRIVEN BY CYLINDRICAL WIENER PROCESS . . 141 APPENDIX: COMPACTNESS AND TIGHTNESS OF MEASURES 148 4 SOLUTIONS BY VARIATIONAL METHOD 151 4.1 INTRODUCTION 151 4.2 EXISTENCE OF WEAK SOLUTIONS UNDER COMPACT EMBEDDING 152 4.3 STRONG VARIATIONAL SOLUTIONS 174 4.4 MARKOV AND STRONG MARKOV PROPERTIES 181 5 STOCHASTIC DIFFERENTIAL EQUATIONS WITH DISCONTINUOUS DRIFT 185 5.1 INTRODUCTION 185 5.2 UNBOUNDED SPIN SYSTEMS, SOLUTIONS IN C([0, T], H W ) 185 5.3 LOCALLY INTERACTING PARTICLE SYSTEMS, SOLUTIONS ],R ZRF ) 194 PART II STABILITY, BOUNDEDNESS, AND INVARIANT MEASURES 6 STABILITY THEORY FOR STRONG AND MILD SOLUTIONS 203 6.1 INTRODUCTION 203 6.2 EXPONENTIAL STABILITY FOR STOCHASTIC DIFFERENTIAL EQUATIONS 211 6.3 STABILITY IN THE VARIATIONAL METHOD 225 APPENDIX: STOCHASTIC ANALOGUE OF THE DATKO THEOREM 230 7 ULTIMATE BOUNDEDNESS AND INVARIANT MEASURE 233 7.1 EXPONENTIAL ULTIMATE BOUNDEDNESS IN THE M.S.S 233 7.2 EXPONENTIAL ULTIMATE BOUNDEDNESS IN VARIATIONAL METHOD 237 7.3 ABSTRACT CAUCHY PROBLEM, STABILITY AND EXPONENTIAL ULTIMATE BOUNDEDNESS 246 7.4 ULTIMATE BOUNDEDNESS AND INVARIANT MEASURE 255 7.4.1 VARIATIONAL EQUATIONS 261 7.4.2 SEMILINEAR EQUATIONS DRIVEN BY A SS-WIENER PROCESS . . .. 266 7.4.3 SEMILINEAR EQUATIONS DRIVEN BY A CYLINDRICAL WIENER PROCESS 271 7.5 ULTIMATE BOUNDEDNESS AND WEAK RECURRENCE OF THE SOLUTIONS . . . 274 REFERENCES 285 INDEX 289
any_adam_object 1
author Gawarecki, Leszek
Mandrekar, Vidyadhar 1939-
author_GND (DE-588)1126283908
(DE-588)1013611721
author_facet Gawarecki, Leszek
Mandrekar, Vidyadhar 1939-
author_role aut
aut
author_sort Gawarecki, Leszek
author_variant l g lg
v m vm
building Verbundindex
bvnumber BV037219689
classification_rvk SK 820
ctrlnum (OCoLC)845953241
(DE-599)DNB1006508031
dewey-full 519.22
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.22
dewey-search 519.22
dewey-sort 3519.22
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02033nam a2200469 c 4500</leader><controlfield tag="001">BV037219689</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210324 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">110210s2011 xx |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">10,N36</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1006508031</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642161933</subfield><subfield code="c">GB. : ca. EUR 53.45 (freier Pr.), ca. sfr 72.00 (freier Pr.)</subfield><subfield code="9">978-3-642-16193-3</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783642161933</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">80021320</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)845953241</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1006508031</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.22</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gawarecki, Leszek</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1126283908</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic differential equations in infinite dimensions</subfield><subfield code="b">with applications to stochastic partial differential equations</subfield><subfield code="c">Leszek Gawarecki, Vidyadhar Mandrekar</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Springer</subfield><subfield code="c">[2011]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvi, 291 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Probability and its applications</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dimension unendlich</subfield><subfield code="0">(DE-588)4474010-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Differentialgleichung</subfield><subfield code="0">(DE-588)4057621-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastische Differentialgleichung</subfield><subfield code="0">(DE-588)4057621-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dimension unendlich</subfield><subfield code="0">(DE-588)4474010-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mandrekar, Vidyadhar</subfield><subfield code="d">1939-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1013611721</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-642-16194-0</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=3532045&amp;prov=M&amp;dok_var=1&amp;dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=021133597&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-021133597</subfield></datafield></record></collection>
id DE-604.BV037219689
illustrated Not Illustrated
indexdate 2024-12-24T00:20:31Z
institution BVB
isbn 9783642161933
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-021133597
oclc_num 845953241
open_access_boolean
owner DE-19
DE-BY-UBM
DE-824
DE-11
DE-20
owner_facet DE-19
DE-BY-UBM
DE-824
DE-11
DE-20
physical xvi, 291 Seiten
publishDate 2011
publishDateSearch 2011
publishDateSort 2011
publisher Springer
record_format marc
series2 Probability and its applications
spellingShingle Gawarecki, Leszek
Mandrekar, Vidyadhar 1939-
Stochastic differential equations in infinite dimensions with applications to stochastic partial differential equations
Dimension unendlich (DE-588)4474010-4 gnd
Stochastische Differentialgleichung (DE-588)4057621-8 gnd
subject_GND (DE-588)4474010-4
(DE-588)4057621-8
title Stochastic differential equations in infinite dimensions with applications to stochastic partial differential equations
title_auth Stochastic differential equations in infinite dimensions with applications to stochastic partial differential equations
title_exact_search Stochastic differential equations in infinite dimensions with applications to stochastic partial differential equations
title_full Stochastic differential equations in infinite dimensions with applications to stochastic partial differential equations Leszek Gawarecki, Vidyadhar Mandrekar
title_fullStr Stochastic differential equations in infinite dimensions with applications to stochastic partial differential equations Leszek Gawarecki, Vidyadhar Mandrekar
title_full_unstemmed Stochastic differential equations in infinite dimensions with applications to stochastic partial differential equations Leszek Gawarecki, Vidyadhar Mandrekar
title_short Stochastic differential equations in infinite dimensions
title_sort stochastic differential equations in infinite dimensions with applications to stochastic partial differential equations
title_sub with applications to stochastic partial differential equations
topic Dimension unendlich (DE-588)4474010-4 gnd
Stochastische Differentialgleichung (DE-588)4057621-8 gnd
topic_facet Dimension unendlich
Stochastische Differentialgleichung
url http://deposit.dnb.de/cgi-bin/dokserv?id=3532045&prov=M&dok_var=1&dok_ext=htm
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021133597&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT gawareckileszek stochasticdifferentialequationsininfinitedimensionswithapplicationstostochasticpartialdifferentialequations
AT mandrekarvidyadhar stochasticdifferentialequationsininfinitedimensionswithapplicationstostochasticpartialdifferentialequations