IUTAM Symposium on Turbulence in the Atmosphere and Oceans proceedings of the IUTAM Symposium on Turbulence in the Atmosphere and Oceans, Cambridge, UK, December 8 - 12, 2008

Gespeichert in:
Bibliographische Detailangaben
Körperschaft: Symposium on Turbulence in the Atmosphere and Oceans (VerfasserIn)
Format: Tagungsbericht Buch
Sprache:English
Veröffentlicht: Dordrecht [u.a.] Springer 2010
Schriftenreihe:IUTAM bookseries 28
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV037210193
003 DE-604
005 20180515
007 t
008 110207s2010 ad|| |||| 00||| eng d
020 |a 9789400703599  |9 978-94-007-0359-9 
020 |a 9789400703605  |c ebook  |9 978-94-007-0360-5 
035 |a (OCoLC)732190079 
035 |a (DE-599)BVBBV037210193 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-634  |a DE-703 
084 |a UT 4800  |0 (DE-625)146812:  |2 rvk 
111 2 |a Symposium on Turbulence in the Atmosphere and Oceans  |d 2008  |j Verfasser  |0 (DE-588)16099723-9  |4 aut 
245 1 0 |a IUTAM Symposium on Turbulence in the Atmosphere and Oceans  |b proceedings of the IUTAM Symposium on Turbulence in the Atmosphere and Oceans, Cambridge, UK, December 8 - 12, 2008  |c David Dritschel (ed.) 
264 1 |a Dordrecht [u.a.]  |b Springer  |c 2010 
300 |a xxi, 298 S.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a IUTAM bookseries  |v 28 
700 1 |a Dritschel, David  |e Sonstige  |4 oth 
830 0 |a IUTAM bookseries  |v 28  |w (DE-604)BV023108254  |9 28 
856 4 2 |m SWB Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021124255&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-021124255 

Datensatz im Suchindex

_version_ 1804143802738278400
adam_text IMAGE 1 CONTENTS PART I WAVES AND IMBALANCE ON SPONTANEOUS IMBALANCE AND OCEAN TURBULENCE: GENERALIZATIONS OF THE PAPARELLA-YOUNG EPSILON THEOREM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 MICHAEL E. MCINTYRE 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 SPONTANEOUS IMBALANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 EPSILON THEOREMS FOR REALISTIC OCEAN MODELS . . . . . . . . . . . . . . . . . . . 7 4 SPECIFIC EXAMPLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5 CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 INERTIA-GRAVITY-WAVE GENERATION: A GEOMETRIC-OPTICS APPROACH . . . . . . . . . . 17 J. M. ASPDEN AND J. VANNESTE 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2 GEOMETRIC-OPTICS APPROACH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3 APPLICATIONS TO SIMPLE F LOWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1 HORIZONTAL STRAIN AND VERTICAL SHEAR . . . . . . . . . . . . . . . . . . . 21 3.2 ELLIPTICAL FLOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3 DIPOLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.4 RANDOM-STRAIN MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 PARALLELS BETWEEN STRATIFICATION AND ROTATION IN HYDRODYNAMICS, AND BETWEEN BOTH OF THEM AND EXTERNAL MAGNETIC FIELD IN MAGNETOHYDRODYNAMICS, WITH APPLICATIONS TO NONLINEAR WAVES . . . . . . . . . . 27 S. MEDVEDEV AND V. ZEITLIN 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.1 2D STRATIFIED BOUSSINESQ EQUATIONS . . . . . . . . . . . . . . . . . . . 28 2.2 2.5D ROTATING EULER EQUATIONS . . . . . . . . . . . . . . . . . . . . . . . 28 IX IMAGE 2 X CONTENTS 2.3 2D MAGNETOHYDRODYNAMICS . . . . . . . . . . . . . . . . . . . . . . . . . 29 3 SIMILARITY BETWEEN MODELS I: WAVES AND STRUCTURES . . . . . . . . . . . . . . 30 3.1 LINEAR WAVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2 STRUCTURES: NONLINEAR WAVES/VORTICES . . . . . . . . . . . . . . . . . . 31 4 SIMILARITY BETWEEN MODELS II: GEOMETRY . . . . . . . . . . . . . . . . . . . . . . 32 4.1 HAMILTONIAN STRUCTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2 GEOMETRY OF THE PHASE SPACE AND NONCONSTRAINED DYNAMICAL VARIABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3 CASTING PB TO THE CANONICAL FORM . . . . . . . . . . . . . . . . . . . . 33 5 TRIAD AND QUARTET WAVE INTERACTIONS AND WAVE TURBULENCE (WT) . . . 34 5.1 THE WT ALGORITHM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.2 KNOWN SITUATIONS LEADING TO GET-IT-BY-HAND SOLUTIONS FOR STATIONARY ENERGY SPECTRA IN WT . . . . . . . . . . . . . . . . . . 35 5.3 WT: DECAY SPECTRA FOR GRAVITY, GYROSCOPIC AND ALFV` EN WAVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.4 WT: NON-DECAY SPECTRA FOR GRAVITY AND GYROSCOPIC WAVES 36 6 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 GENERATION OF AN INTERNAL TIDE BY SURFACE TIDE/EDDY RESONANT INTERACTIONS . 39 M.-P. LELONG AND E. KUNZE 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2 PROBLEM DEFINITION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.1 GOVERNING EQUATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.2 WAVE-TRIAD INTERACTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.3 MULTIPLE-SCALE ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3 NUMERICAL SIMULATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 GENERATION OF HARMONICS AND SUB-HARMONICS FROM AN INTERNAL TIDE IN A UNIFORMLY STRATIFIED FLUID: NUMERICAL AND LABORATORY EXPERIMENTS . . . . . . . 51 IVANE PAIRAUD, CHANTAL STAQUET, JO¨ EL SOMMERIA AND MAHDI M. MAHDIZADEH 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2 EXPERIMENTAL SET-UPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.1 LABORATORY EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.2 NUMERICAL SIMULATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3 EMISSION OF THE WAVE BEAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4 SPATIAL STRUCTURE OF THE WAVE BEAM . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5 PARAMETRIC INSTABILITY OF THE WAVE BEAM . . . . . . . . . . . . . . . . . . . . . . . 57 6 GENERATION OF HARMONICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 IMAGE 3 CONTENTS XI DEEP OCEAN MIXING BY NEAR-INERTIAL WAVES . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 VICTOR I. SHRIRA AND WILLIAM A. TOWNSEND 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2 BASIC EQUATIONS AND WKB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3 MIXED BOTTOM LAYER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 PART II TURBULENCE AND CONVECTION EDDIES AND CIRCULATION: LESSONS FROM OCEANS AND THE GFD LAB . . . . . . . . 77 PETER B. RHINES 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 2 DEEP PATHWAYS IN THE OCEANIC OVERTURNING CIRCULATION . . . . . . . . . . . 82 3 EDDIES AND ROSSBY WAVES IN THE UPPER OCEAN . . . . . . . . . . . . . . . . . . 83 4 NOTES FROM THE GFD LAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 OBSERVATIONS ON RAPIDLY ROTATING TURBULENCE . . . . . . . . . . . . . . . . . . . . . . . 95 P A DAVIDSON, P J STAPLEHURST AND S B DALZIEL 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 2 HOW COLUMNAR EDDIES FORM AT LOW RO . . . . . . . . . . . . . . . . . . . . . . 97 3 THE EXPERIMENTAL EVIDENCE AT RO * 1 . . . . . . . . . . . . . . . . . . . . . . . . 100 4 WHY LINEAR BEHAVIOUR AT RO * 1? . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5 WHY A CYCLONE-ANTICYCLONE ASYMMETRY? . . . . . . . . . . . . . . . . . . . . . 101 6 THE RATE OF ENERGY DECAY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 EQUILIBRATION OF INERTIAL INSTABILITY IN ROTATING FLOW . . . . . . . . . . . . . . . . . . 105 DAAN D.J.A. VAN SOMMEREN, GEORGE F. CARNEVALE, RUDOLF C. KLOOSTERZIEL AND PAOLO ORLANDI 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 2 PURE BAROTROPIC INSTABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3 PURE INERTIAL INSTABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4 FULL 3D SIMULATION VS. PREDICTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 QUASIGEOSTROPHIC AND STRATIFIED TURBULENCE IN THE ATMOSPHERE . . . . . . . . . . 117 PETER BARTELLO 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 2 DIVERGENT AND GEOSTROPHIC MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 3 THE NUMERICAL CONFIGURATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 IMAGE 4 XII CONTENTS REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 A PERSPECTIVE ON SUBMESOSCALE GEOPHYSICAL TURBULENCE . . . . . . . . . . . . . . . 131 JAMES C. MCWILLIAMS 1 THE DYNAMICAL REGIME OF SUBMESOSCALE TURBULENCE . . . . . . . . . . . 131 2 THE FRONTOGENETIC ROUTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 3 OTHER SUBMESOSCALE GENERATION ROUTES . . . . . . . . . . . . . . . . . . . . . . . 136 4 STRATIFIED, NON-ROTATING TURBULENCE . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 SPECTRA AND DISTRIBUTION FUNCTIONS OF STABLY STRATIFIED TURBULENCE . . . . . . 143 JACKSON R. HERRING & YOSHIFUMI KIMURA 1 EQUATIONS OF MOTION AND THEIR ECONOMICAL REPRESENTATION . . . . . . . 143 2 SOME HISTORICAL COMMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 3 MORE RECENT NUMERICAL RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 4 INTERPRETATION OF DNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 5 CONCLUDING COMMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 MODELING MIXING IN TWO-DIMENSIONAL TURBULENCE AND STRATIFIED FLUIDS . . . . 155 ANTOINE VENAILLE AND JOEL SOMMERIA 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 2 AN ANALOGY BETWEEN STATISTICAL MECHANICS OF 2D FLOWS AND DENSITY STRATIFIED FLUIDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 2.1 STATISTICAL MECHANICS OF 2D FLOWS . . . . . . . . . . . . . . . . . . . . 157 2.2 STATISTICAL MECHANICS OF STRATIFIED FLUIDS . . . . . . . . . . . . . . . 158 3 RELAXATION TOWARD STATISTICAL EQUILIBRIUM . . . . . . . . . . . . . . . . . . . . . . 161 4 DISSIPATION OF DENSITY FLUCTUATIONS BY TURBULENT CASCADE . . . . . . . . . 162 5 A SIMPLE EXAMPLE: MIXING OF A TWO LAYER STRATIFIED FLUID . . . . . . . . . 163 6 COUPLING THE MODEL WITH AN EQUATION FOR THE KINETIC ENERGY . . . . . . 165 7 CONCLUSION AND PERSPECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 THE SOLAR TACHOCLINE: A STUDY IN STABLY STRATIFIED MHD TURBULENCE . . . . . . . 169 STEVEN TOBIAS 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 2 THE SOLAR TACHOCLINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 2.1 PROPERTIES OF THE SOLAR TACHOCLINE . . . . . . . . . . . . . . . . . . . . . 170 2.2 WHY IS THE TACHOCLINE THERE - AND SO THIN? . . . . . . . . . . . . 172 3 SIMPLIFIED MODELS OF STRATIFIED MHD TURBULENCE . . . . . . . . . . . . . . . . 174 3.1 THE PARAMETER REGIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 3.2 A HIERARCHY OF MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 3.3 FORMATION OF JETS ON A MAGNETISED * -PLANE . . . . . . . . . . . . 175 4 FUTURE DIRECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 IMAGE 5 CONTENTS XIII SOME UNUSUAL PROPERTIES OF TURBULENT CONVECTION AND DYNAMOS IN ROTATING SPHERICAL SHELLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 F. H. BUSSE AND R. D. SIMITEV 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 2 MATHEMATICAL FORMULATION OF THE PROBLEM AND METHODS OF SOLUTION 182 3 CONVECTION IN ROTATING SPHERICAL SHELLS . . . . . . . . . . . . . . . . . . . . . . . . 185 4 CHAOTIC CONVECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 5 DISTINCT TURBULENT DYNAMOS AT IDENTICAL PARAMETER VALUES . . . . . . . . 189 6 CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 PART III INSTABILITY AND VORTEX DYNAMICS ZIGZAG INSTABILITY OF THE K´ ARM´ AN VORTEX STREET IN STRATIFIED AND ROTATING FLUIDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 AXEL DELONCLE, PAUL BILLANT AND JEAN-MARC CHOMAZ 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 2 PROBLEM FORMULATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 2.1 PAIR OF VORTICES IN A STRATIFIED AND ROTATING FLUID . . . . . . . . . 198 2.2 K´ ARM´ AN VORTEX STREET IN A STRATIFIED AND ROTATING FLUID . . . . 200 3 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 4 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 INSTABILITIES OF A COLUMNAR VORTEX IN A STRATIFIED FLUID . . . . . . . . . . . . . . . . . . 207 PATRICE MEUNIER, NICOLAS BOULANGER, XAVIER RIEDINGER AND ST´ EPHANE LE DIZ` ES 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 2 A GAUSSIAN VORTEX IN A STRATIF IED F LUID . . . . . . . . . . . . . . . . . . . . . . . . . 208 3 INSTABILITIES OF A TILTED VORTEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 3.1 SPATIAL STRUCTURE OF A TILTED VORTEX . . . . . . . . . . . . . . . . . . . . 209 3.2 TILT-INDUCED INSTABILITIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 3.3 CONSEQUENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 4 RADIATIVE INSTABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 4.1 LINEAR STABILITY ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 4.2 EXPERIMENTAL EVIDENCE? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 GEOSTROPHIC VORTEX ALIGNMENT IN EXTERNAL SHEAR OR STRAIN . . . . . . . . . . . . . . 217 XAVIER PERROT, XAVIER CARTON AND ALAN GUILLOU 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 2 PHYSICAL CONFIGURATION AND MODEL EQUATIONS . . . . . . . . . . . . . . . . . . . 218 3 EVOLUTION OF TWO POINT-VORTICES IN EXTERNAL STRAIN AND ROTATION . . . . 219 4 NONLINEAR REGIMES OF FINITE-AREA VORTICES WITH BACKGROUND STRAIN AND ROTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 IMAGE 6 XIV CONTENTS 5 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 APPENDIX: MELNIKOV THEORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 EQUILIBRIUM STATES OF QUASI-GEOSTROPHIC POINT VORTICES . . . . . . . . . . . . . . . . 229 T. MIYAZAKI, H. KIMURA AND S. HOSHI 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 2 QUASI-GEOSTROPHIC APPROXIMATION AND EQUATIONS OF MOTION . . . . . . 230 3 EQUILIBRIUM STATES OF QUASI-GEOSTROPHIC POINT VORTICES . . . . . . . . . . 232 4 MAXIMUM ENTROPY THEORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 4.1 ZERO INVERSE TEMPERATURE STATE . . . . . . . . . . . . . . . . . . . . . . 235 4.2 POSITIVE AND NEGATIVE TEMPERATURE STATES . . . . . . . . . . . . . 236 4.3 PATCH MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 5 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 PART IV JETS: FORMATION AND STRUCTURE THE STRUCTURE OF ZONAL JETS IN SHALLOW WATER TURBULENCE ON THE SPHERE . . . . 243 R. K. SCOTT 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 2 JET UNDULATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 3 THE POTENTIAL VORTICITY STAIRCASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 4 EQUATORIAL SUPERROTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 5 OPEN QUESTIONS: THE NATURE OF FORCING AND DISSIPATION . . . . . . . . . . . 250 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 JET FORMATION IN DECAYING TWO-DIMENSIONAL TURBULENCE ON A ROTATING SPHERE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 SHIGEO YODEN, YOSHI-YUKI HAYASHI, KEIICHI ISHIOKA, YUJI KITAMURA, SEIYA NISHIZAWA, SIN-ICHI TAKEHIRO, AND MICHIO YAMADA 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 2 PARAMETER SWEEP EXPERIMENTS (HAYASHI ET AL., 2007) . . . . . . . . . . . . 255 3 ENSEMBLE EXPERIMENTS (KITAMURA AND ISHIOKA, 2007) . . . . . . . . . . . 258 4 SUMMARY AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 TRIPLE CASCADE BEHAVIOUR IN QG AND DRIFT TURBULENCE AND GENERATION OF ZONAL JETS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 SERGEY NAZARENKO, BRENDA QUINN 1 INTRODUCTION AND THE MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 2 CHARNEY-HASEGAWA-MIMA MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 3 CONSERVATION OF ENERGY AND ENSTROPHY . . . . . . . . . . . . . . . . . . . . . . . . 268 4 CONSERVATION OF ZONOSTROPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 5 TRIPLE CASCADE BEHAVIOUR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 5.1 DUAL CASCADES IN 2D NAVIER-STOKES TURBULENCE . . . . . . . . . 270 IMAGE 7 CONTENTS XV 5.2 TRIPLE CASCADES IN CHM TURBULENCE . . . . . . . . . . . . . . . . . . . 271 5.3 ALTERNATIVE ARGUMENT FOR ZONATION . . . . . . . . . . . . . . . . . . . . 273 6 NUMERICAL STUDY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 6.1 CENTROIDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 6.2 SETTINGS FOR THE WEAKLY NONLINEAR AND THE STRONGLY NONLINEAR RUNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 6.3 WEAKLY NONLINEAR CASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 6.4 STRONGLY NONLINEAR CASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 7 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 THE HYPERCASL ALGORITHM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 DAVID G. DRITSCHEL AND J´ ER* OME FONTANE 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 2 BRIEF DESCRIPTION OF THE NUMERICAL ALGORITHM . . . . . . . . . . . . . . . . . 290 2.1 FULLY LAGRANGIAN ADVECTION . . . . . . . . . . . . . . . . . . . . . . . . . 291 2.2 TRANSFER OF DIABATIC FORCING TO POINT VORTICES . . . . . . . . . . 292 3 AN EXAMPLE: A DIABATICALLY-FORCED JET . . . . . . . . . . . . . . . . . . . . . . . 293 4 CONCLUSIONS AND FUTURE EXTENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . 296 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
any_adam_object 1
author_corporate Symposium on Turbulence in the Atmosphere and Oceans
author_corporate_role aut
author_facet Symposium on Turbulence in the Atmosphere and Oceans
author_sort Symposium on Turbulence in the Atmosphere and Oceans
building Verbundindex
bvnumber BV037210193
classification_rvk UT 4800
ctrlnum (OCoLC)732190079
(DE-599)BVBBV037210193
discipline Physik
format Conference Proceeding
Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01434nam a2200325 cb4500</leader><controlfield tag="001">BV037210193</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180515 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">110207s2010 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789400703599</subfield><subfield code="9">978-94-007-0359-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789400703605</subfield><subfield code="c">ebook</subfield><subfield code="9">978-94-007-0360-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)732190079</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV037210193</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UT 4800</subfield><subfield code="0">(DE-625)146812:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="111" ind1="2" ind2=" "><subfield code="a">Symposium on Turbulence in the Atmosphere and Oceans</subfield><subfield code="d">2008</subfield><subfield code="j">Verfasser</subfield><subfield code="0">(DE-588)16099723-9</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">IUTAM Symposium on Turbulence in the Atmosphere and Oceans</subfield><subfield code="b">proceedings of the IUTAM Symposium on Turbulence in the Atmosphere and Oceans, Cambridge, UK, December 8 - 12, 2008</subfield><subfield code="c">David Dritschel (ed.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxi, 298 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">IUTAM bookseries</subfield><subfield code="v">28</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dritschel, David</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">IUTAM bookseries</subfield><subfield code="v">28</subfield><subfield code="w">(DE-604)BV023108254</subfield><subfield code="9">28</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=021124255&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-021124255</subfield></datafield></record></collection>
id DE-604.BV037210193
illustrated Illustrated
indexdate 2024-07-09T22:53:27Z
institution BVB
institution_GND (DE-588)16099723-9
isbn 9789400703599
9789400703605
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-021124255
oclc_num 732190079
open_access_boolean
owner DE-634
DE-703
owner_facet DE-634
DE-703
physical xxi, 298 S. Ill., graph. Darst.
publishDate 2010
publishDateSearch 2010
publishDateSort 2010
publisher Springer
record_format marc
series IUTAM bookseries
series2 IUTAM bookseries
spelling Symposium on Turbulence in the Atmosphere and Oceans 2008 Verfasser (DE-588)16099723-9 aut
IUTAM Symposium on Turbulence in the Atmosphere and Oceans proceedings of the IUTAM Symposium on Turbulence in the Atmosphere and Oceans, Cambridge, UK, December 8 - 12, 2008 David Dritschel (ed.)
Dordrecht [u.a.] Springer 2010
xxi, 298 S. Ill., graph. Darst.
txt rdacontent
n rdamedia
nc rdacarrier
IUTAM bookseries 28
Dritschel, David Sonstige oth
IUTAM bookseries 28 (DE-604)BV023108254 28
SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021124255&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
spellingShingle IUTAM Symposium on Turbulence in the Atmosphere and Oceans proceedings of the IUTAM Symposium on Turbulence in the Atmosphere and Oceans, Cambridge, UK, December 8 - 12, 2008
IUTAM bookseries
title IUTAM Symposium on Turbulence in the Atmosphere and Oceans proceedings of the IUTAM Symposium on Turbulence in the Atmosphere and Oceans, Cambridge, UK, December 8 - 12, 2008
title_auth IUTAM Symposium on Turbulence in the Atmosphere and Oceans proceedings of the IUTAM Symposium on Turbulence in the Atmosphere and Oceans, Cambridge, UK, December 8 - 12, 2008
title_exact_search IUTAM Symposium on Turbulence in the Atmosphere and Oceans proceedings of the IUTAM Symposium on Turbulence in the Atmosphere and Oceans, Cambridge, UK, December 8 - 12, 2008
title_full IUTAM Symposium on Turbulence in the Atmosphere and Oceans proceedings of the IUTAM Symposium on Turbulence in the Atmosphere and Oceans, Cambridge, UK, December 8 - 12, 2008 David Dritschel (ed.)
title_fullStr IUTAM Symposium on Turbulence in the Atmosphere and Oceans proceedings of the IUTAM Symposium on Turbulence in the Atmosphere and Oceans, Cambridge, UK, December 8 - 12, 2008 David Dritschel (ed.)
title_full_unstemmed IUTAM Symposium on Turbulence in the Atmosphere and Oceans proceedings of the IUTAM Symposium on Turbulence in the Atmosphere and Oceans, Cambridge, UK, December 8 - 12, 2008 David Dritschel (ed.)
title_short IUTAM Symposium on Turbulence in the Atmosphere and Oceans
title_sort iutam symposium on turbulence in the atmosphere and oceans proceedings of the iutam symposium on turbulence in the atmosphere and oceans cambridge uk december 8 12 2008
title_sub proceedings of the IUTAM Symposium on Turbulence in the Atmosphere and Oceans, Cambridge, UK, December 8 - 12, 2008
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021124255&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV023108254
work_keys_str_mv AT symposiumonturbulenceintheatmosphereandoceans iutamsymposiumonturbulenceintheatmosphereandoceansproceedingsoftheiutamsymposiumonturbulenceintheatmosphereandoceanscambridgeukdecember8122008
AT dritscheldavid iutamsymposiumonturbulenceintheatmosphereandoceansproceedingsoftheiutamsymposiumonturbulenceintheatmosphereandoceanscambridgeukdecember8122008