IUTAM Symposium on Turbulence in the Atmosphere and Oceans proceedings of the IUTAM Symposium on Turbulence in the Atmosphere and Oceans, Cambridge, UK, December 8 - 12, 2008
Gespeichert in:
Körperschaft: | |
---|---|
Format: | Tagungsbericht Buch |
Sprache: | English |
Veröffentlicht: |
Dordrecht [u.a.]
Springer
2010
|
Schriftenreihe: | IUTAM bookseries
28 |
Online-Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV037210193 | ||
003 | DE-604 | ||
005 | 20180515 | ||
007 | t | ||
008 | 110207s2010 ad|| |||| 00||| eng d | ||
020 | |a 9789400703599 |9 978-94-007-0359-9 | ||
020 | |a 9789400703605 |c ebook |9 978-94-007-0360-5 | ||
035 | |a (OCoLC)732190079 | ||
035 | |a (DE-599)BVBBV037210193 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-634 |a DE-703 | ||
084 | |a UT 4800 |0 (DE-625)146812: |2 rvk | ||
111 | 2 | |a Symposium on Turbulence in the Atmosphere and Oceans |d 2008 |j Verfasser |0 (DE-588)16099723-9 |4 aut | |
245 | 1 | 0 | |a IUTAM Symposium on Turbulence in the Atmosphere and Oceans |b proceedings of the IUTAM Symposium on Turbulence in the Atmosphere and Oceans, Cambridge, UK, December 8 - 12, 2008 |c David Dritschel (ed.) |
264 | 1 | |a Dordrecht [u.a.] |b Springer |c 2010 | |
300 | |a xxi, 298 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a IUTAM bookseries |v 28 | |
700 | 1 | |a Dritschel, David |e Sonstige |4 oth | |
830 | 0 | |a IUTAM bookseries |v 28 |w (DE-604)BV023108254 |9 28 | |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021124255&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-021124255 |
Datensatz im Suchindex
_version_ | 1804143802738278400 |
---|---|
adam_text | IMAGE 1
CONTENTS
PART I WAVES AND IMBALANCE
ON SPONTANEOUS IMBALANCE AND OCEAN TURBULENCE: GENERALIZATIONS OF THE
PAPARELLA-YOUNG EPSILON THEOREM . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 3
MICHAEL E. MCINTYRE 1 INTRODUCTION . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 SPONTANEOUS IMBALANCE . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 5
3 EPSILON THEOREMS FOR REALISTIC OCEAN MODELS . . . . . . . . . . . . .
. . . . . . 7
4 SPECIFIC EXAMPLES . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 11
5 CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 13
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 14
INERTIA-GRAVITY-WAVE GENERATION: A GEOMETRIC-OPTICS APPROACH . . . . . .
. . . . 17 J. M. ASPDEN AND J. VANNESTE 1 INTRODUCTION . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 17
2 GEOMETRIC-OPTICS APPROACH . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 18
3 APPLICATIONS TO SIMPLE F LOWS . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 21
3.1 HORIZONTAL STRAIN AND VERTICAL SHEAR . . . . . . . . . . . . . . . .
. . . 21
3.2 ELLIPTICAL FLOW . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 21
3.3 DIPOLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 22
3.4 RANDOM-STRAIN MODELS . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 23
4 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 24
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 25
PARALLELS BETWEEN STRATIFICATION AND ROTATION IN HYDRODYNAMICS, AND
BETWEEN BOTH OF THEM AND EXTERNAL MAGNETIC FIELD IN
MAGNETOHYDRODYNAMICS, WITH APPLICATIONS TO NONLINEAR WAVES . . . . . . .
. . . 27 S. MEDVEDEV AND V. ZEITLIN
1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 27
2 MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 28
2.1 2D STRATIFIED BOUSSINESQ EQUATIONS . . . . . . . . . . . . . . . . .
. . 28
2.2 2.5D ROTATING EULER EQUATIONS . . . . . . . . . . . . . . . . . . .
. . . . 28
IX
IMAGE 2
X CONTENTS
2.3 2D MAGNETOHYDRODYNAMICS . . . . . . . . . . . . . . . . . . . . . .
. . . 29
3 SIMILARITY BETWEEN MODELS I: WAVES AND STRUCTURES . . . . . . . . . .
. . . . 30
3.1 LINEAR WAVES . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 30
3.2 STRUCTURES: NONLINEAR WAVES/VORTICES . . . . . . . . . . . . . . . .
. . 31
4 SIMILARITY BETWEEN MODELS II: GEOMETRY . . . . . . . . . . . . . . . .
. . . . . . 32
4.1 HAMILTONIAN STRUCTURE . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 32
4.2 GEOMETRY OF THE PHASE SPACE AND NONCONSTRAINED DYNAMICAL VARIABLES .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 CASTING PB TO THE CANONICAL FORM . . . . . . . . . . . . . . . . . .
. . 33
5 TRIAD AND QUARTET WAVE INTERACTIONS AND WAVE TURBULENCE (WT) . . . 34
5.1 THE WT ALGORITHM . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 34
5.2 KNOWN SITUATIONS LEADING TO GET-IT-BY-HAND SOLUTIONS FOR STATIONARY
ENERGY SPECTRA IN WT . . . . . . . . . . . . . . . . . . 35
5.3 WT: DECAY SPECTRA FOR GRAVITY, GYROSCOPIC AND ALFV` EN WAVES . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 35
5.4 WT: NON-DECAY SPECTRA FOR GRAVITY AND GYROSCOPIC WAVES 36 6
CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 36
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 37
GENERATION OF AN INTERNAL TIDE BY SURFACE TIDE/EDDY RESONANT
INTERACTIONS . 39 M.-P. LELONG AND E. KUNZE 1 INTRODUCTION . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 39
2 PROBLEM DEFINITION . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 40
2.1 GOVERNING EQUATIONS . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 40
2.2 WAVE-TRIAD INTERACTIONS . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
2.3 MULTIPLE-SCALE ANALYSIS . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 42
3 NUMERICAL SIMULATIONS . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 45
4 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 48
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 49
GENERATION OF HARMONICS AND SUB-HARMONICS FROM AN INTERNAL TIDE IN A
UNIFORMLY STRATIFIED FLUID: NUMERICAL AND LABORATORY EXPERIMENTS . . . .
. . . 51 IVANE PAIRAUD, CHANTAL STAQUET, JO¨ EL SOMMERIA AND MAHDI M.
MAHDIZADEH 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 51
2 EXPERIMENTAL SET-UPS . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 52
2.1 LABORATORY EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 52
2.2 NUMERICAL SIMULATIONS . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 54
3 EMISSION OF THE WAVE BEAM . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 55
4 SPATIAL STRUCTURE OF THE WAVE BEAM . . . . . . . . . . . . . . . . . .
. . . . . . . . . 56
5 PARAMETRIC INSTABILITY OF THE WAVE BEAM . . . . . . . . . . . . . . .
. . . . . . . . 57
6 GENERATION OF HARMONICS . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 59
7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 59
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 60
IMAGE 3
CONTENTS XI
DEEP OCEAN MIXING BY NEAR-INERTIAL WAVES . . . . . . . . . . . . . . . .
. . . . . . . . . . . 63
VICTOR I. SHRIRA AND WILLIAM A. TOWNSEND 1 INTRODUCTION . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 64
2 BASIC EQUATIONS AND WKB . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 64
3 MIXED BOTTOM LAYER . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 69
4 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 71
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 72
PART II TURBULENCE AND CONVECTION
EDDIES AND CIRCULATION: LESSONS FROM OCEANS AND THE GFD LAB . . . . . .
. . 77 PETER B. RHINES 1 INTRODUCTION . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2 DEEP PATHWAYS IN THE OCEANIC OVERTURNING CIRCULATION . . . . . . . . .
. . 82
3 EDDIES AND ROSSBY WAVES IN THE UPPER OCEAN . . . . . . . . . . . . . .
. . . . 83
4 NOTES FROM THE GFD LAB . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 89
5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 91
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 92
OBSERVATIONS ON RAPIDLY ROTATING TURBULENCE . . . . . . . . . . . . . .
. . . . . . . . . 95
P A DAVIDSON, P J STAPLEHURST AND S B DALZIEL 1 INTRODUCTION . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 95
2 HOW COLUMNAR EDDIES FORM AT LOW RO . . . . . . . . . . . . . . . . . .
. . . . 97
3 THE EXPERIMENTAL EVIDENCE AT RO * 1 . . . . . . . . . . . . . . . . .
. . . . . . . 100
4 WHY LINEAR BEHAVIOUR AT RO * 1? . . . . . . . . . . . . . . . . . . .
. . . . . . . . 101
5 WHY A CYCLONE-ANTICYCLONE ASYMMETRY? . . . . . . . . . . . . . . . . .
. . . . 101
6 THE RATE OF ENERGY DECAY . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 102
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 103
EQUILIBRATION OF INERTIAL INSTABILITY IN ROTATING FLOW . . . . . . . . .
. . . . . . . . . 105
DAAN D.J.A. VAN SOMMEREN, GEORGE F. CARNEVALE, RUDOLF C. KLOOSTERZIEL
AND PAOLO ORLANDI 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 105
2 PURE BAROTROPIC INSTABILITY . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 107
3 PURE INERTIAL INSTABILITY . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 109
4 FULL 3D SIMULATION VS. PREDICTION . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 110
5 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 114
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 114
QUASIGEOSTROPHIC AND STRATIFIED TURBULENCE IN THE ATMOSPHERE . . . . . .
. . . . 117 PETER BARTELLO 1 INTRODUCTION . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
2 DIVERGENT AND GEOSTROPHIC MODES . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 120
3 THE NUMERICAL CONFIGURATION . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 121
4 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 123
5 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 126
IMAGE 4
XII CONTENTS
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 128
A PERSPECTIVE ON SUBMESOSCALE GEOPHYSICAL TURBULENCE . . . . . . . . . .
. . . . . 131 JAMES C. MCWILLIAMS 1 THE DYNAMICAL REGIME OF SUBMESOSCALE
TURBULENCE . . . . . . . . . . . 131 2 THE FRONTOGENETIC ROUTE . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
3 OTHER SUBMESOSCALE GENERATION ROUTES . . . . . . . . . . . . . . . . .
. . . . . . 136
4 STRATIFIED, NON-ROTATING TURBULENCE . . . . . . . . . . . . . . . . .
. . . . . . . . . 139
5 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 140
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 140
SPECTRA AND DISTRIBUTION FUNCTIONS OF STABLY STRATIFIED TURBULENCE . . .
. . . 143 JACKSON R. HERRING & YOSHIFUMI KIMURA 1 EQUATIONS OF MOTION
AND THEIR ECONOMICAL REPRESENTATION . . . . . . . 143 2 SOME HISTORICAL
COMMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 145
3 MORE RECENT NUMERICAL RESULTS . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 147
4 INTERPRETATION OF DNS . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 150
5 CONCLUDING COMMENTS . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 151
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 153
MODELING MIXING IN TWO-DIMENSIONAL TURBULENCE AND STRATIFIED FLUIDS . .
. . 155 ANTOINE VENAILLE AND JOEL SOMMERIA 1 INTRODUCTION . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 155
2 AN ANALOGY BETWEEN STATISTICAL MECHANICS OF 2D FLOWS AND DENSITY
STRATIFIED FLUIDS . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 157
2.1 STATISTICAL MECHANICS OF 2D FLOWS . . . . . . . . . . . . . . . . .
. . . 157
2.2 STATISTICAL MECHANICS OF STRATIFIED FLUIDS . . . . . . . . . . . . .
. . 158
3 RELAXATION TOWARD STATISTICAL EQUILIBRIUM . . . . . . . . . . . . . .
. . . . . . . . 161
4 DISSIPATION OF DENSITY FLUCTUATIONS BY TURBULENT CASCADE . . . . . . .
. . 162 5 A SIMPLE EXAMPLE: MIXING OF A TWO LAYER STRATIFIED FLUID . . .
. . . . . . 163 6 COUPLING THE MODEL WITH AN EQUATION FOR THE KINETIC
ENERGY . . . . . . 165 7 CONCLUSION AND PERSPECTIVES . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 166
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 167
THE SOLAR TACHOCLINE: A STUDY IN STABLY STRATIFIED MHD TURBULENCE . . .
. . . . 169 STEVEN TOBIAS 1 INTRODUCTION . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
2 THE SOLAR TACHOCLINE . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 170
2.1 PROPERTIES OF THE SOLAR TACHOCLINE . . . . . . . . . . . . . . . . .
. . . . 170
2.2 WHY IS THE TACHOCLINE THERE - AND SO THIN? . . . . . . . . . . . .
172
3 SIMPLIFIED MODELS OF STRATIFIED MHD TURBULENCE . . . . . . . . . . . .
. . . . 174
3.1 THE PARAMETER REGIME . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 174
3.2 A HIERARCHY OF MODELS . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 174
3.3 FORMATION OF JETS ON A MAGNETISED * -PLANE . . . . . . . . . . . .
175
4 FUTURE DIRECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 176
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 177
IMAGE 5
CONTENTS XIII
SOME UNUSUAL PROPERTIES OF TURBULENT CONVECTION AND DYNAMOS IN ROTATING
SPHERICAL SHELLS . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 181
F. H. BUSSE AND R. D. SIMITEV 1 INTRODUCTION . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
2 MATHEMATICAL FORMULATION OF THE PROBLEM AND METHODS OF SOLUTION 182 3
CONVECTION IN ROTATING SPHERICAL SHELLS . . . . . . . . . . . . . . . .
. . . . . . . . 185
4 CHAOTIC CONVECTION . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 186
5 DISTINCT TURBULENT DYNAMOS AT IDENTICAL PARAMETER VALUES . . . . . . .
. 189 6 CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 192
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 192
PART III INSTABILITY AND VORTEX DYNAMICS
ZIGZAG INSTABILITY OF THE K´ ARM´ AN VORTEX STREET IN STRATIFIED AND
ROTATING FLUIDS . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
AXEL DELONCLE, PAUL BILLANT AND JEAN-MARC CHOMAZ 1 INTRODUCTION . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 197
2 PROBLEM FORMULATION . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 198
2.1 PAIR OF VORTICES IN A STRATIFIED AND ROTATING FLUID . . . . . . . .
. 198
2.2 K´ ARM´ AN VORTEX STREET IN A STRATIFIED AND ROTATING FLUID . . . .
200 3 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 202
4 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 205
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 205
INSTABILITIES OF A COLUMNAR VORTEX IN A STRATIFIED FLUID . . . . . . . .
. . . . . . . . . . 207
PATRICE MEUNIER, NICOLAS BOULANGER, XAVIER RIEDINGER AND ST´ EPHANE LE
DIZ` ES 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 207
2 A GAUSSIAN VORTEX IN A STRATIF IED F LUID . . . . . . . . . . . . . .
. . . . . . . . . . . 208
3 INSTABILITIES OF A TILTED VORTEX . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 209
3.1 SPATIAL STRUCTURE OF A TILTED VORTEX . . . . . . . . . . . . . . . .
. . . . 209
3.2 TILT-INDUCED INSTABILITIES . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 210
3.3 CONSEQUENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 212
4 RADIATIVE INSTABILITY . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 212
4.1 LINEAR STABILITY ANALYSIS . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 212
4.2 EXPERIMENTAL EVIDENCE? . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 213
5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 214
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 215
GEOSTROPHIC VORTEX ALIGNMENT IN EXTERNAL SHEAR OR STRAIN . . . . . . . .
. . . . . . 217 XAVIER PERROT, XAVIER CARTON AND ALAN GUILLOU 1
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 217
2 PHYSICAL CONFIGURATION AND MODEL EQUATIONS . . . . . . . . . . . . . .
. . . . . 218
3 EVOLUTION OF TWO POINT-VORTICES IN EXTERNAL STRAIN AND ROTATION . . .
. 219 4 NONLINEAR REGIMES OF FINITE-AREA VORTICES WITH BACKGROUND STRAIN
AND ROTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 223
IMAGE 6
XIV CONTENTS
5 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 225
APPENDIX: MELNIKOV THEORY . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 226
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 227
EQUILIBRIUM STATES OF QUASI-GEOSTROPHIC POINT VORTICES . . . . . . . . .
. . . . . . . 229 T. MIYAZAKI, H. KIMURA AND S. HOSHI 1 INTRODUCTION . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 229
2 QUASI-GEOSTROPHIC APPROXIMATION AND EQUATIONS OF MOTION . . . . . .
230 3 EQUILIBRIUM STATES OF QUASI-GEOSTROPHIC POINT VORTICES . . . . . .
. . . . 232 4 MAXIMUM ENTROPY THEORY . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 235
4.1 ZERO INVERSE TEMPERATURE STATE . . . . . . . . . . . . . . . . . . .
. . . 235
4.2 POSITIVE AND NEGATIVE TEMPERATURE STATES . . . . . . . . . . . . .
236
4.3 PATCH MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 236
5 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 238
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 238
PART IV JETS: FORMATION AND STRUCTURE
THE STRUCTURE OF ZONAL JETS IN SHALLOW WATER TURBULENCE ON THE SPHERE .
. . . 243 R. K. SCOTT 1 INTRODUCTION . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
2 JET UNDULATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 245
3 THE POTENTIAL VORTICITY STAIRCASE . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 247
4 EQUATORIAL SUPERROTATION . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 248
5 OPEN QUESTIONS: THE NATURE OF FORCING AND DISSIPATION . . . . . . . .
. . . 250
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 251
JET FORMATION IN DECAYING TWO-DIMENSIONAL TURBULENCE ON A ROTATING
SPHERE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 253
SHIGEO YODEN, YOSHI-YUKI HAYASHI, KEIICHI ISHIOKA, YUJI KITAMURA, SEIYA
NISHIZAWA, SIN-ICHI TAKEHIRO, AND MICHIO YAMADA 1 INTRODUCTION . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 254
2 PARAMETER SWEEP EXPERIMENTS (HAYASHI ET AL., 2007) . . . . . . . . . .
. . 255
3 ENSEMBLE EXPERIMENTS (KITAMURA AND ISHIOKA, 2007) . . . . . . . . . .
. 258 4 SUMMARY AND DISCUSSION . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 260
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 262
TRIPLE CASCADE BEHAVIOUR IN QG AND DRIFT TURBULENCE AND GENERATION OF
ZONAL JETS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 265
SERGEY NAZARENKO, BRENDA QUINN 1 INTRODUCTION AND THE MODEL . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 265
2 CHARNEY-HASEGAWA-MIMA MODEL . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 267
3 CONSERVATION OF ENERGY AND ENSTROPHY . . . . . . . . . . . . . . . . .
. . . . . . . 268
4 CONSERVATION OF ZONOSTROPHY . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 268
5 TRIPLE CASCADE BEHAVIOUR . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 270
5.1 DUAL CASCADES IN 2D NAVIER-STOKES TURBULENCE . . . . . . . . . 270
IMAGE 7
CONTENTS XV
5.2 TRIPLE CASCADES IN CHM TURBULENCE . . . . . . . . . . . . . . . . .
. . 271
5.3 ALTERNATIVE ARGUMENT FOR ZONATION . . . . . . . . . . . . . . . . .
. . . 273
6 NUMERICAL STUDY . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 275
6.1 CENTROIDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 276
6.2 SETTINGS FOR THE WEAKLY NONLINEAR AND THE STRONGLY NONLINEAR RUNS .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
277
6.3 WEAKLY NONLINEAR CASE . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 277
6.4 STRONGLY NONLINEAR CASE . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 279
7 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 281
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 286
THE HYPERCASL ALGORITHM . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 289
DAVID G. DRITSCHEL AND J´ ER* OME FONTANE 1 INTRODUCTION . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 289
2 BRIEF DESCRIPTION OF THE NUMERICAL ALGORITHM . . . . . . . . . . . . .
. . . . 290
2.1 FULLY LAGRANGIAN ADVECTION . . . . . . . . . . . . . . . . . . . . .
. . . . 291
2.2 TRANSFER OF DIABATIC FORCING TO POINT VORTICES . . . . . . . . . .
292 3 AN EXAMPLE: A DIABATICALLY-FORCED JET . . . . . . . . . . . . . .
. . . . . . . . . 293
4 CONCLUSIONS AND FUTURE EXTENSIONS . . . . . . . . . . . . . . . . . .
. . . . . . . . 296
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 297
|
any_adam_object | 1 |
author_corporate | Symposium on Turbulence in the Atmosphere and Oceans |
author_corporate_role | aut |
author_facet | Symposium on Turbulence in the Atmosphere and Oceans |
author_sort | Symposium on Turbulence in the Atmosphere and Oceans |
building | Verbundindex |
bvnumber | BV037210193 |
classification_rvk | UT 4800 |
ctrlnum | (OCoLC)732190079 (DE-599)BVBBV037210193 |
discipline | Physik |
format | Conference Proceeding Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01434nam a2200325 cb4500</leader><controlfield tag="001">BV037210193</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180515 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">110207s2010 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789400703599</subfield><subfield code="9">978-94-007-0359-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789400703605</subfield><subfield code="c">ebook</subfield><subfield code="9">978-94-007-0360-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)732190079</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV037210193</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UT 4800</subfield><subfield code="0">(DE-625)146812:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="111" ind1="2" ind2=" "><subfield code="a">Symposium on Turbulence in the Atmosphere and Oceans</subfield><subfield code="d">2008</subfield><subfield code="j">Verfasser</subfield><subfield code="0">(DE-588)16099723-9</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">IUTAM Symposium on Turbulence in the Atmosphere and Oceans</subfield><subfield code="b">proceedings of the IUTAM Symposium on Turbulence in the Atmosphere and Oceans, Cambridge, UK, December 8 - 12, 2008</subfield><subfield code="c">David Dritschel (ed.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxi, 298 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">IUTAM bookseries</subfield><subfield code="v">28</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dritschel, David</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">IUTAM bookseries</subfield><subfield code="v">28</subfield><subfield code="w">(DE-604)BV023108254</subfield><subfield code="9">28</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021124255&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-021124255</subfield></datafield></record></collection> |
id | DE-604.BV037210193 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:53:27Z |
institution | BVB |
institution_GND | (DE-588)16099723-9 |
isbn | 9789400703599 9789400703605 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-021124255 |
oclc_num | 732190079 |
open_access_boolean | |
owner | DE-634 DE-703 |
owner_facet | DE-634 DE-703 |
physical | xxi, 298 S. Ill., graph. Darst. |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Springer |
record_format | marc |
series | IUTAM bookseries |
series2 | IUTAM bookseries |
spelling | Symposium on Turbulence in the Atmosphere and Oceans 2008 Verfasser (DE-588)16099723-9 aut IUTAM Symposium on Turbulence in the Atmosphere and Oceans proceedings of the IUTAM Symposium on Turbulence in the Atmosphere and Oceans, Cambridge, UK, December 8 - 12, 2008 David Dritschel (ed.) Dordrecht [u.a.] Springer 2010 xxi, 298 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier IUTAM bookseries 28 Dritschel, David Sonstige oth IUTAM bookseries 28 (DE-604)BV023108254 28 SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021124255&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | IUTAM Symposium on Turbulence in the Atmosphere and Oceans proceedings of the IUTAM Symposium on Turbulence in the Atmosphere and Oceans, Cambridge, UK, December 8 - 12, 2008 IUTAM bookseries |
title | IUTAM Symposium on Turbulence in the Atmosphere and Oceans proceedings of the IUTAM Symposium on Turbulence in the Atmosphere and Oceans, Cambridge, UK, December 8 - 12, 2008 |
title_auth | IUTAM Symposium on Turbulence in the Atmosphere and Oceans proceedings of the IUTAM Symposium on Turbulence in the Atmosphere and Oceans, Cambridge, UK, December 8 - 12, 2008 |
title_exact_search | IUTAM Symposium on Turbulence in the Atmosphere and Oceans proceedings of the IUTAM Symposium on Turbulence in the Atmosphere and Oceans, Cambridge, UK, December 8 - 12, 2008 |
title_full | IUTAM Symposium on Turbulence in the Atmosphere and Oceans proceedings of the IUTAM Symposium on Turbulence in the Atmosphere and Oceans, Cambridge, UK, December 8 - 12, 2008 David Dritschel (ed.) |
title_fullStr | IUTAM Symposium on Turbulence in the Atmosphere and Oceans proceedings of the IUTAM Symposium on Turbulence in the Atmosphere and Oceans, Cambridge, UK, December 8 - 12, 2008 David Dritschel (ed.) |
title_full_unstemmed | IUTAM Symposium on Turbulence in the Atmosphere and Oceans proceedings of the IUTAM Symposium on Turbulence in the Atmosphere and Oceans, Cambridge, UK, December 8 - 12, 2008 David Dritschel (ed.) |
title_short | IUTAM Symposium on Turbulence in the Atmosphere and Oceans |
title_sort | iutam symposium on turbulence in the atmosphere and oceans proceedings of the iutam symposium on turbulence in the atmosphere and oceans cambridge uk december 8 12 2008 |
title_sub | proceedings of the IUTAM Symposium on Turbulence in the Atmosphere and Oceans, Cambridge, UK, December 8 - 12, 2008 |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021124255&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV023108254 |
work_keys_str_mv | AT symposiumonturbulenceintheatmosphereandoceans iutamsymposiumonturbulenceintheatmosphereandoceansproceedingsoftheiutamsymposiumonturbulenceintheatmosphereandoceanscambridgeukdecember8122008 AT dritscheldavid iutamsymposiumonturbulenceintheatmosphereandoceansproceedingsoftheiutamsymposiumonturbulenceintheatmosphereandoceanscambridgeukdecember8122008 |