Elements of mathematics [7,3] Lie groups and Lie algebras, chapters 7 - 9

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Bourbaki, Nicolas ca. 20. Jh.- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Paris Hermann, Éditeurs des sciences te des arts 2008
Reading, Massachusetts ; Palo Alto ; London ; Don Mills, Ontario Addison-Wesley publishing company 2008
Berlin ; Heidelberg ; New York ; London ; Paris ; Tokyo Springer-Verlag 2008
Ausgabe:Softcover print. of the 1. Engl. ed.
Schriftenreihe:Actualités scientifiques et industrielles
Adiwes international series in mathematics
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cc4500
001 BV036952592
003 DE-604
005 20110125
007 t|
008 110112s2008 xx |||| 00||| eng d
020 |a 3540434054  |9 3-540-43405-4 
020 |a 9783540688518  |9 978-3-540-68851-8 
035 |a (OCoLC)265728840 
035 |a (DE-599)BVBBV036952592 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-355  |a DE-91G  |a DE-29T 
100 1 |a Bourbaki, Nicolas  |d ca. 20. Jh.-  |e Verfasser  |0 (DE-588)140993142  |4 aut 
240 1 0 |a Groupes et algèbres de lie 
240 1 0 |a Éléments de mathématique 
245 1 0 |a Elements of mathematics  |n [7,3]  |p Lie groups and Lie algebras, chapters 7 - 9  |c Nicolas Bourbaki 
250 |a Softcover print. of the 1. Engl. ed. 
264 1 |a Paris  |b Hermann, Éditeurs des sciences te des arts  |c 2008 
264 1 |a Reading, Massachusetts ; Palo Alto ; London ; Don Mills, Ontario  |b Addison-Wesley publishing company  |c 2008 
264 1 |a Berlin ; Heidelberg ; New York ; London ; Paris ; Tokyo  |b Springer-Verlag  |c 2008 
300 |a XI, 434 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Actualités scientifiques et industrielles 
490 0 |a Adiwes international series in mathematics 
773 0 8 |w (DE-604)BV002373127  |g 7,3 
856 4 2 |m Digitalisierung UB Regensburg  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020867617&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-020867617 

Datensatz im Suchindex

DE-BY-TUM_call_number 0040 MAT 001f 2011 A 7050
DE-BY-TUM_katkey 1786867
DE-BY-TUM_location LSB
DE-BY-TUM_media_number 040071286089
DE-BY-UBR_call_number 8019/SC 201
DE-BY-UBR_katkey 4736117
DE-BY-UBR_media_number TEMP12299982
_version_ 1822758210627436544
adam_text CONTENTS CONTENTS CHAPTER VII CARTAN SUBALGEBRAS AND REGULAR ELEMENTS § 1. Primary decomposition of linear representations ........ 1 1. Decomposition of a family of endomorphisms ............. 1 2. The case of a linear family of endomorphisms ............ 6 3. Decomposition of representations of a nilpotent Lie algebra 8 4. Decomposition of a Lie algebra relative to an automorphism ........................................ 11 5. Invariants of a semi-simple Lie algebra relative to a semi-simple action .................................... 11 § 2. Cartan subalgebras and regular elements of a Lie algebra ................................................. 12 1. Cartan subalgebras ................................... 13 2. Regular elements of a Lie algebra ....................... 16 3. Cartan subalgebras and regular elements ................ 18 4. Cartan subalgebras of semi-simple Lie algebras ........... 19 § 3. Conjugacy theorems .................................... 20 1. Elementary automorphisms ............................ 20 2. Conjugacy of Cartan subalgebras ....................... 22 3. Applications of conjugacy .............................. 24 4. Conjugacy of Cartan subalgebras of solvable Lie algebras .. 25 5. Lie group case ........................................ 26 § 4. Regular elements of a Lie group ........................ 27 1. Regular elements for a linear representation .............. 27 2. Regular elements of a Lie group ........................ 29 3. Relations with regular elements of the Lie algebra ........ 31 4. Application to elementary automorphisms ............... 34 VI CONTENTS § 5. Decomposable linear Lie algebras ....................... 34 1. Decomposable linear Lie algebras ....................... 34 2. Decomposable envelope ................................ 37 3. Decompositions of decomposable algebras ................ 37 4. Linear Lie algebras of nilpotent endomorphisms .......... 39 5. Characterizations of decomposable Lie algebras ........... 43 Appendix I - Polynomial maps and Zariski topology ........ 45 1. Zariski topology ...................................... 45 2. Dominant polynomial maps ............................ 46 Appendix II - A connectedness property .................... 48 Exercises for § 1 .............................................. 51 Exercises for § 2 .............................................. 55 Exercises for § 3 .............................................. 57 Exercises for § 4 .............................................. 63 Exercises for § 5 .............................................. 63 Exercises for Appendix I ....................................... 66 Exercises for Appendix II ...................................... 67 CHAPTER VIII SPLIT SEMI-SIMPLE LIE ALGEBRAS § 1. The Lie algebra sl(2, k) and its representations .......... 69 1. Canonical basis of sl(2, it) .............................. 69 2. Primitive elements of sl(2, fc)-modules ................... 70 3. The simple modules V(m) ............................. 72 4. Linear representations of the group SL(2, k) .............. 74 5. Some elements of SL(2, k) ............................. 76 § 2. Root system of a split semi-simple Lie algebra .......... 77 1. Split semi-simple Lie algebras .......................... 77 2. Roots of a split semi-simple Lie algebra .................. 78 3. Invariant bilinear forms ................................ 83 4. The coefficients Na0 .................................. 83 § 3. Subalgebras of split semi-simple Lie algebras ............ 86 1. Subalgebras stable under ad ђ .......................... 86 2. Ideals ............................................... 89 3. Borei subalgebras ..................................... 90 4. Parabolic subalgebras ................................. 92 5. Non-split case ........................................ 94 CONTENTS VII § 4. Split semi-simple Lie algebra defined by a reduced root system .................................................. 95 1. Framed semi-simple Lie algebras ........................ 95 2. A preliminary construction ............................. 96 3. Existence theorem .................................... 100 4. Uniqueness theorem ................................... 104 § 5. Automorphisms of a semi-simple Lie algebra ............ 106 1. Automorphisms of a framed semi-simple Lie algebra ....... 106 2. Automorphisms of a split semi-simple Lie algebra ......... 107 3. Automorphisms of a splittable semi-simple Lie algebra .... Ill 4. Zariski topology on Aut(g) ............................. 113 5. Lie group case ........................................ 115 § 6. Modules over a split semi-simple Lie algebra ............ 115 1. Weights and primitive elements ......................... 116 2. Simple modules with a highest weight ................... 118 3. Existence and uniqueness theorem ...................... 119 4. Commutant of ) in the enveloping algebra of g ........... 122 § 7. Finite dimensional modules over a split semi-simple Lie algebra ................................................. 124 1. Weights of a finited imensional simple g-module .......... 124 2. Highest weight of a finite dimensional simple g-module .... 126 3. Minuscule weights .................................... 130 4. Tensor products of g-modules .......................... 132 5. Dual of a g-module ................................... 134 6. Representation ring ................................... 136 7. Characters of g-modules ............................... 139 § 8. Symmetric invariants ................................... 141 1. Exponential of a linear form ........................... 141 2. Injection of Jb[P] into ЅЦ)) ............................. 142 3. Invariant polynomial functions ......................... 143 4. Properties of Auto .................................... 148 5. Centre of the enveloping algebra ........................ 148 § 9. The formula of Hermann Weyl .......................... 152 1. Characters of finite dimensional g-modules ............... 152 2. Dimensions of simple g-modules ........................ 154 3. Multiplicities of weights of simple g-modules ............. 156 4. Decomposition of tensor products of simple g-modules ..... 157 VIII CONTENTS § 10. Maximal subalgebras of semi-simple Lie algebras ...... 159 § 11. Classes of nilpotent elements and s^-triplets ........... 163 1. Definition of s^-triplets ............................... 163 2. sb-triplets in semi-simple Lie algebras ................... 165 3. Simple elements ...................................... 167 4. Principal elements .................................... 170 § 12. Chevalley orders ....................................... 173 1. Lattices and orders ................................... 173 2. Divided powers in a bigebra ............................ 173 3. Integral variant of the Poincaré-Birkhoff-Witt theorem .... 174 4. Example: polynomials with integer values ................ 176 5. Some formulas ....................................... 178 6. Biorders in the enveloping algebra of a split reductive Lie algebra .............................................. 180 7. Chevalley orders ...................................... 185 8. Admissible lattices .................................... 187 § 13. Classical splittable simple Lie algebras ................. 189 1. Algebras of type A¡ (/ > 1) ............................. 190 2. Algebras of type B; (I > 1) ............................. 195 3. Algebras of type Q (I > 1) ............................. 204 4. Algebras of type D¡ (I > 2) ............................ 211 Table 1 ..................................................... 217 Table 2 ..................................................... 218 Exercises for § 1 .............................................. 219 Exercises for § 2 .............................................. 226 Exercises for § 3 .............................................. 229 Exercises for § 4 .............................................. 231 Exercises for § 5 .............................................. 233 Exercises for § 6 .............................................. 238 Exercises for § 7 .............................................. 238 Exercises for § 8 .............................................. 250 Exercises for § 9 .............................................. 253 Exercises for § 10 ............................................. 260 Exercises for § 11 ............................................. 261 Exercises for § 13 ............................................. 266 Summary of some important properties of semi-simple Lie algebras .................................................... 273 CONTENTS IX CHAPTER IX COMPACT REAL LIE GROUPS § 1. Compact Lie algebras ................................... 281 1. Invariant hermitian forms .............................. 281 2. Connected commutative real Lie groups ................. 282 3. Compact Lie algebras ................................. 283 4. Groups whose Lie algebra is compact .................... 284 § 2. Maximal tori of compact Lie groups .................... 287 1. Cartan subalgebras of compact algebras ................. 287 2. Maximal tori ......................................... 288 3. Maximal tori of subgroups and quotient groups ........... 291 4. Subgroups of maximal rank ............................ 292 5. Weyl group .......................................... 293 6. Maximal tori and covering of homomorphisms ............ 295 § 3. Compact forms of complex semi-simple Lie algebras .... 296 1. Real forms ........................................... 296 2. Real forms associated to a Chevalley system ............. 297 3. Conjugacy of compact forms ........................... 299 4. Example I: compact algebras of type An ................. 300 5. Example II: compact algebras of type Bn and Dn ......... 301 6. Compact groups of rank 1 ............................. 302 § 4. Root system associated to a compact group ............. 304 1. The group X(H) ...................................... 304 2. Nodal group of a torus ................................ 305 3. Weights of a linear representation ....................... 307 4. Roots ............................................... 309 5. Nodal vectors and inverse roots ......................... 311 6. Fundamental group ................................... 314 7. Subgroups of maximum rank ........................... 316 8. Root diagrams ....................................... 317 9. Compact Lie groups and root systems ................... 319 10. Automorphisms of a connected compact Lie group ........ 322 § 5. Conjugacy classes ....................................... 324 1. Regular elements ..................................... 324 2. Chambers and alcoves ................................. 325 3. Automorphisms and regular elements .................... 327 4. The maps (G/T) x T -> G and (G/T) xA-łGr ......... 331 X CONTENTS § 6. Integration on compact Lie groups ...................... 333 1. Product of alternating multilinear forms ................. 333 2. Integration formula of H. Weyl ......................... 334 3. Integration on Lie algebras ............................. 339 4. Integration of sections of a vector bundle ................ 341 5. Invariant differential forms ............................. 344 § 7. Irreducible representations of connected compact Lie groups .................................................. 347 1. Dominant characters .................................. 347 2. Highest weight of an irreducible representation ........... 348 3. The ring R(G) ....................................... 351 4. Character formula .................................... 353 5. Degree of irreducible representations .................... 356 6. Casimir elements ..................................... 358 § 8. Fourier transform ....................................... 359 1. Fourier transforms of integrable functions ................ 360 2. Fourier transforms of infinitely-differentiable functions ..... 362 3. Fourier transforms of central functions .................. 366 4. Central functions on G and functions on Τ ............... 368 § 9. Compact Lie groups operating on manifolds ............. 369 1. Embedding of a manifold in the neighbourhood of a compact set .......................................... 369 2. Equivariant embedding theorem ........................ 373 3. Tubes and transversals ................................ 375 4. Orbit types .......................................... 377 Appendix I - Structure of compact groups .................. 381 1. Embedding a compact group in a product of Lie groups ... 381 2. Projective limits of Lie groups .......................... 382 3. Structure of connected compact groups .................. 384 Appendix II - Representations of real, complex or quaternionic type ........................................... 385 1. Representations of real algebras ........................ 385 2. Representations of compact groups ...................... 387 Exercises for § 1 .............................................. 389 Exercises for § 2 .............................................. 391 Exercises for § 3 .............................................. 394 Exercises for § 4 .............................................. 396 Exercises for § 5 .............................................. 405 CONTENTS XI Exercises for § 6 .............................................. 409 Exercises for § 7 .............................................. 414 Exercises for § 8 .............................................. 417 Exercises for § 9 .............................................. 419 Exercises for Appendix I ....................................... 424 INDEX OF NOTATION .................................... 427 INDEX OF TERMINOLOGY .............................. 431
any_adam_object 1
author Bourbaki, Nicolas ca. 20. Jh.-
author_GND (DE-588)140993142
author_facet Bourbaki, Nicolas ca. 20. Jh.-
author_role aut
author_sort Bourbaki, Nicolas ca. 20. Jh.-
author_variant n b nb
building Verbundindex
bvnumber BV036952592
ctrlnum (OCoLC)265728840
(DE-599)BVBBV036952592
edition Softcover print. of the 1. Engl. ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01633nam a2200373 cc4500</leader><controlfield tag="001">BV036952592</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20110125 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">110112s2008 xx |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540434054</subfield><subfield code="9">3-540-43405-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540688518</subfield><subfield code="9">978-3-540-68851-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)265728840</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV036952592</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bourbaki, Nicolas</subfield><subfield code="d">ca. 20. Jh.-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)140993142</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Groupes et algèbres de lie</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Éléments de mathématique</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elements of mathematics</subfield><subfield code="n">[7,3]</subfield><subfield code="p">Lie groups and Lie algebras, chapters 7 - 9</subfield><subfield code="c">Nicolas Bourbaki</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Softcover print. of the 1. Engl. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Paris</subfield><subfield code="b">Hermann, Éditeurs des sciences te des arts</subfield><subfield code="c">2008</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Reading, Massachusetts ; Palo Alto ; London ; Don Mills, Ontario</subfield><subfield code="b">Addison-Wesley publishing company</subfield><subfield code="c">2008</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Heidelberg ; New York ; London ; Paris ; Tokyo</subfield><subfield code="b">Springer-Verlag</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 434 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Actualités scientifiques et industrielles</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Adiwes international series in mathematics</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV002373127</subfield><subfield code="g">7,3</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=020867617&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020867617</subfield></datafield></record></collection>
id DE-604.BV036952592
illustrated Not Illustrated
indexdate 2024-12-24T00:17:37Z
institution BVB
isbn 3540434054
9783540688518
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-020867617
oclc_num 265728840
open_access_boolean
owner DE-355
DE-BY-UBR
DE-91G
DE-BY-TUM
DE-29T
owner_facet DE-355
DE-BY-UBR
DE-91G
DE-BY-TUM
DE-29T
physical XI, 434 S.
publishDate 2008
publishDateSearch 2008
publishDateSort 2008
publisher Hermann, Éditeurs des sciences te des arts
Addison-Wesley publishing company
Springer-Verlag
record_format marc
series2 Actualités scientifiques et industrielles
Adiwes international series in mathematics
spellingShingle Bourbaki, Nicolas ca. 20. Jh.-
Elements of mathematics
title Elements of mathematics
title_alt Groupes et algèbres de lie
Éléments de mathématique
title_auth Elements of mathematics
title_exact_search Elements of mathematics
title_full Elements of mathematics [7,3] Lie groups and Lie algebras, chapters 7 - 9 Nicolas Bourbaki
title_fullStr Elements of mathematics [7,3] Lie groups and Lie algebras, chapters 7 - 9 Nicolas Bourbaki
title_full_unstemmed Elements of mathematics [7,3] Lie groups and Lie algebras, chapters 7 - 9 Nicolas Bourbaki
title_short Elements of mathematics
title_sort elements of mathematics lie groups and lie algebras chapters 7 9
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020867617&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV002373127
work_keys_str_mv AT bourbakinicolas groupesetalgebresdelie
AT bourbakinicolas elementsdemathematique
AT bourbakinicolas elementsofmathematics73