Elements of mathematics [7,3] Lie groups and Lie algebras, chapters 7 - 9
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Paris
Hermann, Éditeurs des sciences te des arts
2008
Reading, Massachusetts ; Palo Alto ; London ; Don Mills, Ontario Addison-Wesley publishing company 2008 Berlin ; Heidelberg ; New York ; London ; Paris ; Tokyo Springer-Verlag 2008 |
Ausgabe: | Softcover print. of the 1. Engl. ed. |
Schriftenreihe: | Actualités scientifiques et industrielles
Adiwes international series in mathematics |
Online-Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV036952592 | ||
003 | DE-604 | ||
005 | 20110125 | ||
007 | t| | ||
008 | 110112s2008 xx |||| 00||| eng d | ||
020 | |a 3540434054 |9 3-540-43405-4 | ||
020 | |a 9783540688518 |9 978-3-540-68851-8 | ||
035 | |a (OCoLC)265728840 | ||
035 | |a (DE-599)BVBBV036952592 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-91G |a DE-29T | ||
100 | 1 | |a Bourbaki, Nicolas |d ca. 20. Jh.- |e Verfasser |0 (DE-588)140993142 |4 aut | |
240 | 1 | 0 | |a Groupes et algèbres de lie |
240 | 1 | 0 | |a Éléments de mathématique |
245 | 1 | 0 | |a Elements of mathematics |n [7,3] |p Lie groups and Lie algebras, chapters 7 - 9 |c Nicolas Bourbaki |
250 | |a Softcover print. of the 1. Engl. ed. | ||
264 | 1 | |a Paris |b Hermann, Éditeurs des sciences te des arts |c 2008 | |
264 | 1 | |a Reading, Massachusetts ; Palo Alto ; London ; Don Mills, Ontario |b Addison-Wesley publishing company |c 2008 | |
264 | 1 | |a Berlin ; Heidelberg ; New York ; London ; Paris ; Tokyo |b Springer-Verlag |c 2008 | |
300 | |a XI, 434 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Actualités scientifiques et industrielles | |
490 | 0 | |a Adiwes international series in mathematics | |
773 | 0 | 8 | |w (DE-604)BV002373127 |g 7,3 |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020867617&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-020867617 |
Datensatz im Suchindex
DE-BY-TUM_call_number | 0040 MAT 001f 2011 A 7050 |
---|---|
DE-BY-TUM_katkey | 1786867 |
DE-BY-TUM_location | LSB |
DE-BY-TUM_media_number | 040071286089 |
DE-BY-UBR_call_number | 8019/SC 201 |
DE-BY-UBR_katkey | 4736117 |
DE-BY-UBR_media_number | TEMP12299982 |
_version_ | 1822758210627436544 |
adam_text | CONTENTS
CONTENTS
CHAPTER
VII
CARTAN SUBALGEBRAS AND REGULAR
ELEMENTS
§ 1.
Primary decomposition of linear representations
........ 1
1.
Decomposition of a family of endomorphisms
............. 1
2.
The case of a linear family of endomorphisms
............ 6
3.
Decomposition of representations of
a
nilpotent
Lie algebra
8
4.
Decomposition of a Lie algebra relative to an
automorphism
........................................ 11
5.
Invariants of a semi-simple Lie algebra relative to a
semi-simple action
.................................... 11
§ 2.
Cartan subalgebras and regular elements of a Lie
algebra
................................................. 12
1.
Cartan subalgebras
................................... 13
2.
Regular elements of a Lie algebra
....................... 16
3.
Cartan subalgebras and regular elements
................ 18
4.
Cartan subalgebras of semi-simple Lie algebras
........... 19
§ 3.
Conjugacy theorems
.................................... 20
1.
Elementary automorphisms
............................ 20
2.
Conjugacy of Cartan subalgebras
....................... 22
3.
Applications of conjugacy
.............................. 24
4.
Conjugacy of Cartan subalgebras of solvable Lie algebras
.. 25
5.
Lie group case
........................................ 26
§ 4.
Regular elements of a Lie group
........................ 27
1.
Regular elements for a linear representation
.............. 27
2.
Regular elements of a Lie group
........................ 29
3.
Relations with regular elements of the Lie algebra
........ 31
4.
Application to elementary automorphisms
............... 34
VI
CONTENTS
§ 5.
Decomposable linear Lie algebras
....................... 34
1.
Decomposable linear Lie algebras
....................... 34
2.
Decomposable envelope
................................ 37
3.
Decompositions of decomposable algebras
................ 37
4.
Linear Lie algebras of
nilpotent endomorphisms .......... 39
5.
Characterizations of decomposable Lie algebras
........... 43
Appendix I
-
Polynomial maps and Zariski topology
........ 45
1.
Zariski topology
...................................... 45
2.
Dominant polynomial maps
............................ 46
Appendix II
-
A connectedness property
.................... 48
Exercises for
§ 1 .............................................. 51
Exercises for
§ 2 .............................................. 55
Exercises for
§ 3 .............................................. 57
Exercises for
§ 4 .............................................. 63
Exercises for
§ 5 .............................................. 63
Exercises for Appendix I
....................................... 66
Exercises for Appendix II
...................................... 67
CHAPTER
VIII
SPLIT SEMI-SIMPLE LIE ALGEBRAS
§ 1.
The Lie algebra sl(2, k) and its representations
.......... 69
1.
Canonical basis of sl(2, it)
.............................. 69
2.
Primitive elements of sl(2, fc)-modules
................... 70
3.
The simple modules V(m)
............................. 72
4.
Linear representations of the group SL(2, k)
.............. 74
5.
Some elements of SL(2, k)
............................. 76
§ 2.
Root system of a split semi-simple Lie algebra
.......... 77
1.
Split semi-simple Lie algebras
.......................... 77
2.
Roots of a split semi-simple Lie algebra
.................. 78
3.
Invariant bilinear forms
................................ 83
4.
The coefficients Na0
.................................. 83
§ 3.
Subalgebras of split semi-simple Lie algebras
............ 86
1.
Subalgebras stable under ad
ђ
.......................... 86
2.
Ideals
............................................... 89
3.
Borei
subalgebras
..................................... 90
4.
Parabolic subalgebras
................................. 92
5.
Non-split case
........................................ 94
CONTENTS
VII
§ 4.
Split semi-simple Lie algebra defined by a reduced root
system
.................................................. 95
1.
Framed semi-simple Lie algebras
........................ 95
2.
A preliminary construction
............................. 96
3.
Existence theorem
.................................... 100
4.
Uniqueness theorem
................................... 104
§ 5.
Automorphisms of a semi-simple Lie algebra
............ 106
1.
Automorphisms of a framed semi-simple Lie algebra
....... 106
2.
Automorphisms of a split semi-simple Lie algebra
......... 107
3.
Automorphisms of a splittable semi-simple Lie algebra
....
Ill
4.
Zariski topology on Aut(g)
............................. 113
5.
Lie group case
........................................ 115
§ 6.
Modules over a split semi-simple Lie algebra
............ 115
1.
Weights and primitive elements
......................... 116
2.
Simple modules with a highest weight
................... 118
3.
Existence and uniqueness theorem
...................... 119
4.
Commutant
of ) in the enveloping algebra of
g
........... 122
§ 7.
Finite dimensional modules over a split semi-simple Lie
algebra
................................................. 124
1.
Weights of a finited imensional simple g-module
.......... 124
2.
Highest weight of a finite dimensional simple g-module
.... 126
3.
Minuscule weights
.................................... 130
4.
Tensor products of g-modules
.......................... 132
5.
Dual of a g-module
................................... 134
6.
Representation ring
................................... 136
7.
Characters of g-modules
............................... 139
§ 8.
Symmetric invariants
................................... 141
1.
Exponential of a linear form
........................... 141
2.
Injection of Jb[P] into
ЅЦ))
............................. 142
3.
Invariant polynomial functions
......................... 143
4.
Properties of Auto
.................................... 148
5.
Centre of the enveloping algebra
........................ 148
§ 9.
The formula of Hermann Weyl
.......................... 152
1.
Characters of finite dimensional g-modules
............... 152
2.
Dimensions of simple g-modules
........................ 154
3.
Multiplicities of weights of simple g-modules
............. 156
4.
Decomposition of tensor products of simple g-modules
..... 157
VIII CONTENTS
§ 10.
Maximal subalgebras
of semi-simple Lie algebras
...... 159
§ 11.
Classes of
nilpotent
elements and s^-triplets
........... 163
1.
Definition of s^-triplets
............................... 163
2.
sb-triplets in semi-simple Lie algebras
................... 165
3.
Simple elements
...................................... 167
4.
Principal elements
.................................... 170
§ 12.
Chevalley orders
....................................... 173
1.
Lattices and orders
................................... 173
2.
Divided powers in a bigebra
............................ 173
3.
Integral variant of the
Poincaré-Birkhoff-Witt
theorem
.... 174
4.
Example: polynomials with integer values
................ 176
5.
Some formulas
....................................... 178
6.
Biorders
in the enveloping algebra of a split reductive Lie
algebra
.............................................. 180
7.
Chevalley orders
...................................... 185
8.
Admissible lattices
.................................... 187
§ 13.
Classical splittable simple Lie algebras
................. 189
1.
Algebras of type
A¡
(/ > 1) ............................. 190
2.
Algebras of type B; (I
> 1) ............................. 195
3.
Algebras of type
Q
(I
> 1) ............................. 204
4.
Algebras of type
D¡
(I
> 2) ............................ 211
Table
1 ..................................................... 217
Table
2 ..................................................... 218
Exercises for
§ 1 .............................................. 219
Exercises for
§ 2 .............................................. 226
Exercises for
§ 3 .............................................. 229
Exercises for
§ 4 .............................................. 231
Exercises for
§ 5 .............................................. 233
Exercises for
§ 6 .............................................. 238
Exercises for
§ 7 .............................................. 238
Exercises for
§ 8 .............................................. 250
Exercises for
§ 9 .............................................. 253
Exercises for
§ 10 ............................................. 260
Exercises for
§ 11 ............................................. 261
Exercises for
§ 13 ............................................. 266
Summary of some important properties of semi-simple Lie
algebras
.................................................... 273
CONTENTS
IX
CHAPTER IX COMPACT REAL LIE GROUPS
§ 1.
Compact Lie algebras
................................... 281
1.
Invariant hermitian forms
.............................. 281
2.
Connected commutative real Lie groups
................. 282
3.
Compact Lie algebras
................................. 283
4.
Groups whose Lie algebra is compact
.................... 284
§ 2.
Maximal tori of compact Lie groups
.................... 287
1.
Cartan subalgebras of compact algebras
................. 287
2.
Maximal tori
......................................... 288
3.
Maximal tori of subgroups and quotient groups
........... 291
4.
Subgroups of maximal rank
............................ 292
5.
Weyl group
.......................................... 293
6.
Maximal tori and covering of homomorphisms
............ 295
§ 3.
Compact forms of complex semi-simple Lie algebras
.... 296
1.
Real forms
........................................... 296
2.
Real forms associated to a Chevalley system
............. 297
3.
Conjugacy of compact forms
........................... 299
4.
Example I: compact algebras of type An
................. 300
5.
Example II: compact algebras of type Bn and Dn
......... 301
6.
Compact groups of rank
1 ............................. 302
§ 4.
Root system associated to a compact group
............. 304
1.
The group X(H)
...................................... 304
2.
Nodal group of a torus
................................ 305
3.
Weights of a linear representation
....................... 307
4.
Roots
............................................... 309
5.
Nodal vectors and inverse roots
......................... 311
6.
Fundamental group
................................... 314
7.
Subgroups of maximum rank
........................... 316
8.
Root diagrams
....................................... 317
9.
Compact Lie groups and root systems
................... 319
10.
Automorphisms of a connected compact Lie group
........ 322
§ 5.
Conjugacy classes
....................................... 324
1.
Regular elements
..................................... 324
2.
Chambers and alcoves
................................. 325
3.
Automorphisms and regular elements
.................... 327
4.
The maps
(G/T) x T
->
G
and
(G/T) xA-łGr
......... 331
X
CONTENTS
§ 6. Integration
on compact Lie groups
...................... 333
1.
Product of alternating multilinear forms
................. 333
2.
Integration formula of H. Weyl
......................... 334
3.
Integration on Lie algebras
............................. 339
4.
Integration of sections of a vector bundle
................ 341
5.
Invariant differential forms
............................. 344
§ 7.
Irreducible representations of connected compact Lie
groups
.................................................. 347
1.
Dominant characters
.................................. 347
2.
Highest weight of an irreducible representation
........... 348
3.
The ring R(G)
....................................... 351
4.
Character formula
.................................... 353
5.
Degree of irreducible representations
.................... 356
6. Casimir
elements
..................................... 358
§ 8.
Fourier transform
....................................... 359
1.
Fourier transforms of
integrable
functions
................ 360
2.
Fourier transforms of infinitely-differentiable functions
..... 362
3.
Fourier transforms of central functions
.................. 366
4.
Central functions on
G
and functions on
Τ
............... 368
§ 9.
Compact Lie groups operating on manifolds
............. 369
1.
Embedding of a manifold in the neighbourhood of a
compact set
.......................................... 369
2.
Equivariant embedding theorem
........................ 373
3.
Tubes and transversals
................................ 375
4.
Orbit types
.......................................... 377
Appendix I
-
Structure of compact groups
.................. 381
1.
Embedding a compact group in a product of Lie groups
... 381
2.
Projective
limits of Lie groups
.......................... 382
3.
Structure of connected compact groups
.................. 384
Appendix II
-
Representations of real, complex or
quaternionic type
........................................... 385
1.
Representations of real algebras
........................ 385
2.
Representations of compact groups
...................... 387
Exercises for
§ 1 .............................................. 389
Exercises for
§ 2 .............................................. 391
Exercises for
§ 3 .............................................. 394
Exercises for
§ 4 .............................................. 396
Exercises for
§ 5 .............................................. 405
CONTENTS
XI
Exercises
for
§ 6 .............................................. 409
Exercises for
§ 7 .............................................. 414
Exercises for
§ 8 .............................................. 417
Exercises for
§ 9 .............................................. 419
Exercises for Appendix I
....................................... 424
INDEX OF NOTATION
.................................... 427
INDEX OF TERMINOLOGY
.............................. 431
|
any_adam_object | 1 |
author | Bourbaki, Nicolas ca. 20. Jh.- |
author_GND | (DE-588)140993142 |
author_facet | Bourbaki, Nicolas ca. 20. Jh.- |
author_role | aut |
author_sort | Bourbaki, Nicolas ca. 20. Jh.- |
author_variant | n b nb |
building | Verbundindex |
bvnumber | BV036952592 |
ctrlnum | (OCoLC)265728840 (DE-599)BVBBV036952592 |
edition | Softcover print. of the 1. Engl. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01633nam a2200373 cc4500</leader><controlfield tag="001">BV036952592</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20110125 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">110112s2008 xx |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540434054</subfield><subfield code="9">3-540-43405-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540688518</subfield><subfield code="9">978-3-540-68851-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)265728840</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV036952592</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bourbaki, Nicolas</subfield><subfield code="d">ca. 20. Jh.-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)140993142</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Groupes et algèbres de lie</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Éléments de mathématique</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elements of mathematics</subfield><subfield code="n">[7,3]</subfield><subfield code="p">Lie groups and Lie algebras, chapters 7 - 9</subfield><subfield code="c">Nicolas Bourbaki</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Softcover print. of the 1. Engl. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Paris</subfield><subfield code="b">Hermann, Éditeurs des sciences te des arts</subfield><subfield code="c">2008</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Reading, Massachusetts ; Palo Alto ; London ; Don Mills, Ontario</subfield><subfield code="b">Addison-Wesley publishing company</subfield><subfield code="c">2008</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Heidelberg ; New York ; London ; Paris ; Tokyo</subfield><subfield code="b">Springer-Verlag</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 434 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Actualités scientifiques et industrielles</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Adiwes international series in mathematics</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV002373127</subfield><subfield code="g">7,3</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020867617&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020867617</subfield></datafield></record></collection> |
id | DE-604.BV036952592 |
illustrated | Not Illustrated |
indexdate | 2024-12-24T00:17:37Z |
institution | BVB |
isbn | 3540434054 9783540688518 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020867617 |
oclc_num | 265728840 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-91G DE-BY-TUM DE-29T |
owner_facet | DE-355 DE-BY-UBR DE-91G DE-BY-TUM DE-29T |
physical | XI, 434 S. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Hermann, Éditeurs des sciences te des arts Addison-Wesley publishing company Springer-Verlag |
record_format | marc |
series2 | Actualités scientifiques et industrielles Adiwes international series in mathematics |
spellingShingle | Bourbaki, Nicolas ca. 20. Jh.- Elements of mathematics |
title | Elements of mathematics |
title_alt | Groupes et algèbres de lie Éléments de mathématique |
title_auth | Elements of mathematics |
title_exact_search | Elements of mathematics |
title_full | Elements of mathematics [7,3] Lie groups and Lie algebras, chapters 7 - 9 Nicolas Bourbaki |
title_fullStr | Elements of mathematics [7,3] Lie groups and Lie algebras, chapters 7 - 9 Nicolas Bourbaki |
title_full_unstemmed | Elements of mathematics [7,3] Lie groups and Lie algebras, chapters 7 - 9 Nicolas Bourbaki |
title_short | Elements of mathematics |
title_sort | elements of mathematics lie groups and lie algebras chapters 7 9 |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020867617&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV002373127 |
work_keys_str_mv | AT bourbakinicolas groupesetalgebresdelie AT bourbakinicolas elementsdemathematique AT bourbakinicolas elementsofmathematics73 |