Monte Carlo methods in statistical physics

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Newman, Mark E. J. (VerfasserIn), Barkema, Gerard T. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Oxford Clarendon Press 2010
Ausgabe:1. publ., reprint. (with corr.)
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV036865504
003 DE-604
005 20170130
007 t|
008 101214s2010 xx ad|| |||| 00||| eng d
020 |a 9780198517979  |9 978-019-851797-9 
035 |a (OCoLC)706067615 
035 |a (DE-599)BVBBV036865504 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-355  |a DE-11  |a DE-19 
084 |a UG 3100  |0 (DE-625)145625:  |2 rvk 
084 |a UG 3500  |0 (DE-625)145626:  |2 rvk 
100 1 |a Newman, Mark E. J.  |e Verfasser  |0 (DE-588)133013073  |4 aut 
245 1 0 |a Monte Carlo methods in statistical physics  |c M. E. J. Newman and G. T. Barkema 
250 |a 1. publ., reprint. (with corr.) 
264 1 |a Oxford  |b Clarendon Press  |c 2010 
300 |a XIV, 475 S.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
500 |a Hier auch später erschienene, unveränderte Nachdrucke 
500 |a Literaturverz. S. [410] - 413 
650 0 7 |a Monte-Carlo-Simulation  |0 (DE-588)4240945-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Statistische Physik  |0 (DE-588)4057000-9  |2 gnd  |9 rswk-swf 
689 0 0 |a Monte-Carlo-Simulation  |0 (DE-588)4240945-7  |D s 
689 0 1 |a Statistische Physik  |0 (DE-588)4057000-9  |D s 
689 0 |5 DE-604 
700 1 |a Barkema, Gerard T.  |e Verfasser  |4 aut 
856 4 2 |m Digitalisierung UB Regensburg  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020781184&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-020781184 

Datensatz im Suchindex

DE-19_call_number 1705/UG 3100 N554(.010)
1705/T 2 New=LS für Theoretische Physik - Quantenmaterie
DE-19_location 95
DE-BY-UBM_katkey 5043536
DE-BY-UBM_media_number 99995484009
41623366920017
DE-BY-UBR_call_number 00/UG 3100 N554(.010)
DE-BY-UBR_katkey 4725941
DE-BY-UBR_location 00
DE-BY-UBR_media_number 069040847360
_version_ 1823055543205363712
adam_text Contents Equilibrium Monte Carlo simulations Introduction 3 1.1 Statistical mechanics ....................... З 1.2 Equilibrium ............................ 7 1.2.1 Fluctuations, correlations and responses ........ 10 1.2.2 An example: the Ising model .............. 15 1.3 Numerical methods ........................ 18 1.3.1 Monte Carlo simulation ................. 21 1.4 A brief history of the Monte Carlo method .......... 22 Problems ................................ 29 The principles of equilibrium thermal Monte Carlo simulation 31 2.1 The estimator ........................... 31 2.2 Importance sampling ....................... 33 2.2.1 Markov processes ..................... 34 2.2.2 Ergodicity ......................... 35 2.2.3 Detailed balance ..................... 36 2.3 Acceptance ratios ......................... 40 2.4 Continuous time Monte Carlo .................. 42 Problems ................................ 44 The Ising model and the Metropolis algorithm 45 3.1 The Metropolis algorithm .................... 46 3.1.1 Implementing the Metropolis algorithm ........ 49 3.2 Equilibration ........................... 53 3.3 Measurement ........................... 57 3.3.1 Autocorrelation functions ................ 59 3.3.2 Correlation times and Markov matrices ........ 65 3.4 Calculation of errors ....................... 68 3.4.1 Estimation of statistical errors ............. 68 3.4.2 The blocking method .................. 69 Contents 3.4.3 The bootstrap method .................. 71 3.4.4 The jackknife method .................. 72 3.4.5 Systematic errors ..................... 73 3.5 Measuring the entropy ...................... 73 3.6 Measuring correlation functions ................. 74 3.7 An actual calculation ....................... 76 3.7.1 The phase transition ................... 82 3.7.2 Critical fluctuations and critical slowing down ..... 84 Problems ................................ 85 Other algorithms for the Ising model 87 4.1 Critical exponents and their measurement ........... 87 4.2 The Wolff algorithm ....................... 91 4.2.1 Acceptance ratio for a cluster algorithm ........ 93 4.3 Properties of the Wolff algorithm ................ 96 4.3.1 The correlation time and the dynamic exponent . . . 100 4.3.2 The dynamic exponent and the susceptibility ..... 102 4.4 Further algorithms for the Ising model ............. 106 4.4.1 The Swendsen-Wang algorithm ............. 106 4.4.2 Niedermayer s algorithm ................. 109 4.4.3 Multigrid methods .................... 112 4.4.4 The invaded cluster algorithm .............. 114 4.5 Other spin models ........................ 119 4.5.1 Potts models ....................... 120 4.5.2 Cluster algorithms for Potts models .......... 125 4.5.3 Continuous spin models ................. 127 Problems ................................ 132 The conserved-order-parameter Ising model 133 5.1 The Kawasaki algorithm ..................... 138 5.1.1 Simulation of interfaces ................. 140 5.2 More efficient algorithms ..................... 141 5.2.1 A continuous time algorithm .............. 143 5.3 Equilibrium crystal shapes .................... 145 Problems ................................ 150 Disordered spin models 151 6.1 Glassy systems .......................... 153 6.1.1 The random-field Ising model .............. 154 6.1.2 Spin glasses ........................ 157 6.2 Simulation of glassy systems ................... 159 6.3 The entropie sampling method ................ 161 6.3.1 Making measurements .................. 162 6.3.2 Internal energy and specific heat ............ 163 Contents xi 6.3.3 Implementing the entropie sampling method .....164 6.3.4 An example: the random-field Ising model .......166 6.4 Simulated tempering .......................169 6.4.1 The method ........................169 6.4.2 Variations .........................174 Problems ................................177 7 Ice models 179 7.1 Heal ice and ice models ..................... 179 7.1.1 Arrangement of the protons ............... 182 7.1.2 Residual entropy of ice .................. 183 7.1.3 Three-colour models ................... 186 7.2 Monte Carlo algorithms for square ice ............. 187 7.2.1 The standard ice model algorithm ........... 188 7.2.2 Ergodicity ......................... 189 7.2.3 Detailed balance ..................... 191 7.3 An alternative algorithm ..................... 191 7.4 Algorithms for the three-colour model ............. 193 7.5 Comparison of algorithms for square ice ............ 196 7.6 Energetic ice models ....................... 201 7.6.1 Loop algorithms for energetic ice models ........ 202 7.6.2 Cluster algorithms for energetic ice models ...... 205 Problems ................................ 209 8 Analysing Monte Carlo data 210 8.1 The single histogram method ..................211 8.1.1 Implementation ......................217 8.1.2 Extrapolating in other variables ............218 8.2 The multiple histogram method .................219 8.2.1 Implementation ......................226 8.2.2 Interpolating other variables ..............228 8.3 Finite size scaling .........................229 8.3.1 Direct measurement of critical exponents .......230 8.3.2 The finite size scaling method ..............232 8.3.3 Difficulties with the finite size scaling method .....236 8.4 Monte Carlo renormalization group ...............240 8.4.1 Real-space renormalization ...............240 8.4.2 Calculating critical exponents: the exponent ľ .... 246 8.4.3 Calculating other exponents ...............250 8.4.4 The exponents S and θ ..................251 8.4.5 More accurate transformations .............252 8.4.6 Measuring the exponents ................256 Problems ................................258 xii Contents II Out-of-equilibrium simulations 9 Out-of-equilibrium Monte Carlo simulations 263 9.1 Dynamics............. ................264 9.1.1 Choosing the dynamics .................266 10 Non-equilibrium simulations of the Ising model 268 10.1 Phase separation and the Ising model ............. 268 10.1.1 Phase separation in the ordinary Ising model ..... 271 10.1.2 Phase separation in the COP Ising model ....... 271 10.2 Measuring domain size ...................... 274 10.2.1 Correlation functions ................... 274 10.2.2 Structure factors ..................... 277 10.3 Phase separation in the 3D Ising model ............ 278 10.3.1 A more efficient algorithm ................ 279 10.3.2 A continuous time algorithm .............. 280 10.4 An alternative dynamics ..................... 282 10.4.1 Bulk diffusion and surface diffusion ........... 283 10.4.2 A bulk diffusion algorithm ................ 284 Problems ................................ 288 11 Monte Carlo simulations in surface science 289 11.1 Dynamics, algorithms and energy barriers ........... 292 11.1.1 Dynamics of a single adatom .............. 293 11.1.2 Dynamics of many adatoms ............... 296 11.2 Implementation .......................... 301 11.2.1 Kawasaki and bond-counting algorithms ........ 301 11.2.2 Lookup table algorithms ................. 302 11.3 An example: molecular beam epitaxy .............. 304 Problems ................................ 306 12 The repton model 307 12.1 Electrophoresis ..........................307 12.2 The repton model .........................309 12.2.1 The projected repton model ...............313 12.2.2 Values of the parameters in the model .........314 12.3 Monte Carlo simulation of the repton model ..........315 12.3.1 Improving the algorithm .................316 12.3.2 Further improvements ..................318 12.3.3 Representing configurations of the repton model . . . 320 12.4 Results of Monte Carlo simulations ...............322 12.4.1 Simulations in zero electric field .............323 12.4.2 Simulations in non-zero electric field ..........323 Problems ................................327 Contents лі III Implementation 13 Lattices and data structures 331 13.1 Representing lattices on a computer ..............332 13.1.1 Square and cubic lattices ................ 332 13.1.2 Triangular, honeycomb and Kagomé lattices ...... 335 13.1.3 Fee, bec and diamond lattices .............. 340 13.1.4 General lattices ...................... 342 13.2 Data structures .......................... 343 13.2.1 Variables ......................... 343 13.2.2 Arrays ........................... 345 13.2.3 Linked lists ........................ 345 13.2.4 Trees ............................ 348 13.2.5 Buffers ........................... 352 Problems ................................ 355 14 Monte Carlo simulations on parallel computers 356 14.1 Trivially parallel algorithms ...................358 14.2 More sophisticated parallel algorithms .............359 14.2.1 The bing model with the Metropolis algorithm .... 359 14.2.2 The Ising model with a cluster algorithm .......361 Problems ................................362 15 M ultispin coding 364 15.1 The bing model .........................365 15.1.1 The one-dimensional Ising model ............ 365 15.1.2 The two-dimensional Ising model ............ 367 15.2 Implementing multispin-coded algorithms ........... 369 15.3 Truth tables and Karnaugh maps ................ 369 15.4 A multispin-coded algorithm for the repton model ...... 373 15.5 Synchronous update algorithms ................. 379 Problems ................................ 380 16 Random numbers 382 16.1 Generating uniformly distributed random numbers ......382 16.1.1 True random numbers .................. 384 16.1.2 Pseudo-random numbers ................. 385 16.1.3 Linear congruential generators ............. 386 16.1.4 Improving the linear congruential generator ...... 390 16.1.5 Shift register generators ................. 392 16.1.6 Lagged Fibonacci generators .............. 393 16.2 Generating non-uniform random numbers ........... 396 16.2.1 The transformation method ...............396 16.2.2 Generating Gaussian random numbers .........399 Contents 16.2.3 The rejection method .................. 401 16.2.4 The hybrid method .................... 404 16.3 Generating random bits ..................... 406 Problems ................................ 409 References 410 Appendices A Answers to problems 417 В Sample programs 433 B.I Algorithms for the Ising model .................433 B.I.I Metropolis algorithm ...................433 B.1.2 Multispin-coded Metropolis algorithm .........435 B.1.3 Wolff algorithm . . . .,..................437 B.2 Algorithms for the COP Ising model ..............438 B.2.1 Non-local algorithm ...................438 B.2.2 Continuous time algorithm ...............441 B.3 Algorithms for Potts models ...................445 B.4 Algorithms for ice models ....................448 B.5 Random number generators ...................451 B.5.1 Linear congruential generator ..............451 B.5.2 Shuffled linear congruential generator .........452 B.5.3 Lagged Fibonacci generator ...............452 Index 455
any_adam_object 1
author Newman, Mark E. J.
Barkema, Gerard T.
author_GND (DE-588)133013073
author_facet Newman, Mark E. J.
Barkema, Gerard T.
author_role aut
aut
author_sort Newman, Mark E. J.
author_variant m e j n mej mejn
g t b gt gtb
building Verbundindex
bvnumber BV036865504
classification_rvk UG 3100
UG 3500
ctrlnum (OCoLC)706067615
(DE-599)BVBBV036865504
discipline Physik
edition 1. publ., reprint. (with corr.)
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01631nam a2200397 c 4500</leader><controlfield tag="001">BV036865504</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170130 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">101214s2010 xx ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780198517979</subfield><subfield code="9">978-019-851797-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)706067615</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV036865504</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 3100</subfield><subfield code="0">(DE-625)145625:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 3500</subfield><subfield code="0">(DE-625)145626:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Newman, Mark E. J.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)133013073</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Monte Carlo methods in statistical physics</subfield><subfield code="c">M. E. J. Newman and G. T. Barkema</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ., reprint. (with corr.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford</subfield><subfield code="b">Clarendon Press</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 475 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. [410] - 413</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Monte-Carlo-Simulation</subfield><subfield code="0">(DE-588)4240945-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistische Physik</subfield><subfield code="0">(DE-588)4057000-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Monte-Carlo-Simulation</subfield><subfield code="0">(DE-588)4240945-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Statistische Physik</subfield><subfield code="0">(DE-588)4057000-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Barkema, Gerard T.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=020781184&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020781184</subfield></datafield></record></collection>
id DE-604.BV036865504
illustrated Illustrated
indexdate 2025-02-03T17:41:49Z
institution BVB
isbn 9780198517979
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-020781184
oclc_num 706067615
open_access_boolean
owner DE-355
DE-BY-UBR
DE-11
DE-19
DE-BY-UBM
owner_facet DE-355
DE-BY-UBR
DE-11
DE-19
DE-BY-UBM
physical XIV, 475 S. Ill., graph. Darst.
publishDate 2010
publishDateSearch 2010
publishDateSort 2010
publisher Clarendon Press
record_format marc
spellingShingle Newman, Mark E. J.
Barkema, Gerard T.
Monte Carlo methods in statistical physics
Monte-Carlo-Simulation (DE-588)4240945-7 gnd
Statistische Physik (DE-588)4057000-9 gnd
subject_GND (DE-588)4240945-7
(DE-588)4057000-9
title Monte Carlo methods in statistical physics
title_auth Monte Carlo methods in statistical physics
title_exact_search Monte Carlo methods in statistical physics
title_full Monte Carlo methods in statistical physics M. E. J. Newman and G. T. Barkema
title_fullStr Monte Carlo methods in statistical physics M. E. J. Newman and G. T. Barkema
title_full_unstemmed Monte Carlo methods in statistical physics M. E. J. Newman and G. T. Barkema
title_short Monte Carlo methods in statistical physics
title_sort monte carlo methods in statistical physics
topic Monte-Carlo-Simulation (DE-588)4240945-7 gnd
Statistische Physik (DE-588)4057000-9 gnd
topic_facet Monte-Carlo-Simulation
Statistische Physik
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020781184&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT newmanmarkej montecarlomethodsinstatisticalphysics
AT barkemagerardt montecarlomethodsinstatisticalphysics