Charming proofs a journey into elegant mathematics

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Alsina, Claudi 1952- (VerfasserIn), Nelsen, Roger B. 1942- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Washington, DC Math. Assoc. of America 2010
Schriftenreihe:The Dolciani mathematical expositions 42
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV036780242
003 DE-604
005 20110217
007 t|
008 101117s2010 xx ad|| |||| 00||| eng d
020 |a 9780883853481  |9 978-0-88385-348-1 
035 |a (OCoLC)705973823 
035 |a (DE-599)BVBBV036780242 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-20  |a DE-188 
084 |a SK 130  |0 (DE-625)143216:  |2 rvk 
084 |a SK 180  |0 (DE-625)143222:  |2 rvk 
084 |a SK 380  |0 (DE-625)143235:  |2 rvk 
100 1 |a Alsina, Claudi  |d 1952-  |e Verfasser  |0 (DE-588)143990934  |4 aut 
245 1 0 |a Charming proofs  |b a journey into elegant mathematics  |c Claudi Alsina ; Roger B. Nelsen 
264 1 |a Washington, DC  |b Math. Assoc. of America  |c 2010 
300 |a XXIV, 295 S.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a The Dolciani mathematical expositions  |v 42 
650 0 7 |a Mathematik  |0 (DE-588)4037944-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Beweistheorie  |0 (DE-588)4145177-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Beweis  |0 (DE-588)4132532-1  |2 gnd  |9 rswk-swf 
689 0 0 |a Beweistheorie  |0 (DE-588)4145177-6  |D s 
689 0 1 |a Mathematik  |0 (DE-588)4037944-9  |D s 
689 0 |5 DE-604 
689 1 0 |a Beweis  |0 (DE-588)4132532-1  |D s 
689 1 |5 DE-604 
700 1 |a Nelsen, Roger B.  |d 1942-  |e Verfasser  |0 (DE-588)12076945X  |4 aut 
830 0 |a The Dolciani mathematical expositions  |v 42  |w (DE-604)BV001900740  |9 42 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020696913&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-020696913 

Datensatz im Suchindex

_version_ 1819629806001586176
adam_text Titel: Charming proofs Autor: Alsina, Claudi Jahr: 2010 Contents Preface ix Introduction xix A Garden of Integers 1 1.1 Figurate numbers....................... 1 2 Sums of Squares, triangulär numbers, and cubes....... 6 3 There are infinitely many primes............... 9 4 Fibonacci numbers...................... 12 5 Fermat s theorem....................... 15 6 Wilson s theorem....................... 16 7 Perfect numbers....................... 16 8 Challenges.......................... 17 1 1 1 1 1 1 1 2 Distinguished Numbers 19 2.1 The irrationality of V2.................... 20 2.2 The irrationality of Vk for non-square k .......... 21 2.3 The golden ratio....................... 22 2.4 n and the circle........................ 25 2.5 The irrationality of7r..................... 27 2.6 The Comte de Buffon and bis needle ............ 28 2.7 e as a limit.......................... 29 2.8 An infinite series for e.................... 32 2.9 The irrationality of ?..................... 32 2.10 Steiner s problem on the number e.............. 33 2.11 The Euler-Mascheroni constant............... 34 2.12 Exponents, rational and irrational.............. 35 2.13 Challenges.......................... 36 3 Points in the Plane 39 3.1 Pick s theorem........................ 39 3.2 Circles and sums of two Squares .............. 41 3.3 The Sylvester-Gallai theorem................ 43 Xlli xiv Contents 3.4 Bisecting a set of 100,000 points .............. 44 3.5 Pigeons and pigeonholes................... 45 3.6 Assigning numbers to points in the plane.......... 47 3.7 Challenges.......................... 48 4 The Polygonal Playground 51 4.1 Polygonal combinatorics................... 51 4.2 Drawing an n-gon with given side lengths ......... 54 4.3 The theorems of Maekawa and Kawasaki.......... 55 4.4 Squaring polygons...................... 58 4.5 The stars of the polygonal playground............ 59 4.6 Guards in art galleries.................... 62 4.7 Triangulation of convex polygons.............. 63 4.8 Cycloids, cyclogons, and polygonal cycloids........ 66 4.9 Challenges.......................... 69 5 A Treasury of Triangle Theorems 71 5.1 The Pythagorean theorem.................. 71 5.2 Pythagorean relatives..................... 73 5.3 The inradius of a right triangle................ 75 5.4 Pappus generalization of the Pythagorean theorem..... 77 5.5 The incircle and Heron s formula.............. 78 5.6 The circumcircle and Euler s triangle inequality....... 80 5.7 The orthic triangle...................... 81 5.8 The Erdös-Mordell inequality................ 82 5.9 The Steiner-Lehmus theorem ................ 84 5.10 The medians of a triangle .................. 85 5.11 Are most triangles obtuse?.................. 87 5.12 Challenges.......................... 88 6 The Enchantment of the Equilateral Triangle 91 6.1 Pythagorean-like theorems.................. 91 6.2 The Fermat point of a triangle................ 94 6.3 Viviani s theorem....................... 96 6.4 A triangulär tiling of the plane and Weitzenböck s inequality 96 6.5 Napoleon s theorem..................... 99 6.6 Morley s miracle....................... 100 6.7 Van Schooten s theorem................... 102 6.8 The equilateral triangle and the golden ratio......... 103 6.9 Challenges.......................... 104 Contents xv 7 The Quadrilaterals Corner 107 7.1 Midpoints in quadrilaterals.................. 107 7.2 Cyclic quadrilaterals..................... 109 7.3 Quadrilateral equalities and inequalities........... 111 7.4 Tangential and bicentric quadrilaterals............ 115 7.5 Anne s and Newton s theorems ............... 116 7.6 Pythagoras with a parallelogram and equilateral triangles . . 118 7.7 Challenges.......................... 119 8 Squares Everywhere 121 8.1 One-square theorems..................... 121 8.2 Two-square theorems .................... 123 8.3 Three-square theorems ................... 128 8.4 Four and more Squares.................... 131 8.5 Squares in recreational mathematics ............ 133 8.6 Challenges.......................... 135 9 Curves Ahead 137 9.1 Squarable lunes........................ 137 9.2 The amazing Archimedean Spiral.............. 144 9.3 The quadratrix of Hippias.................. 146 9.4 The shoemaker s knife and the salt cellar.......... 147 9.5 The Quetelet and Dandelin approach to conics....... 149 9.6 Archimedes triangles..................... 151 9.7 Helices............................ 154 9.8 Challenges.......................... 156 10 Adventures in Tiling and Coloring 159 10.1 Plane tilings and tessellations................ 160 10.2 Tiling with triangles and quadrilaterals........... 164 10.3 Infinitely many proofs of the Pythagorean theorem..... 167 10.4 The leaping frog....................... 170 10.5 The seven friezes....................... 172 10.6 Colorful proofs........................ 175 10.7 Dodecahedra and Hamiltonian circuits ........... 185 10.8 Challenges.......................... 186 11 Geometry in Three Dimensions 191 11.1 The Pythagorean theorem in three dimensions ....... 192 11.2 Partitioning space with planes................ 193 xvi Contents 11.3 Corresponding triangles on three lines........... 195 11.4 An angle-trisecting cone .................. 196 11.5 The intersection of three spheres.............. 197 11.6 The fourth circle....................... 199 11.7 The area of a spherical triangle............... 199 11.8 Euler s polyhedral formula................. 200 11.9 Faces and vertices in convex polyhedra........... 202 11.10 Whysometypes of faces repeat in polyhedra ....... 204 11.11 Euler and Descartes ä la Pölya............... 205 11.12 Squaring Squares and cubingcubes............. 206 11.13 Challenges.......................... 208 12 Additional Theorems, Problems, and Proofs 209 12.1 Denumerable and nondenumerble sets........... 209 12.2 The Cantor-Schröder-Bernstein theorem.......... 211 12.3 The Cauchy-Schwarz inequality.............. 212 12.4 The arithmetic mean-geometric mean inequality...... 214 12.5 Two pearls of origami.................... 216 12.6 How to draw a straight line................. 218 12.7 Some gems in functional equations............. 220 12.8 Functional inequalities................... 227 12.9 Euler s series for 7r2/6................... 230 12.10 The Wallis product..................... 233 12.11 Stirling s approximation of n!................ 234 12.12 Challenges.......................... 236 Solutions to the Challenges 239 Chapter 1.............................. 239 Chapter 2.............................. 241 Chapter 3.............................. 245 Chapter 4.............................. 247 Chapter 5.............................. 250 Chapter 6.............................. 255 Chapter 7.............................. 258 Chapter 8.............................. 261 Chapter 9.............................. 263 Chapter 10............................. 265 Contents xvii Chapter 11.............................270 Chapter 12.............................272 References 275 Index 289 About the Authors 295
any_adam_object 1
author Alsina, Claudi 1952-
Nelsen, Roger B. 1942-
author_GND (DE-588)143990934
(DE-588)12076945X
author_facet Alsina, Claudi 1952-
Nelsen, Roger B. 1942-
author_role aut
aut
author_sort Alsina, Claudi 1952-
author_variant c a ca
r b n rb rbn
building Verbundindex
bvnumber BV036780242
classification_rvk SK 130
SK 180
SK 380
ctrlnum (OCoLC)705973823
(DE-599)BVBBV036780242
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01780nam a2200433 cb4500</leader><controlfield tag="001">BV036780242</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20110217 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">101117s2010 xx ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780883853481</subfield><subfield code="9">978-0-88385-348-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)705973823</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV036780242</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 130</subfield><subfield code="0">(DE-625)143216:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 380</subfield><subfield code="0">(DE-625)143235:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Alsina, Claudi</subfield><subfield code="d">1952-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)143990934</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Charming proofs</subfield><subfield code="b">a journey into elegant mathematics</subfield><subfield code="c">Claudi Alsina ; Roger B. Nelsen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Washington, DC</subfield><subfield code="b">Math. Assoc. of America</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIV, 295 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">The Dolciani mathematical expositions</subfield><subfield code="v">42</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Beweistheorie</subfield><subfield code="0">(DE-588)4145177-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Beweis</subfield><subfield code="0">(DE-588)4132532-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Beweistheorie</subfield><subfield code="0">(DE-588)4145177-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Beweis</subfield><subfield code="0">(DE-588)4132532-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nelsen, Roger B.</subfield><subfield code="d">1942-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)12076945X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">The Dolciani mathematical expositions</subfield><subfield code="v">42</subfield><subfield code="w">(DE-604)BV001900740</subfield><subfield code="9">42</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=020696913&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020696913</subfield></datafield></record></collection>
id DE-604.BV036780242
illustrated Illustrated
indexdate 2024-12-24T00:13:19Z
institution BVB
isbn 9780883853481
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-020696913
oclc_num 705973823
open_access_boolean
owner DE-20
DE-188
owner_facet DE-20
DE-188
physical XXIV, 295 S. Ill., graph. Darst.
publishDate 2010
publishDateSearch 2010
publishDateSort 2010
publisher Math. Assoc. of America
record_format marc
series The Dolciani mathematical expositions
series2 The Dolciani mathematical expositions
spellingShingle Alsina, Claudi 1952-
Nelsen, Roger B. 1942-
Charming proofs a journey into elegant mathematics
The Dolciani mathematical expositions
Mathematik (DE-588)4037944-9 gnd
Beweistheorie (DE-588)4145177-6 gnd
Beweis (DE-588)4132532-1 gnd
subject_GND (DE-588)4037944-9
(DE-588)4145177-6
(DE-588)4132532-1
title Charming proofs a journey into elegant mathematics
title_auth Charming proofs a journey into elegant mathematics
title_exact_search Charming proofs a journey into elegant mathematics
title_full Charming proofs a journey into elegant mathematics Claudi Alsina ; Roger B. Nelsen
title_fullStr Charming proofs a journey into elegant mathematics Claudi Alsina ; Roger B. Nelsen
title_full_unstemmed Charming proofs a journey into elegant mathematics Claudi Alsina ; Roger B. Nelsen
title_short Charming proofs
title_sort charming proofs a journey into elegant mathematics
title_sub a journey into elegant mathematics
topic Mathematik (DE-588)4037944-9 gnd
Beweistheorie (DE-588)4145177-6 gnd
Beweis (DE-588)4132532-1 gnd
topic_facet Mathematik
Beweistheorie
Beweis
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020696913&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV001900740
work_keys_str_mv AT alsinaclaudi charmingproofsajourneyintoelegantmathematics
AT nelsenrogerb charmingproofsajourneyintoelegantmathematics