Heart development and regeneration 2
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
Elsevier, Acad. Press
2010
|
Ausgabe: | 1. ed. |
Online-Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV036721758 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 101015s2010 ad|| |||| 00||| eng d | ||
020 | |a 9780123813343 |9 978-0-12-381334-3 | ||
035 | |a (OCoLC)700336656 | ||
035 | |a (DE-599)BVBBV036721758 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-355 | ||
245 | 1 | 0 | |a Heart development and regeneration |n 2 |c ed. by Nadia Rosenthal ... |
250 | |a 1. ed. | ||
264 | 1 | |a Amsterdam [u.a.] |b Elsevier, Acad. Press |c 2010 | |
300 | |a XXXII S., S. 569 - 997, 31 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
700 | 1 | |a Rosenthal, Nadia |e Sonstige |4 oth | |
773 | 0 | 8 | |w (DE-604)BV036721723 |g 2 |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020639621&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-020639621 |
Datensatz im Suchindex
_version_ | 1804143370635837440 |
---|---|
adam_text | Contents
XVII
Volume II
List of Contributors
Foreword
Preface
xxv
xxix
xxxi
Part
9
Transcriptional Circuits in Cardiac
Development and Disease
9.1.
NK-2 Class Homeodomain Proteins:
Conserved Regulators of
Cardiogenesis
David A. Elliott, Edwin P. Kirk, Daniel
Schaft
and Richard P. Harvey
I. Introduction
569
II. Molecular Nature of
Nkx2-5
571
H.A.
Conserved Domains within
NK-2 Genes
573
N.B.
TheTN-Domain
573
U.C.
NK-2 Specific Domain (NK2-SD)
573
11.D.
Post-translational Modifications
of Nkx2-5
574
III. Biochemical Interactions Between
Nkx2-5 and Other Members of the
Cardiac Gene Regulatory Network
575
III.A.
GATA
Factors
575
III.B. FoxM
575
lll.C.
Т
-box
Proteins
576
III.D. Serum Response Factor
576
III.E. Nkx2-5 and Chromatin
Remodeling Factors
576
IV. Nkx2-5 and Heart Disease
577
V. Phenotypes of
Nkx2-5
Mutants in Mice
582
V.A. Nkx2-5 and the Patterning of the
Vertebrate Heart
583
V.B. Nkx2-5 in the Establishment and
Maintenance of Boundaries
585
V.C.
Nkx2-5
and the Developing
Ventricular Conduction System
586
V.D. Nkx2-5 Regulates Formation of the
Endocardium
587
VI. Studies of Nkx2-5 in Other Vertebrate
Model Systems
587
VII.
Tinman and the
Drosophila
Dorsal
Vessel
588
VIII.
Regulatory Components of the
Nkx2-5 Locus
589
IX. Conclusions
591
References
591
9.2.
GATA4 in Heart Development and
Disease
Georges
Nemer
and
Mona
Nemer
I. The
GATA
Family of Zinc-Finger
Transcription Factors
599
I.A.
Overview
599
I.B. General Properties
599
II. Expression of
GATA
Proteins in
Cardiovascular Cells
600
H.A.
The Two Subfamilies of Vertebrate
GATA
Proteins
600
II.B.
GATA
Proteins in the Myocardium
601
U.C. GATA
Proteins in the Endocardium
602
II.D. GATA
Proteins in the Outflow Tract
602
U.E.
GATA
Proteins in Other
Cardiovascular Cells
603
III. Regulation of Cardiac
GATA
Factors
603
III.A. Regulation of Gene Expression
603
III.B. Regulation of Protein Activity
604
IV. Role of
GATA
Factors in Embryonic
Heart Development
605
IVA. GATA4
605
IV.B. GATA5
606
IV.C. GATA6
606
V. Role of
GATA
Factors in Postnatal Heart
Development
607
V.A. GATA4 and Cardiomyocyte
Hypertrophy
607
V.B. GATA6
and Vascular Remodeling
608
VI. Role of GATA4 in Cardiomyocyte
Survival
609
VII.
Combinatorial Interactions of
GATA
Factors with Other Transcriptional
Regulators
609
VILA. Cell-Specific
GATA
Collaborators
609
VII.B. Inducible
GATA
Co-Factors
611
VIII. GATA
Factors as Integrators and
Regulators of Cell Signaling in the Heart
611
IX. GATA4 and Congenital Heart Disease
612
X. Conclusion and Perspectives
612
References
613
9.3.
Serum Response Factor and
Co-Factors, Roles in Cardiac
Development
Robert J. Schwartz
I. Introduction
II. Serum Response Factor
617
617
XVIII
Contents
III. Embryonic Serum Response Factor
Expression is Largely Restricted to
Cardiac and Skeletal Muscle Tissues
619
IV. Serum Response Factor Orchestrates
Cardiac Myogenesis
620
IV.A. Myogenic Contractile Proteins are
Downregulated in Serum Response
Factor-Null Embryonic Stem Cells
620
IV.B. Serum Response Factor Directs the
Expression of Many MicroRNAs
622
V. Serum Response Factor in Human Heart
Disease
623
V.A. Inhibitory Serum Response Factor
is Generated by Caspase
3
Cleavage in Human Heart Failure
623
VI. Serum Response Factor Gene
Autoregulation 624
VI.A. Tbx Factors Regulate Serum
Response Factor Gene Activity
through its 3 UTR Gene Enhancer
625
VII.
Identification of Serum Response Factor
Gene Targets
628
VILA. Serum Response Factor-Dependent
Transactivation of
DNA
Targets
Correlates Well With the Quality
and Quantity of Serum Response
Factor-Binding Sites
628
VII.B. Serum Response Factor Target
Genes Raf1
,
Map4k4 and Bicci
Play Roles in Mesoderm Formation
629
VII.C
Serum Response Factor Target
Genes Play an Inductive Role in
Cardiovascular Development
630
VIII.
Combinatorial Interactions of Serum
Response Factor-Accessory Proteins
630
VIII.A. Recruitment of the Tinman
Homolog Nkx2-5
by Serum
Response Factor-Activated Cardiac
a-Actin Gene Transcription
633
VIII.B. GATA4 and Nkx2-5 Co-activate
Nkx2-5 DNA-BindingTargets
634
VIII.C. Serum Response Factor and
GATA4 are Mutual Co-Regulators
634
VIII.D. Competition between Negatively
Acting YY1 versus Positively Acting
Serum Response Factor Regulates
a-Acti
η
Promoter Activity
635
IX. Hop,
а
Homeobox Protein Enriched in
the Heart, Inhibits Serum Response
Factor Myogenic Activity
63 7
X. Cysteine-Rich Protein
LIM
Factors Bridge
Serum Response Factor with GATA6 and
Activate Smooth Muscle Genes
637
XI. Serum Response Factor Co-activator
Myocardin is Required for Vascular
Smooth Muscle Development
639
XII.
Serum Response Factor Mutants Block
Sarcomerogenesis in Serum Response
Factor-Null Embryonic Stem Cells
640
XIII.
Post-Translational Modification of Serum
Response Factor and Co-Factors are
Important Regulatory Switches
640
XIII.A. Myocardin Sumoylation
Transactivates Cardiogenic
Genes
640
XIII.B. Role of Histone Deacetylases
(HDACs) and Histone Acetyl-
transferases (HATs) in Serum
Response Factor-Dependent
Muscle Gene Activity
642
XIII.C. Serum Response Factor MADS Box
Serine-162 Phosphorylation
Switches Proliferation and
Myogenic Gene Programs
643
Xlll.D. Mimicking Phosphorylation
of S1
62
in the MADS-box Permits
с
-fos
Promoter Activity
643
References
645
9.4.
Т
-Box
Factors
Frank
L
Conlon and
Katherine
E. Yutzey
1.
Introduction
651
II. Brachyury and the
Т
-Box
Family
of Proteins
651
H.A. 76x7 652
II.B.
Tbx2
654
U.C.
ТЬхЗ
654
II.
D. Tbx5
655
U.E.
Tbx18
656
II.
F. Tbx20
657
III.
Т
-Box
Genes and the Cardiac Cell-Cycle
658
IV.
Т-Вох
Regulation of Cardiac Gene
Expression
660
IV.A.
Т
-Box
Proteins Act as Repressors
and Activators
660
IV.B.
Т
-Box
Protein Transcriptional
Partners
661
IV.C.
Т
-Box
Protein Downstream
Target Genes
662
V.
Т
-Box
Regulatory Networks
662
V.A. Upstream Regulatory Pathways
That Control
Т
-Box
Gene
Expression
662
V.B. Cross-Talk Among
Т
-Box
Gene
Family Members
663
VI.
Т
-Box
Factors and Congenital Heart
Malformations
663
VI.A. Holt-Oram Syndrome
663
VLB.
DiGeorge
Syndrome
664
VII.
Summary and Future Directions
665
References
665
Contents
XIX
9.5.
Myocyte Enhancer Factor
2
Transcription Factors in Heart
Development and Disease
Brian
L
Black and Richard M. Cripps
I. Introduction
673
II. The MEF2 Family of Transcription
Factors
674
II.A. Discovery of MEF2 Transcription
Factors
674
II.B. The MEF2 Family in the Context of
the MADS Domain Superfamily
674
U.C.
Structure of MEF2 Proteins
675
III. Regulation of MEF2 Activity by
Post-Translational Modification
677
III.A. MEF2 Functions as a Transcriptional
Co-Factor
677
III.B. Chromatin Remodeling by MEF2
through Interaction with Histone
Deacetylases
678
III.
C. MEF2
Functions as a Signal-
Dependent Transcriptional Switch
680
IV. MEF2 Gene Function in the Heart and
Other Tissues
682
IV.A. MEF2 Proteins are Expressed in
Multiple Lineages During
Development and in Adulthood
682
1V.B. Genetic Analyses of Mef2 Gene
Function
683
IV.C. Direct Transcriptional Targets of
MEF2 in the Heart
685
V. Regulation of MEF2 Gene Transcription
687
V.A. Mef2 Gene Regulation as a Paradigm
for Modular Transcriptional Control
687
V.B. Regulation of Mef2 Transcription in
the
Drosophila
Heart
688
V.C. Regulation of Mef2c Transcription
in the Mammalian Heart
689
VI. Future Directions
691
References
692
PartiO
Epigenetic Modifiers of Cardiac
Development
10.1.
Chromatin Modification and
Remodeling in Heart Development
H.A.
Histone-Modifying Proteins
703
II.B. Chromatm-Remodeling
Complexes
706
111. Histone-Modifying Enzymes in Heart
Development
706
III.A. Histone
Acetyl
Transferases
706
III.B. Histone Deacetylases
707
III.C
Histone Methylation/
Demethylation
707
III.D. Smydi: A Versatile Histone-
Modifying Protein
708
III.E. Jumonji: A Cardiac Histone
Demethylase?
708
IV.
Pc
Complexes and the Establishment
of Cardiac Identity
708
IV.A.
Pc
Complexes in Stem Cells:
Poising Genes for Lineage
Activation?
708
lV.B. A Role for
Pc
Complexes in
Heart Development?
709
V. Chromatin-Remodeling Complexes
in Heart Development
709
V.A. Swi/Snf (BAF) Complexes:
Baf60c and Heart Development
709
V.B. Swi/Snf (BAF) Complexes: Brgi
and Heart Development
710
V.C. BAF Complexes: Baf250a and
Heart Development
710
V.D. PBAF Complexes:
Bafl
80
and
Heart Development
711
V.E. Baf45c/DPF3 and Recognition
of Histone Modifications
711
VI. Conclusions
711
References
711
Benoit G. Bruneau
I. Introduction
II. Chromatin Modification and
Remodeling: General Concepts
and Key Players
703
703
10.2.
Histone Deacetylases in
Cardiovascular Development
and Disease
Bryan D. Young and Eric
N.
Olson
I. Histone
Acetyl
Transferases
and Histone
Deacetylases
715
II. Histone
ОеасеЇуІаве-МЕРг
Interaction
716
H.A.
Histone Deacetylases as
Repressors of
MEF2-Mediated
Transcription
716
N.B. MEF2-lndependent
Functions for
Class II Histone Deacetylases
717
III. Class II Histone Deacetylases as
Regulators of Cardiac Remodeling
717
III.A. The Development-Hypertrophy
Connection
717
IV. Signal-Dependent Regulation of Class II
Histone Deacetylases
718
XX
Contents
V.
Historie Deacetylase
Kinases
718
V.A. Protein Kinase
D
718
V.B. CaMKII
719
V.C. MARK Kinases
719
VI.
Histone Deacetylase Knockout
Mice
720
VIA HDAC9 and HDAC5
Knockout
Mice
720
VLB. HDAC7 Knockout
Mouse
721
VI.C. HDAC4 Knockout
Mouse
722
VI.
D. HDAC1
Knockout Phenotype
723
VII.
Histone Deacetylase Inhibitors and
Therapeutics
723
VILA.
Histone Deacetylase Inhibitors
723
VII.B.
Perspectives on Therapeutics
723
References
724
10.3.
MicroRNA Regulation of Cardiac
Development and Disease
Kimberly R.
Cordes
and Deepak Srivastava
I. Introduction
729
II. Biogenesis, Organization and Target
Recognition of miRNA
730
III. The Function of miRNAs During
Cardiogenesis
731
IV. Cardiac-and Muscle-Specific miRNAs
731
IVA.
Organization and Regulation of
miR-1 and miR-1
33 732
IV.B. Function
oí
miR-1 during
Cardiogenesis
732
IV.C. Targeted Deletion of Mouse
miR-1
-2 734
IV.D. miR-1
38
Regulation of Cardiac
Patterning
736
IV.E. Targeted Deletion of miR-208
736
IV.F. Function of miR-206 and
miR-1
81 736
V. Cardiac Stress-Responsive miRNAs
737
VI. miRNA Function During Angiogenesis
738
VII.
Summary
738
References
738
Partii
Cardiomìcs
11.1.
Genomic Analyses in the Developing
and Diseased Heart
Shuaib Latif and Daniel J. Carry
I. Introduction
743
II. Genomic Profiling Strategies
743
H.A.
Conventional Methods for
Cardiovascular Gene Discovery
743
III. Microarray Technologies
744
III.A. Complementary
DNA (cDNA)
Microarrays
744
111-B. Oligonucleotide Arrays
745
III.C.
RNA
Amplification
745
IV. Data Analysis and Bioinformatics
746
IV.A. Applications Utilizing
Transcriptome
Analysis
747
IV.B. Global Gene Expression in the
Post-Injured Heart
748
IV.C. Global Gene Expression in the
Hypertrophie
and Failing Heart
750
References
750
11.2.
Exploring the Genetic Basis for
Congenital Heart Disease with
Mouse ENU Mutagenesis
Cecilia W.
Lo, Qing
Yu, Yuan Shen, Linda
Leatherbury, Richard Francis, Xiao-Qing Zhao,
Zhen Zhang, Andy Wessels, Guo-Ying Huang
and Bishwanath Chatterjee
I. Congenital Heart Disease
753
II. Modeling Congenital Heart Disease
in Mice
754
III. Forward Genetic Screens
758
IV. Mouse Fetal Echocardiography
Screening
759
IVA.
Sagittal Views
759
IV.B. Frontal Views
759
IV.C. Transverse Views
761
V. Ultrasound Detection of
Cardiovascular Defects
762
VI. Diagnosis of Structural Heart Defects
764
VII. Noncardiac
Defects
765
VIII.
Mapping Mutations and Strain
Modifier Effects
766
IX. Mutation Identification
770
X. Mutation in Megf8 Causes Single
Ventricle Spectrum of Complex
Congenital Heart Disease
771
XI. DNAH5 Mutation, Heterotaxy and
Primary Ciliary Dyskmesia
775
XII.
Future Prospects for Saturation
Mutagenesis Screens
776
References
776
11.3.
Imaging Cardiac Developmental
Malformations in the Mouse
Embryo
Timothy Mohun, Wolfgang Weninger and
Shoumo Bhattacharya
I. Introduction
II. The Limits of Histology
779
779
Contents
XXI
III. The Promise
of Optical Projection
Tomography
IV.
Episcopie
Imaging
V. High Resolution
Episcopie
Microsocopy
VI. High-Throughput Phenotyping
VII.
Magnetic Resonance Imaging
VIII.
Conclusions: A Phenotyping
Pipeline
References
11.4.
Proteomic Strategies for
Understanding Cardiac Function,
Development, and Disease
Charts Himeda and Steve Hauschka
I. Introduction: The Need for
Proteomics in Cardiac Analysis
793
II. Proteomics and Cardiac Disease
793
III. Proteomic Identification of Cardiac
Transcription Factors
794
III.A. Source Material
795
III.B. Transcription Factor Enrichment
796
III.C. Transcription Factor Identification
by Quantitative Proteomics
797
III.D. Confirmation of Candidates
800
IV. Future Prospects
800
References
801
11.5.
Proteomic Analysis of MEF2
Post-Translational Regulation
in the Heart
David M. Cox,
Min Du
and
John
С
McDermott
I. Introduction
805
II. The Central Role of Mass Spectrometric
Analysis in Proteomic Analysis of
Protein-Protein Interactions
807
H.A.
Purification of Multiprotein
Complexes
807
III. Identification of Protein Complex
Components by Mass Spectrometry
810
IV. Mass Spectrometry Instrumentation
812
IV.A. Operational
Peptide
Detection
Modes
813
V. Identification of a MEF2A
Interacting Protein
814
VI. Proteomic Analysis of Reversible
Phosphorylation: A Rheostatic
Control Mechanism for Transcription
Factor Activity
815
VI.A. Precursor Ion and Neutral Loss
Scanning
816
VLB. Multiple Reaction Monitoring
816
Vl.C. New Vistas: Quantitative
780
Analysis of Peptides
818
781
VLD. Phosphopeptide
Analysis of
MEF2A
818
782
VII.
A Transition-State Model of MEF2
784
Regulation
819
786
References
820
788
789
Part
12
The Regenerative Heart
12.1.
Evolution of Regeneration
Jonathan M.W. Slack
I. Introduction
827
II. Phylogeny of Animals
827
H.A.
Distribution of Regenerative Ability
829
N.B.
Technical Issues
831
U.C.
Annelid Regeneration
831
II.D.
Urodele
Limb Regeneration
832
U.E.
Mammalian Hyperplastic
Regeneration
833
11.F.
Cardiac Regeneration in
Vertebrates
835
III. Conclusions
835
References
836
12.2.
Cardiac Regeneration in the
Zebrafish Model System
Kenneth Poss
I. Introduction
839
II. Regeneration
839
III. Capacity for Heart Regeneration
840
III.A. The Mammalian Heart
840
III.B. The Amphibian Heart
841
III.C. The Zebrafish Heart
841
IV. Myocardial Progenitor Cells and
Zebrafish Heart Regeneration
842
IV.A. New Cardiomyocytes are Born
during Heart Regeneration
842
IV.B. Participation of Progenitor Cells
843
IV.C. Possible Origins of
Progenitor Cells
845
V. Nonmyocardial Cells and Heart
Regeneration
845
VI. Molecular Genetic Approaches
to Zebrafish Heart Regeneration
847
VII.
Why does the Zebrafish Heart
Regenerate?
849
VIII.
Summary and Future Directions
851
References
851
XXII
Contents
Part
13
Properties of Cardiac
Progenitor Cells
13.1.
Detection and Identification of
Tissue Stem Cells: Tracking an
Elusive Prey
Daniel C. Blackmore and Rodney
L
Rietze
I. Introduction
857
II. What is a Stem Cell?
857
H.A.
Associated Definitions
and Concepts
858
II.B. Spiral Model of Stem Cell
Differentiation
861
U.C.
Are Ependymal Cells
Stem Cells?
863
I
I.D.
Are Stem Cells a Subtype of
Astrocytes?
867
III. Summary and Conclusions
870
References
870
13.2.
Human Cardiomyocytes from
Embryonic Stem Cells: Windows to
Human Biology and Elements for
Regeneration
Charles E. Murry, Joseph Cold,
Lil
Pabon
and Lior Gepstein
I. Introduction
877
II. A
Brief Overview of Human
Embryonic Stem Cells
877
III. Embryoid Bodies and the Generation
of Cardiomyocytes from Embryonic
Stem Cells
879
III.A. Directed Differentiation of
Cardiomyocytes
880
III.B.
Ultrastructural
and
Electrophysiological Properties
882
111.C. Purification of Cardiomyocytes
from Human Embryonic Stem
Cell Cultures
IV. Proliferation in Human Embryonic Stem
y
Cell-Derived Cardiomyocytes
V. Transplantation Studies
V.A. Transplantation into the
Uninjured Heart
V.B. Transplantation for
Electrophysiological Repair
V.C. Future Directions and a Road
Map for Clinical Applications
VI. Concluding Remarks
References
884
886
887
887
888
890
892
892
Part
14
Driving Cardiac Regeneration
14.1.
Adult Stem Cell-Based Therapy
for the Heart
Massimiliano Cnecchi and
Victor) Dzau
I. Introduction
899
II. Background
899
H.A.
Pathology of Acute Myocardial
Infarct:
The Traditional View
900
N.B.
New Concepts of Cardiac
Homeostasis and Repair
900
III. Embryonic Versus Adult Stem Cells:
Which Way to Go?
901
IV. Adult Stem Cells for Cardiac Repair
902
IV.A. Hematopoietic Stem Cells
902
IV.B. Endothelial Progenitor Cells
903
IV.C. Mesenchymal Stem Cells
905
V. Structural and Functional Effects of
Bone Marrow-Derived Stem Cells
on Animal Infarcted Hearts
907
VI. Mechanisms of Action of Bone
Marrow-Derived Stem Cells in
Cardiac Repair
907
VI.A. Cardiomyocyte Regeneration
912
VLB. Vasculogenesis
916
VI.C. Paracrine Effects
917
VII.
Clinical Studies Testing Bone Marrow-
Derived Cells for
Ischemie
Heart Disease
921
VIH.
Outstanding Issues
928
References
929
14.2.
Cell Therapy for Recapitulation of
Vascular Network Formation and
Functional Heart Muscle Recovery
after Myocardial Ischemia
Silviu Itescu
and
Stefanie Dimmeier
I. Introduction
937
II. Strategies for the Use of Cellular
Therapy to Improve Myocardial
Function
938
III. Concomitant Induction of Vascular
Structures Augments Survival and
Function of Cardiomyocyte
Precursors
938
IV. Formation of Vascular Structures
During
Embryogenesis:
Interrelationship Between
Endothelial Precursors
and Pericytes
939
Contents
XXIII
V. Characterization
of Endothelial
Progenitor Cells
(EPC) in Human
Adult
Bone Marrow and Their Use in
Cardiac Ischemia
939
VI. Homing of Endothelial Precursor
Cells to
Ischemie
Heart Tissue in
Experimental and Clinical Studies
940
VII.
Role of Chemokines in Endothelial
Precursor Cell-Homing to
Ischemie
Myocardium
940
VIII.
Role of
Integrins
in Adhesion and
Transendothelial Migration of
Endothelial Precursor Cells
941
IX. Role of Proteases in Endothelial
Precursor Cell Mobilization and
Homing
941
X. Strategies to Augment Endothelial
Precursor Cell Homing and
Engraftment
942
XI. Adult Bone Marrow Contains a
Population of
Multipotenţ
Highly
Proliferative and Clonogenic
Mesenchymal Lineage Progenitors
with Pericyte-Like Properties
942
XII.
Distinctive Anatomical Location of
STRO-I01^111 Mesenchymal Lineage
Precursor Cells Suggests a Shared
Identity with Vascular Pericytes
943
XIII.
Human Mesenchymal Precursor
Cells as Progenitors of the Vascular
Network
943
XIV.
STRO-1bH8ht
Pericyte-Like Cells for
Induction of Neovascularization and
Treatment of
Ischemie
Heart Disease
944
XV. Potential for Allogeneic Use of
Mesenchymal Lineage
Precursor Cells
946
XVI.
Conclusions
946
References
947
14.3.
Cardiac Regeneration and
Aging
Annarosa
Ieri,
Jan Kajstura and
Piero
Anversa
I. Introduction
11.
Organ Homeostasis, Aging and
Regeneration
H.A.
Stem Cell-Regulated Organs
II.B.
Stem Cell Aging
951
951
951
952
U.C.
Regenerative Capacity of Adult
Organs
954
III. Cellular, Organ and Organism Aging
956
III.A.
Replicative
Senescence
956
III.B.
Replicative
Senescence and the
Myocardium
957
IV. Aging of the Heart
960
IV.A. The Aging Myocardium
960
IV.B. The Aging Myocardium and the
Telomerase-Telomere System
962
IV.C. The Aging Myocardium and
Cardiac Stem Cells
964
V. Cardiac Niches, Cardiac Stem/Progenitor
Cell Ablation and
Repopulation
967
V.A. Myocardial Aging and Cardiac
Stem/Progenitor Cell Niches
967
V.B. Myocardial Aging, Cardiac Stem/
Progenitor Cell Niche
Homeostasis and
Cardiomyogenesis
970
V.C. Myocardial Aging and Cardiac
Stem/Progenitor Cell Ablation
and
Repopulation
973
VI. Concluding Remarks
974
References
975
14.4.
Genetic Enhancement of Cardiac
Regeneration
Enrique Lara-Pezzi and
Nadia
Rosenthal
I. Introduction
981
II. Enhancing Cardiac Regeneration
982
H.A.
Manipulation of the Cell-Cycle
982
II.B.
Growth Factors
983
U.C.
Extracellular Matrix
Components and Other
Secreted Proteins
986
III. Clinical Application of Regenerative
Strategies
989
III.A. Gene Therapy
989
III.B. Viral Vectors
989
III.C. Nonvi
ral
Vectors
991
111.D. Cell-based Gene Therapy
991
III.E. Nanofibers and Other Synthetic
Matrices
992
IV. Future View
992
References
993
Index
11
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV036721758 |
ctrlnum | (OCoLC)700336656 (DE-599)BVBBV036721758 |
edition | 1. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01085nam a2200289 cc4500</leader><controlfield tag="001">BV036721758</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">101015s2010 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780123813343</subfield><subfield code="9">978-0-12-381334-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)700336656</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV036721758</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Heart development and regeneration</subfield><subfield code="n">2</subfield><subfield code="c">ed. by Nadia Rosenthal ...</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Elsevier, Acad. Press</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXII S., S. 569 - 997, 31 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rosenthal, Nadia</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV036721723</subfield><subfield code="g">2</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020639621&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020639621</subfield></datafield></record></collection> |
id | DE-604.BV036721758 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:46:35Z |
institution | BVB |
isbn | 9780123813343 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020639621 |
oclc_num | 700336656 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR |
owner_facet | DE-355 DE-BY-UBR |
physical | XXXII S., S. 569 - 997, 31 S. Ill., graph. Darst. |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Elsevier, Acad. Press |
record_format | marc |
spelling | Heart development and regeneration 2 ed. by Nadia Rosenthal ... 1. ed. Amsterdam [u.a.] Elsevier, Acad. Press 2010 XXXII S., S. 569 - 997, 31 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Rosenthal, Nadia Sonstige oth (DE-604)BV036721723 2 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020639621&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Heart development and regeneration |
title | Heart development and regeneration |
title_auth | Heart development and regeneration |
title_exact_search | Heart development and regeneration |
title_full | Heart development and regeneration 2 ed. by Nadia Rosenthal ... |
title_fullStr | Heart development and regeneration 2 ed. by Nadia Rosenthal ... |
title_full_unstemmed | Heart development and regeneration 2 ed. by Nadia Rosenthal ... |
title_short | Heart development and regeneration |
title_sort | heart development and regeneration |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020639621&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV036721723 |
work_keys_str_mv | AT rosenthalnadia heartdevelopmentandregeneration2 |