Classical Mechanics Hamiltonian and Lagrangian formalism

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Deriglazov, Alexei (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Berlin [u.a.] Springer 2010
Schlagworte:
Online-Zugang:Inhaltstext
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV036684289
003 DE-604
005 20110616
007 t|
008 100923s2010 gw d||| |||| 00||| eng d
015 |a 10,N22  |2 dnb 
016 7 |a 1002961696  |2 DE-101 
020 |a 9783642140365  |c GB. : ca. EUR 106.95 (freier Pr.), ca. sfr 155.50 (freier Pr.)  |9 978-3-642-14036-5 
035 |a (OCoLC)705858958 
035 |a (DE-599)DNB1002961696 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a gw  |c XA-DE-BE 
049 |a DE-11  |a DE-706  |a DE-634  |a DE-83  |a DE-20  |a DE-703  |a DE-19 
082 0 |a 531.01515  |2 22/ger 
084 |a UF 1000  |0 (DE-625)145552:  |2 rvk 
084 |a 530  |2 sdnb 
100 1 |a Deriglazov, Alexei  |e Verfasser  |4 aut 
245 1 0 |a Classical Mechanics  |b Hamiltonian and Lagrangian formalism  |c Alexei Deriglazov 
264 1 |a Berlin [u.a.]  |b Springer  |c 2010 
300 |a XII, 308 S.  |b graph. Darst.  |c 235 mm x 155 mm 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
650 0 7 |a Theoretische Mechanik  |0 (DE-588)4185100-6  |2 gnd  |9 rswk-swf 
689 0 0 |a Theoretische Mechanik  |0 (DE-588)4185100-6  |D s 
689 0 |5 DE-604 
856 4 2 |q text/html  |u http://deposit.dnb.de/cgi-bin/dokserv?id=3484434&prov=M&dok_var=1&dok_ext=htm  |3 Inhaltstext 
856 4 2 |m DNB Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020603086&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-020603086 

Datensatz im Suchindex

_version_ 1819640940514508800
adam_text IMAGE 1 CONTENTS 1 SKETCH OF LAGRANGIAN FORMALISM 1 1.1 NEWTON S EQUATION 1 1.2 GALILEAN TRANSFORMATIONS: PRINCIPLE OF GALILEAN RELATIVITY 8 1.3 POINCARE AND LORENTZ TRANSFORMATIONS: THE PRINCIPLE OF SPECIAL RELATIVITY 13 1.4 PRINCIPLE OF LEAST ACTION 23 1.5 VARIATIONAL ANALYSIS 24 1.6 GENERALIZED COORDINATES, COORDINATE TRANSFORMATIONS AND SYMMETRIES OF AN ACTION 29 1.7 EXAMPLES OF CONTINUOUS (FIELD) SYSTEMS 36 1.8 ACTION OF A CONSTRAINED SYSTEM: THE RECIPE 44 1.9 ACTION OF A CONSTRAINED SYSTEM: JUSTIFICATION OF THE RECIPE 51 1.10 DESCRIPTION OF CONSTRAINED SYSTEM BY SINGULAR ACTION 52 1.11 KINETIC VERSUS POTENTIAL ENERGY: FORCELESS MECHANICS OF HERTZ 54 1.12 ELECTROMAGNETIC FIELD IN LAGRANGIAN FORMALISM 56 1.12.1 MAXWELL EQUATIONS 56 1.12.2 NONSINGULAR LAGRANGIAN ACTION OF ELECTRODYNAMICS 59 1.12.3 MANIFESTLY POINCARE-INVARIANT FORMULATION IN TERMS OF A SINGULAR LAGRANGIAN ACTION 63 1.12.4 NOTION OF LOCAL (GAUGE) SYMMETRY 65 1.12.5 LORENTZ TRANSFORMATIONS OF THREE-DIMENSIONAL POTENTIAL: ROLE OF GAUGE SYMMETRY 68 1.12.6 RELATIVISTIC PARTICLE ON ELECTROMAGNETIC BACKGROUND 69 1.12.7 POINCARE TRANSFORMATIONS OF ELECTRIC AND MAGNETIC FIELDS . 72 2 HAMILTONIAN FORMALISM 77 2.1 DERIVATION OF HAMILTONIAN EQUATIONS 77 2.1.1 PRELIMINARIES 77 2.1.2 FROM LAGRANGIAN TO HAMILTONIAN EQUATIONS 79 2.1.3 SHORT PRESCRIPTION FOR HAMILTONIZATION PROCEDURE, PHYSICAL INTERPRETATION OF HAMILTONIAN 83 BIBLIOGRAFISCHE INFORMATIONEN HTTP://D-NB.INFO/1002961696 DIGITALISIERT DURCH IMAGE 2 CONTENTS 2.1.4 INVERSE PROBLEM: FROM HAMILTONIAN TO LAGRANGIAN FORMULATION 85 2.2 POISSON BRACKET AND SYMPLECTIC MATRIX 85 2.3 GENERAL SOLUTION TO HAMILTONIAN EQUATIONS 87 2.4 PICTURE OF MOTION IN PHASE SPACE 91 2.5 CONSERVED QUANTITIES AND THE POISSON BRACKET 93 2.6 PHASE SPACE TRANSFORMATIONS AND HAMILTONIAN EQUATIONS 96 2.7 DEFINITION OF CANONICAL TRANSFORMATION 100 2.8 GENERALIZED HAMILTONIAN EQUATIONS: EXAMPLE OF NON- CANONICAL POISSON BRACKET 102 2.9 HAMILTONIAN ACTION FUNCTIONAL 106 2.10 SCHROEDINGER EQUATION AS THE HAMILTONIAN SYSTEM 107 2.10.1 LAGRANGIAN ACTION ASSOCIATED WITH THE SCHROEDINGER EQUATION 108 2.10.2 PROBABILITY AS A CONSERVED CHARGE VIA THE NOETHER THEOREM 111 2.11 HAMILTONIZATION PROCEDURE IN TERMS OF FIRST-ORDER ACTION FUNCTIONAL 113 2.12 HAMILTONIZATION OF A THEORY WITH HIGHER-ORDER DERIVATIVES 114 2.12.1 FIRST-ORDER TRICK 114 2.12.2 OSTROGRADSKY METHOD 116 CANONICAL TRANSFORMATIONS OF TWO-DIMENSIONAL PHASE SPACE 119 3.1 TIME-INDEPENDENT CANONICAL TRANSFORMATIONS 119 3.1.1 TIME-INDEPENDENT CANONICAL TRANSFORMATIONS AND SYMPLECTIC MATRIX 119 3.1.2 GENERATING FUNCTION 121 3.2 TIME-DEPENDENT CANONICAL TRANSFORMATIONS 123 3.2.1 CANONICAL TRANSFORMATIONS AND SYMPLECTIC MATRIX 123 3.2.2 GENERATING FUNCTION 125 PROPERTIES OF CANONICAL TRANSFORMATIONS 127 4.1 INVARIANCE OF THE POISSON BRACKET (SYMPLECTIC MATRIX) 128 4.2 INFINITESIMAL CANONICAL TRANSFORMATIONS: HAMILTONIAN AS A GENERATOR OF EVOLUTION 133 4.3 GENERATING FUNCTION OF CANONICAL TRANSFORMATION 136 4.3.1 FREE CANONICAL TRANSFORMATION AND ITS FUNCTION F(Q , P , R) 136 4.3.2 GENERATING FUNCTION S(Q, Q ,Z) 137 4.4 EXAMPLES OF CANONICAL TRANSFORMATIONS 140 4.4.1 EVOLUTION AS A CANONICAL TRANSFORMATION: INVARIANCE OF PHASE-SPACE VOLUME 140 4.4.2 CANONICAL TRANSFORMATIONS IN PERTURBATION THEORY 143 4.4.3 COORDINATES ADJUSTED TO A SURFACE 144 4.5 TRANSFORMATION PROPERTIES OF THE HAMILTONIAN ACTION 145 4.6 SUMMARY: EQUIVALENT DEFINITIONS FOR CANONICAL TRANSFORMATION . . .. 146 4.7 HAMILTON-JACOBI EQUATION 147 4.8 ACTION FUNCTIONAL AS A GENERATING FUNCTION OF EVOLUTION 151 IMAGE 3 CONTENTS INTEGRAL INVARIANTS 155 5.1 POINCARE-CARTAN INTEGRAL INVARIANT 155 5.1.1 PRELIMINARIES 155 5.1.2 LINE INTEGRAL OF A VECTOR FIELD, HAMILTONIAN ACTION, POINCARE-CARTAN AND POINCARE INTEGRAL INVARIANTS 157 5.1.3 INVARIANCE OF THE POINCARE-CARTAN INTEGRAL 159 5.2 UNIVERSAL INTEGRAL INVARIANT OF POINCARE 162 POTENTIAL MOTION IN A GEOMETRIC SETTING 167 6.1 ANALYSIS OF TRAJECTORIES AND THE PRINCIPLE OF MAUPERTUIS 167 6.1.1 TRAJECTORY: SEPARATION OF KINEMATICS FROM DYNAMICS 168 6.1.2 EQUATIONS FOR TRAJECTORY IN THE HAMILTONIAN FORMULATION ..170 6.1.3 THE PRINCIPLE OF MAUPERTUIS FOR TRAJECTORIES 171 6.1.4 LAGRANGIAN ACTION FOR TRAJECTORIES 172 6.2 DESCRIPTION OF A POTENTIAL MOTION IN TERMS OF A PAIR OF RIEMANN SPACES 174 6.3 SOME NOTIONS OF RIEMANN GEOMETRY 178 6.3.1 RIEMANN SPACE 178 6.3.2 COVARIANT DERIVATIVE AND RIEMANN CONNECTION 183 6.3.3 PARALLEL TRANSPORT: NOTIONS OF COVARIANCE AND COORDINATE INDEPENDENCE 185 6.4 DEFINITION OF COVARIANT DERIVATIVE THROUGH PARALLEL TRANSPORT: FORMAL SOLUTION TO THE PARALLEL TRANSPORT EQUATION 189 6.5 THE GEODESIC LINE AND ITS REPARAMETRIZATION COVARIANT EQUATION ..191 6.6 EXAMPLE: A SURFACE EMBEDDED IN EUCLIDEAN SPACE 193 6.7 SHORTEST LINE AND GEODESIC LINE: ONE MORE EXAMPLE OF A SINGULAR ACTION 196 6.8 FORMAL GEOMETRIZATION OF MECHANICS 200 TRANSFORMATIONS, SYMMETRIES AND NOETHER THEOREM 203 7.1 THE NOTION OF INVARIANT ACTION FUNCTIONAL 203 7.2 COORDINATE TRANSFORMATION, INDUCED TRANSFORMATION OF FUNCTIONS AND SYMMETRIES OF AN ACTION 206 7.3 EXAMPLES OF INVARIANT ACTIONS, GALILEO GROUP 211 7.4 POINCARE GROUP, RELATIVISTIC PARTICLE 214 7.5 SYMMETRIES OF EQUATIONS OF MOTION 215 7.6 NOETHER THEOREM 218 7.7 INFINITESIMAL SYMMETRIES 220 7.8 DISCUSSION OF THE NOETHER THEOREM 223 7.9 USE OF NOETHER CHARGES FOR REDUCTION OF THE ORDER OF EQUATIONS OF MOTION 224 7.10 EXAMPLES 225 IMAGE 4 XII CONTENTS 7.11 SYMMETRIES OF HAMILTONIAN ACTION 228 7.11.1 INFINITESIMAL SYMMETRIES GIVEN BY CANONICAL TRANSFORMATIONS 228 7.11.2 STRUCTURE OF INFINITESIMAL SYMMETRY OF A GENERAL FORM . . .. 230 7.11.3 HAMILTONIAN VERSUS LAGRANGIAN GLOBAL SYMMETRY 234 8 HAMILTONIAN FORMALISM FOR SINGULAR THEORIES 237 8.1 HAMILTONIZATION OF A SINGULAR THEORY: THE RECIPE 238 8.1.1 TWO BASIC EXAMPLES 238 8.1.2 DIRAC PROCEDURE 242 8.2 JUSTIFICATION OF THE HAMILTONIZATION RECIPE 247 8.2.1 CONFIGURATION-VELOCITY SPACE 247 8.2.2 HAMILTONIZATION 249 8.2.3 COMPARISON WITH THE DIRAC RECIPE 252 8.3 CLASSIFICATION OF CONSTRAINTS 254 8.4 COMMENT ON THE PHYSICAL INTERPRETATION OF A SINGULAR THEORY 255 8.5 THEORY WITH SECOND-CLASS CONSTRAINTS: DIRAC BRACKET 259 8.6 EXAMPLES OF THEORIES WITH SECOND-CLASS CONSTRAINTS 262 8.6.1 MECHANICS WITH KINEMATIC CONSTRAINTS 262 8.6.2 SINGULAR LAGRANGIAN ACTION UNDERLYING THE SCHROEDINGER EQUATION 264 8.7 EXAMPLES OF THEORIES WITH FIRST-CLASS CONSTRAINTS 266 8.7.1 ELECTRODYNAMICS 266 8.7.2 SEMICLASSICAL MODEL FOR DESCRIPTION OF NON RELATIVISTIC SPIN 268 8.8 LOCAL SYMMETRIES AND CONSTRAINTS 274 8.9 LOCAL SYMMETRY DOES NOT IMPLY A CONSERVED CHARGE 281 8.10 FORMALISM OF EXTENDED LAGRANGIAN 281 8.11 LOCAL SYMMETRIES OF THE EXTENDED LAGRANGIAN: DIRAC CONJECTURE . .. 286 8.12 LOCAL SYMMETRIES OF THE INITIAL LAGRANGIAN 290 8.13 CONVERSION OF SECOND-CLASS CONSTRAINTS BY DEFORMATION OF LAGRANGIAN LOCAL SYMMETRIES 293 8.13.1 CONVERSION IN A THEORY WITH HIDDEN SO(L, 4) GLOBAL SYMMETRY 296 8.13.2 CLASSICAL MECHANICS SUBJECT TO KINEMATIC CONSTRAINTS AS A GAUGE THEORY 298 8.13.3 CONVERSION IN MAXWELL-PROCA LAGRANGIAN FOR MASSIVE VECTOR FIELD 301 BIBLIOGRAPHY 303 INDEX 305
any_adam_object 1
author Deriglazov, Alexei
author_facet Deriglazov, Alexei
author_role aut
author_sort Deriglazov, Alexei
author_variant a d ad
building Verbundindex
bvnumber BV036684289
classification_rvk UF 1000
ctrlnum (OCoLC)705858958
(DE-599)DNB1002961696
dewey-full 531.01515
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 531 - Classical mechanics
dewey-raw 531.01515
dewey-search 531.01515
dewey-sort 3531.01515
dewey-tens 530 - Physics
discipline Physik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01583nam a2200385 c 4500</leader><controlfield tag="001">BV036684289</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20110616 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">100923s2010 gw d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">10,N22</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1002961696</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642140365</subfield><subfield code="c">GB. : ca. EUR 106.95 (freier Pr.), ca. sfr 155.50 (freier Pr.)</subfield><subfield code="9">978-3-642-14036-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)705858958</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1002961696</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">531.01515</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 1000</subfield><subfield code="0">(DE-625)145552:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Deriglazov, Alexei</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Classical Mechanics</subfield><subfield code="b">Hamiltonian and Lagrangian formalism</subfield><subfield code="c">Alexei Deriglazov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 308 S.</subfield><subfield code="b">graph. Darst.</subfield><subfield code="c">235 mm x 155 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Theoretische Mechanik</subfield><subfield code="0">(DE-588)4185100-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Theoretische Mechanik</subfield><subfield code="0">(DE-588)4185100-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=3484434&amp;prov=M&amp;dok_var=1&amp;dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=020603086&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020603086</subfield></datafield></record></collection>
id DE-604.BV036684289
illustrated Illustrated
indexdate 2024-12-24T00:10:47Z
institution BVB
isbn 9783642140365
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-020603086
oclc_num 705858958
open_access_boolean
owner DE-11
DE-706
DE-634
DE-83
DE-20
DE-703
DE-19
DE-BY-UBM
owner_facet DE-11
DE-706
DE-634
DE-83
DE-20
DE-703
DE-19
DE-BY-UBM
physical XII, 308 S. graph. Darst. 235 mm x 155 mm
publishDate 2010
publishDateSearch 2010
publishDateSort 2010
publisher Springer
record_format marc
spellingShingle Deriglazov, Alexei
Classical Mechanics Hamiltonian and Lagrangian formalism
Theoretische Mechanik (DE-588)4185100-6 gnd
subject_GND (DE-588)4185100-6
title Classical Mechanics Hamiltonian and Lagrangian formalism
title_auth Classical Mechanics Hamiltonian and Lagrangian formalism
title_exact_search Classical Mechanics Hamiltonian and Lagrangian formalism
title_full Classical Mechanics Hamiltonian and Lagrangian formalism Alexei Deriglazov
title_fullStr Classical Mechanics Hamiltonian and Lagrangian formalism Alexei Deriglazov
title_full_unstemmed Classical Mechanics Hamiltonian and Lagrangian formalism Alexei Deriglazov
title_short Classical Mechanics
title_sort classical mechanics hamiltonian and lagrangian formalism
title_sub Hamiltonian and Lagrangian formalism
topic Theoretische Mechanik (DE-588)4185100-6 gnd
topic_facet Theoretische Mechanik
url http://deposit.dnb.de/cgi-bin/dokserv?id=3484434&prov=M&dok_var=1&dok_ext=htm
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020603086&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT deriglazovalexei classicalmechanicshamiltonianandlagrangianformalism