Handbook of Markov Chain Monte Carlo

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Brooks, Steve 1970- (HerausgeberIn)
Format: Buch
Sprache:English
Veröffentlicht: Boca Raton, Fla. [u.a.] CRC Press 2011
Schriftenreihe:Handbooks of modern statistical methods
A Chapman & Hall book
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV036520962
003 DE-604
005 20130821
007 t|
008 100624s2011 xx ad|| |||| 00||| eng d
020 |a 9781420079418  |c (hbk.) £63.99  |9 978-1-4200-7941-8 
020 |a 1420079417  |c (hbk.) £63.99  |9 1-4200-7941-7 
035 |a (OCoLC)705625238 
035 |a (DE-599)GBV621536377 
040 |a DE-604  |b ger 
041 0 |a eng 
049 |a DE-20  |a DE-188  |a DE-91G  |a DE-578  |a DE-945  |a DE-11  |a DE-824  |a DE-83  |a DE-634  |a DE-19  |a DE-473  |a DE-29T 
082 0 |a 519.233 
084 |a QH 233  |0 (DE-625)141548:  |2 rvk 
084 |a SK 620  |0 (DE-625)143249:  |2 rvk 
084 |a SK 820  |0 (DE-625)143258:  |2 rvk 
084 |a MAT 629f  |2 stub 
084 |a MAT 607f  |2 stub 
245 1 0 |a Handbook of Markov Chain Monte Carlo  |c ed. by Steve Brooks ... 
264 1 |a Boca Raton, Fla. [u.a.]  |b CRC Press  |c 2011 
300 |a XXV, 592 S.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Handbooks of modern statistical methods 
490 0 |a A Chapman & Hall book 
650 0 7 |a Markov-Ketten-Monte-Carlo-Verfahren  |0 (DE-588)4508520-1  |2 gnd  |9 rswk-swf 
689 0 0 |a Markov-Ketten-Monte-Carlo-Verfahren  |0 (DE-588)4508520-1  |D s 
689 0 |C b  |5 DE-604 
700 1 |a Brooks, Steve  |d 1970-  |0 (DE-588)101265978X  |4 edt 
856 4 2 |m SWB Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020442967&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-020442967 

Datensatz im Suchindex

DE-BY-TUM_call_number 0048 MAT 607f 2011 B 1129
0102 MAT 607 2011 B 1129
DE-BY-TUM_katkey 1766669
DE-BY-TUM_location LSB
01
DE-BY-TUM_media_number 040071408816
040071403888
040010208667
_version_ 1820888485527027712
adam_text IMAGE 1 CONTENTS PREFACE XIX EDITORS XXI CONTRIBUTORS XXIII PART I FOUNDATIONS, METHODOLOGY, AND ALGORITHMS 1. INTRODUCTION TO MARKOV CHAIN MONTE CARLO 3 CHARLES }. GEYER 1.1 HISTORY 3 1.2 MARKOV CHAINS 4 1.3 COMPUTER PROGRAMS AND MARKOV CHAINS 5 1.4 STATIONARITY 5 1.5 REVERSIBILITY 6 1.6 FUNCTIONALS 6 1.7 THE THEORY OF ORDINARY MONTE CARLO 6 1.8 THE THEORY OF MCMC 8 1.8.1 MULTIVARIATE THEORY 8 1.8.2 THE AUTOCOVARIANCE FUNCTION 9 1.9 AR(1) EXAMPLE 9 1.9.1 A DIGRESSION ON TOY PROBLEMS 10 1.9.2 SUPPORTING TECHNICAL REPORT 11 1.9.3 THE EXAMPLE 11 1.10 VARIANCE ESTIMATION 13 1.10.1 NONOVERLAPPING BATCH MEANS 13 1.10.2 INITIAL SEQUENCE METHODS 16 1.10.3 INITIAL SEQUENCE METHODS AND BATCH MEANS 17 1.11 THE PRACTICE OF MCMC 17 1.11.1 BLACK BOX MCMC 18 1.11.2 PSEUDO-CONVERGENCE 18 1.11.3 ONE LONG RUN VERSUS MANY SHORT RUNS 18 1.11.4 BURN-IN 19 1.11.5 DIAGNOSTICS 21 1.12 ELEMENTARY THEORY OF MCMC 22 1.12.1 THE METROPOLIS-HASTINGS UPDATE 22 1.12.2 THE METROPOLIS-HASTINGS THEOREM 23 1.12.3 THE METROPOLIS UPDATE 24 1.12.4 THE GIBBS UPDATE 24 1.12.5 VARIABLE-AT-A-TIME METROPOLIS-HASTINGS 25 1.12.6 GIBBS IS A SPECIAL CASE OF METROPOLIS-HASTINGS 26 1.12.7 COMBINING UPDATES 26 1.12.7.1 COMPOSITION 26 1.12.7.2 PALINDROMIC COMPOSITION 26 1.12.8 STATE-INDEPENDENT MIXING 26 1.12.9 SUBSAMPLING 27 1.12.10 GIBBS AND METROPOLIS REVISITED 28 V IMAGE 2 1.13 A METROPOLIS EXAMPLE 29 1.14 CHECKPOINTING 34 1.15 DESIGNING MCMC CODE 35 1.16 VALIDATING AND DEBUGGING MCMC CODE 36 1.17 THE METROPOLIS-HASTINGS-GREEN ALGORITHM 37 1.17.1 STATE-DEPENDENT MIXING 38 1.17.2 RADON-NIKODYM DERIVATIVES 39 1.17.3 MEASURE-THEORETIC METROPOLIS-HASTINGS 40 1.17.3.1 METROPOLIS-HASTINGS-GREEN ELEMENTARY UPDATE 40 1.17.3.2 THE MHG THEOREM 42 1.17.4 MHG WITH JACOBIANS AND AUGMENTED STATE SPACE 45 1.17.4.1 THE MHGJ THEOREM 46 ACKNOWLEDGMENTS 47 REFERENCES 47 2. A SHORT HISTORY OF MCMC: SUBJECTIVE RECOLLECTIONS FROM INCOMPLETE DATA 49 CHRISTIAN ROBERT AND GEORGE CASELLA 2.1 INTRODUCTION 49 2.2 BEFORE THE REVOLUTION 50 2.2.1 THE METROPOLIS ET AL. (1953) PAPER 50 2.2.2 THE HASTINGS (1970) PAPER 52 2.3 SEEDS OF THE REVOLUTION 53 2.3.1 BESAG AND THE FUNDAMENTAL (MISSING) THEOREM 53 2.3.2 EM AND ITS SIMULATED VERSIONS AS PRECURSORS 53 2.3.3 GIBBS AND BEYOND 54 2.4 THE REVOLUTION 54 2.4.1 ADVANCES IN MCMC THEORY 56 2.4.2 ADVANCES IN MCMC APPLICATIONS 57 2.5 AFTER THE REVOLUTION 58 2.5.1 A BRIEF GLIMPSE AT PARTICLE SYSTEMS 58 2.5.2 PERFECT SAMPLING 58 2.5.3 REVERSIBLE JUMP AND VARIABLE DIMENSIONS 59 2.5.4 REGENERATION AND THE CENTRAL LIMIT THEOREM 59 2.6 CONCLUSION 60 ACKNOWLEDGMENTS 61 REFERENCES 61 3. REVERSIBLE JUMP MCMC 67 YANAN FAN AND SCOTT A. SISSON 3.1 INTRODUCTION 67 3.1.1 FROM METROPOLIS-HASTINGS TO REVERSIBLE JUMP 67 3.1.2 APPLICATION AREAS 68 3.2 IMPLEMENTATION 71 3.2.1 MAPPING FUNCTIONS AND PROPOSAL DISTRIBUTIONS 72 3.2.2 MARGINALIZATION AND AUGMENTATION 73 3.2.3 CENTERING AND ORDER METHODS 74 3.2.4 MULTI-STEP PROPOSALS 77 3.2.5 GENERIC SAMPLERS 78 IMAGE 3 3.3 POST SIMULATION 80 3.3.1 LABEL SWITCHING 80 3.3.2 CONVERGENCE ASSESSMENT 81 3.3.3 ESTIMATING BAYES FACTORS 82 3.4 RELATED MULTI-MODEL SAMPLING METHODS 84 3.4.1 JUMP DIFFUSION 84 3.4.2 PRODUCT SPACE FORMULATIONS 85 3.4.3 POINT PROCESS FORMULATIONS 85 3.4.4 MULTI-MODEL OPTIMIZATION 85 3.4.5 POPULATION MCMC 86 3.4.6 MULTI-MODEL SEQUENTIAL MONTE CARLO 86 3.5 DISCUSSION AND FUTURE DIRECTIONS 86 ACKNOWLEDGMENTS 87 REFERENCES 87 4. OPTIMAL PROPOSAL DISTRIBUTIONS AND ADAPTIVE MCMC 93 JEFFREY S. ROSENTHAL 4.1 INTRODUCTION 93 4.1.1 THE METROPOLIS-HASTINGS ALGORITHM 93 4.1.2 OPTIMAL SCALING 93 4.1.3 ADAPTIVE MCMC 94 4.1.4 COMPARING MARKOV CHAINS 94 4.2 OPTIMAL SCALING OF RANDOM-WALK METROPOLIS 95 4.2.1 BASIC PRINCIPLES 95 4.2.2 OPTIMAL ACCEPTANCE RATE AS D - CO 96 4.2.3 INHOMOGENEOUS TARGET DISTRIBUTIONS 98 4.2.4 METROPOLIS-ADJUSTED LANGEVIN ALGORITHM 99 4.2.5 NUMERICAL EXAMPLES 99 4.2.5.1 OFF-DIAGONAL COVARIANCE 100 4.2.5.2 INHOMOGENEOUS COVARIANCE 100 4.2.6 FREQUENTLY ASKED QUESTIONS 101 4.3 ADAPTIVE MCMC 102 4.3.1 ERGODICITY OF ADAPTIVE MCMC 103 4.3.2 ADAPTIVE METROPOLIS 104 4.3.3 ADAPTIVE METROPOLIS-WITHIN-GIBBS 105 4.3.4 STATE-DEPENDENT PROPOSAL SCALINGS 107 4.3.5 LIMIT THEOREMS 107 4.3.6 FREQUENTLY ASKED QUESTIONS 108 4.4 CONCLUSION 109 REFERENCES 110 5. MCMC USING HAMILTONIAN DYNAMICS 113 RADFORD M. NEAL 5.1 INTRODUCTION 113 5.2 HAMILTONIAN DYNAMICS 114 5.2.1 HAMILTON S EQUATIONS 114 5.2.1.1 EQUATIONS OF MOTION 114 5.2.1.2 POTENTIAL AND KINETIC ENERGY 115 5.2.1.3 A ONE-DIMENSIONAL EXAMPLE 116 IMAGE 4 5.2.2 PROPERTIES OF HAMILTONIAN DYNAMICS 116 5.2.2.1 REVERSIBILITY 116 5.2.2.2 CONSERVATION OF THE HAMILTONIAN 116 5.2.2.3 VOLUME PRESERVATION 117 5.2.2.4 SYMPLECTICNESS 119 5.2.3 DISCRETIZING HAMILTON S EQUATIONS-THE LEAPFROG METHOD 119 5.2.3.1 EULER S METHOD 119 5.2.3.2 A MODIFICATION OF EULER S METHOD 121 5.2.3.3 THE LEAPFROG METHOD 121 5.2.3.4 LOCAL AND GLOBAL ERROR OF DISCRETIZATION METHODS 122 5.3 MCMC FROM HAMILTONIAN DYNAMICS 122 5.3.1 PROBABILITY AND THE HAMILTONIAN: CANONICAL DISTRIBUTIONS 122 5.3.2 THE HAMILTONIAN MONTE CARLO ALGORITHM 123 5.3.2.1 THE TWO STEPS OF THE HMC ALGORITHM 124 5.3.2.2 PROOF THAT HMC LEAVES THE CANONICAL DISTRIBUTION INVARIANT 126 5.3.2.3 ERGODICITY OF HMC 127 5.3.3 ILLUSTRATIONS OF HMC AND ITS BENEFITS 127 5.3.3.1 TRAJECTORIES FOR A TWO-DIMENSIONAL PROBLEM 127 5.3.3.2 SAMPLING FROM A TWO-DIMENSIONAL DISTRIBUTION 128 5.3.3.3 THE BENEFIT OF AVOIDING RANDOM WALKS 130 5.3.3.4 SAMPLING FROM A 100-DIMENSIONAL DISTRIBUTION 130 5.4 HMC IN PRACTICE AND THEORY 133 5.4.1 EFFECT OF LINEAR TRANSFORMATIONS 133 5.4.2 TUNING HMC 134 5.4.2.1 PRELIMINARY RUNS AND TRACE PLOTS 134 5.4.2.2 WHAT STEPSIZE? 135 5.4.2.3 WHAT TRAJECTORY LENGTH? 137 5.4.2.4 USING MULTIPLE STEPSIZES 137 5.4.3 COMBINING HMC WITH OTHER MCMC UPDATES 138 5.4.4 SCALING WITH DIMENSIONALITY 139 5.4.4.1 CREATING DISTRIBUTIONS OF INCREASING DIMENSIONALITY BY REPLICATION 139 5.4.4.2 SCALING OF HMC AND RANDOM-WALK METROPOLIS 139 5.4.4.3 OPTIMAL ACCEPTANCE RATES 141 5.4.4.4 EXPLORING THE DISTRIBUTION OF POTENTIAL ENERGY 142 5.4.5 HMC FOR HIERARCHICAL MODELS 142 5.5 EXTENSIONS OF AND VARIATIONS ON HMC 144 5.5.1 DISCRETIZATION BY SPLITTING: HANDLING CONSTRAINTS AND OTHER APPLICATIONS 145 5.5.1.1 SPLITTING THE HAMILTONIAN 145 5.5.1.2 SPLITTING TO EXPLOIT PARTIAL ANALYTICAL SOLUTIONS 146 5.5.1.3 SPLITTING POTENTIAL ENERGIES WITH VARIABLE COMPUTATION COSTS 146 5.5.1.4 SPLITTING ACCORDING TO DATA SUBSETS 147 5.5.1.5 HANDLING CONSTRAINTS 148 5.5.2 TAKING ONE STEP AT A TIME-THE LANGEVIN METHOD 148 5.5.3 PARTIAL MOMENTUM REFRESHMENT: ANOTHER WAY TO AVOID RANDOM WALKS 150 IMAGE 5 5.5.4 ACCEPTANCE USING WINDOWS OF STATES 152 5.5.5 USING APPROXIMATIONS TO COMPUTE THE TRAJECTORY 155 5.5.6 SHORT-CUT TRAJECTORIES: ADAPTING THE STEPSIZE WITHOUT ADAPTATION . 156 5.5.7 TEMPERING DURING A TRAJECTORY 157 ACKNOWLEDGMENT 160 REFERENCES 160 6. INFERENCE FROM SIMULATIONS AND MONITORING CONVERGENCE 163 ANDREW GELMAN AND KENNETH SHIRLEY 6.1 QUICK SUMMARY OF RECOMMENDATIONS 163 6.2 KEY DIFFERENCES BETWEEN POINT ESTIMATION AND MCMC INFERENCE 164 6.3 INFERENCE FOR FUNCTIONS OF THE PARAMETERS VS. INFERENCE FOR FUNCTIONS OF THE TARGET DISTRIBUTION 166 6.4 INFERENCE FROM NONITERATIVE SIMULATIONS 167 6.5 BURN-IN 168 6.6 MONITORING CONVERGENCE COMPARING BETWEEN AND WITHIN CHAINS 170 6.7 INFERENCE FROM SIMULATIONS AFTER APPROXIMATE CONVERGENCE 171 6.8 SUMMARY 172 ACKNOWLEDGMENTS 173 REFERENCES 173 7. IMPLEMENTING MCMC: ESTIMATING WITH CONFIDENCE 175 JAMES M. FLEGAL AND GALIN L. JONES 7.1 INTRODUCTION 175 7.2 INITIAL EXAMINATION OF OUTPUT 176 7.3 POINT ESTIMATES OF Q N 178 7.3.1 EXPECTATIONS 178 7.3.2 QUANTILES 181 7.4 INTERVAL ESTIMATES OF Q N 182 7.4.1 EXPECTATIONS 182 7.4.1.1 OVERLAPPING BATCH MEANS 182 7.4.1.2 PARALLEL CHAINS 184 7.4.2 FUNCTIONS OF MOMENTS 185 7.4.3 QUANTILES 187 7.4.3.1 SUBSAMPLING BOOTSTRAP 187 7.4.4 MULTIVARIATE ESTIMATION 189 7.5 ESTIMATING MARGINAL DENSITIES 189 7.6 TERMINATING THE SIMULATION 192 7.7 MARKOV CHAIN CENTRAL LIMIT THEOREMS 193 7.8 DISCUSSION 194 ACKNOWLEDGMENTS 195 REFERENCES 195 8. PERFECTION WITHIN REACH: EXACT MCMC SAMPLING 199 RADU V. CRAIU AND XIAO-LI MENG 8.1 INTENDED READERSHIP 199 8.2 COUPLING FROM THE PAST 199 8.2.1 MOVING FROM TIME-FORWARD TO TIME-BACKWARD 199 IMAGE 6 8.2.2 HITTING THE LIMIT 200 8.2.3 CHALLENGES FOR ROUTINE APPLICATIONS 201 8.3 COALESCENCE ASSESSMENT 201 8.3.1 ILLUSTRATING MONOTONE COUPLING 201 8.3.2 ILLUSTRATING BRUTE-FORCE COUPLING 202 8.3.3 GENERAL CLASSES OF MONOTONE COUPLING 203 8.3.4 BOUNDING CHAINS 204 8.4 COST-SAVING STRATEGIES FOR IMPLEMENTING PERFECT SAMPLING 206 8.4.1 READ-ONCE CFTP 206 8.4.2 FILL S ALGORITHM 208 8.5 COUPLING METHODS 210 8.5.1 SPLITTING TECHNIQUE 211 8.5.2 COUPLING VIA A COMMON PROPOSAL 212 8.5.3 COUPLING VIA DISCRETE DATA AUGMENTATION 213 8.5.4 PERFECT SLICE SAMPLING 215 8.6 SWINDLES 217 8.6.1 EFFICIENT USE OF EXACT SAMPLES VIA CONCATENATION 218 8.6.2 MULTISTAGE PERFECT SAMPLING 219 8.6.3 ANTITHETIC PERFECT SAMPLING 220 8.6.4 INTEGRATING EXACT AND APPROXIMATE MCMC ALGORITHMS 221 8.7 WHERE ARE THE APPLICATIONS? 223 ACKNOWLEDGMENTS 223 REFERENCES 223 9. SPATIAL POINT PROCESSES 227 MARK HUBER 9.1 INTRODUCTION 227 9.2 SETUP 227 9.3 METROPOLIS-HASTINGS REVERSIBLE JUMP CHAINS 230 9.3.1 EXAMPLES 232 9.3.2 CONVERGENCE 232 9.4 CONTINUOUS-TIME SPATIAL BIRTH-DEATH CHAINS 233 9.4.1 EXAMPLES 235 9.4.2 SHIFTING MOVES WITH SPATIAL BIRTH AND DEATH CHAINS 236 9.4.3 CONVERGENCE 236 9.5 PERFECT SAMPLING 236 9.5.1 ACCEPTANCE/REJECTION METHOD 236 9.5.2 DOMINATED COUPLING FROM THE PAST 238 9.5.3 EXAMPLES 242 9.6 MONTE CARLO POSTERIOR DRAWS 243 9.7 RUNNING TIME ANALYSIS 245 9.7.1 RUNNING TIME OF PERFECT SIMULATION METHODS 248 ACKNOWLEDGMENT 251 REFERENCES 251 10. THE DATA AUGMENTATION ALGORITHM: THEORY AND METHODOLOGY 253 JAMES P. HOBERT 10.1 BASIC IDEAS AND EXAMPLES 253 IMAGE 7 10.2 PROPERTIES OF THE DA MARKOV CHAIN 261 10.2.1 BASIC REGULARITY CONDITIONS 261 10.2.2 BASIC CONVERGENCE PROPERTIES 263 10.2.3 GEOMETRIC ERGODICITY 264 10.2.4 CENTRAL LIMIT THEOREMS 267 10.3 CHOOSING THE MONTE CARLO SAMPLE SIZE 269 10.3.1 CLASSICAL MONTE CARLO 269 10.3.2 THREE MARKOV CHAINS CLOSELY RELATED TO X 270 10.3.3 MINORIZATION, REGENERATION AND AN ALTERNATIVE CLT 272 10.3.4 SIMULATING THE SPLIT CHAIN 275 10.3.5 A GENERAL METHOD FOR CONSTRUCTING THE MINORIZATION CONDITION . . . 277 10.4 IMPROVING THE DA ALGORITHM 279 10.4.1 THE PX-DA AND MARGINAL AUGMENTATION ALGORITHMS 280 10.4.2 THE OPERATOR ASSOCIATED WITH A REVERSIBLE MARKOV CHAIN 284 10.4.3 A THEORETICAL COMPARISON OF THE DA AND PX-DA ALGORITHMS 286 10.4.4 IS THERE A BEST PX-DA ALGORITHM? 288 ACKNOWLEDGMENTS 291 REFERENCES 291 11. IMPORTANCE SAMPLING, SIMULATED TEMPERING, AND UMBRELLA SAMPLING 295 CHARLES ]. GEYER 11.1 IMPORTANCE SAMPLING 295 11.2 SIMULATED TEMPERING 297 11.2.1 PARALLEL TEMPERING UPDATE 299 11.2.2 SERIAL TEMPERING UPDATE 300 11.2.3 EFFECTIVENESS OF TEMPERING 300 11.2.4 TUNING SERIAL TEMPERING 301 11.2.5 UMBRELLA SAMPLING 302 11.3 BAYES FACTORS AND NORMALIZING CONSTANTS 303 11.3.1 THEORY 303 11.3.2 PRACTICE 305 11.3.2.1 SETUP 305 11.3.2.2 TRIAL AND ERROR 307 11.3.2.3 MONTE CARLO APPROXIMATION 308 11.3.3 DISCUSSION 309 ACKNOWLEDGMENTS 310 REFERENCES 310 12. LIKELIHOOD-FREE MCMC 313 SCOTT A. SISSON AND YANAN FAN 12.1 INTRODUCTION 313 12.2 REVIEW OF LIKELIHOOD-FREE THEORY AND METHODS 314 12.2.1 LIKELIHOOD-FREE BASICS 314 12.2.2 THE NATURE OF THE POSTERIOR APPROXIMATION 315 12.2.3 A SIMPLE EXAMPLE 316 12.3 LIKELIHOOD-FREE MCMC SAMPLERS 317 12.3.1 MARGINAL SPACE SAMPLERS 319 12.3.2 ERROR-DISTRIBUTION AUGMENTED SAMPLERS 320 IMAGE 8 12.3.3 POTENTIAL ALTERNATIVE MCMC SAMPLERS 321 12.4 A PRACTICAL GUIDE TO LIKELIHOOD-FREE MCMC 322 12.4.1 AN EXPLORATORY ANALYSIS 322 12.4.2 THE EFFECT OF E 324 12.4.3 THE EFFECT OF THE WEIGHTING DENSITY 326 12.4.4 THE CHOICE OF SUMMARY STATISTICS 327 12.4.5 IMPROVING MIXING 329 12.4.6 EVALUATING MODEL MISSPECIFICATION 330 12.5 DISCUSSION 331 ACKNOWLEDGMENTS 333 REFERENCES 333 PART II APPLICATIONS AND CASE STUDIES 13. MCMC IN THE ANALYSIS OF GENETIC DATA ON RELATED INDIVIDUALS 339 ELIZABETH THOMPSON 13.1 INTRODUCTION 339 13.2 PEDIGREES, GENETIC VARIANTS, AND THE INHERITANCE OF GENOME 340 13.3 CONDITIONAL INDEPENDENCE STRUCTURES OF GENETIC DATA 341 13.3.1 GENOTYPIC STRUCTURE OF PEDIGREE DATA 342 13.3.2 INHERITANCE STRUCTURE OF GENETIC DATA 344 13.3.3 IDENTICAL BY DESCENT STRUCTURE OF GENETIC DATA 347 13.3.4 IBD-GRAPH COMPUTATIONS FOR MARKERS AND TRAITS 348 13.4 MCMC SAMPLING OF LATENT VARIABLES 349 13.4.1 GENOTYPES AND MEIOSES 349 13.4.2 SOME BLOCK GIBBS SAMPLERS 349 13.4.3 GIBBS UPDATES AND RESTRICTED UPDATES ON LARGER BLOCKS 350 13.5 MCMC SAMPLING OF INHERITANCE GIVEN MARKER DATA 351 13.5.1 SAMPLING INHERITANCE CONDITIONAL ON MARKER DATA 351 13.5.2 MONTE CARLO EM AND LIKELIHOOD RATIO ESTIMATION 351 13.5.3 IMPORTANCE SAMPLING REWEIGHTING 353 13.6 USING MCMC REALIZATIONS FOR COMPLEX TRAIT INFERENCE 354 13.6.1 ESTIMATING A LIKELIHOOD RATIO OR LOD SCORE 354 13.6.2 UNCERTAINTY IN INHERITANCE AND TESTS FOR LINKAGE DETECTION 356 13.6.3 LOCALIZATION OF CAUSAL LOCI USING LATENT P- VALUES 357 13.7 SUMMARY 358 ACKNOWLEDGMENT 359 REFERENCES 359 14. AN MCMC-BASED ANALYSIS OF A MULTILEVEL MODEL FOR FUNCTIONAL MRI DATA .... 363 BRIAN CAFFO, DUBOIS BOWMAN, LYNN EBERLY, AND SUSAN SPEAR BASSETT 14.1 INTRODUCTION 363 14.1.1 LITERATURE REVIEW 364 14.1.2 EXAMPLE DATA 365 14.2 DATA PREPROCESSING AND FIRST-LEVEL ANALYSIS 367 14.3 A MULTILEVEL MODEL FOR INCORPORATING REGIONAL CONNECTIVITY 368 14.3.1 MODEL 368 IMAGE 9 14.3.2 SIMULATING THE MARKOV CHAIN 369 14.4 ANALYZING THE CHAIN 371 14.4.1 ACTIVATION RESULTS 371 14.5 CONNECTIVITY RESULTS 374 14.5.1 INTRA-REGIONAL CONNECTIVITY 374 14.5.2 INTER-REGIONAL CONNECTIVITY 375 14.6 DISCUSSION 376 REFERENCES 379 15. PARTIALLY COLLAPSED GIBBS SAMPLING AND PATH-ADAPTIVE METROPOLIS-HASTINGS IN HIGH-ENERGY ASTROPHYSICS 383 DAVID A. VAN DYK AND TAEYOUNG PARK 15.1 INTRODUCTION 383 15.2 PARTIALLY COLLAPSED GIBBS SAMPLER 384 15.3 PATH-ADAPTIVE METROPOLIS-HASTINGS SAMPLER 388 15.4 SPECTRAL ANALYSIS IN HIGH-ENERGY ASTROPHYSICS 392 15.5 EFFICIENT MCMC IN SPECTRAL ANALYSIS 393 15.6 CONCLUSION 397 ACKNOWLEDGMENTS 397 REFERENCES 397 16. POSTERIOR EXPLORATION FOR COMPUTATIONALLY INTENSIVE FORWARD MODELS 401 DAVID HIGDON, C. SHANE REESE, J. DAVID MOULTON, JASPER A. VRUGT, AND COLIN FOX 16.1 INTRODUCTION 401 16.2 AN INVERSE PROBLEM IN ELECTRICAL IMPEDANCE TOMOGRAPHY 402 16.2.1 POSTERIOR EXPLORATION VIA SINGLE-SITE METROPOLIS UPDATES 405 16.3 MULTIVARIATE UPDATING SCHEMES 408 16.3.1 RANDOM-WALK METROPOLIS 408 16.3.2 DIFFERENTIAL EVOLUTION AND VARIANTS 409 16.4 AUGMENTING WITH FAST, APPROXIMATE SIMULATORS 411 16.4.1 DELAYED ACCEPTANCE METROPOLIS 413 16.4.2 AN AUGMENTED SAMPLER 414 16.5 DISCUSSION 415 APPENDIX: FORMULATION BASED ON A PROCESS CONVOLUTION PRIOR 416 ACKNOWLEDGMENTS 417 REFERENCES 417 17. STATISTICAL ECOLOGY 419 RUTH KING 17.1 INTRODUCTION 419 17.2 ANALYSIS OF RING-RECOVERY DATA 420 17.2.1 COVARIATE ANALYSIS . 422 17.2.1.1 POSTERIOR CONDITIONAL DISTRIBUTIONS 423 17.2.1.2 RESULTS 424 17.2.2 MIXED EFFECTS MODEL 425 17.2.2.1 OBTAINING POSTERIOR INFERENCE 426 17.2.2.2 POSTERIOR CONDITIONAL DISTRIBUTIONS 427 17.2.2.3 RESULTS 427 IMAGE 10 17.2.3 MODEL UNCERTAINTY 428 17.2.3.1 MODEL SPECIFICATION 430 17.2.3.2 REVERSIBLE JUMP ALGORITHM 430 17.2.3.3 PROPOSAL DISTRIBUTION 431 17.2.3.4 RESULTS 431 17.2.3.5 COMMENTS 432 17.3 ANALYSIS OF COUNT DATA 433 17.3.1 STATE-SPACE MODELS 434 17.3.1.1 SYSTEM PROCESS 434 17.3.1.2 OBSERVATION PROCESS 434 17.3.1.3 MODEL 435 17.3.1.4 OBTAINING INFERENCE 435 17.3.2 INTEGRATED ANALYSIS 435 17.3.2.1 MCMC ALGORITHM 436 17.3.2.2 RESULTS 437 17.3.3 MODEL SELECTION 439 17.3.3.1 RESULTS 440 17.3.3.2 COMMENTS 442 17.4 DISCUSSION 444 REFERENCES 445 18. GAUSSIAN RANDOM FIELD MODELS FOR SPATIAL DATA 449 MURALI HARAN 18.1 INTRODUCTION 449 18.1.1 SOME MOTIVATION FOR SPATIAL MODELING 449 18.1.2 MCMC AND SPATIAL MODELS: A SHARED HISTORY 451 18.2 LINEAR SPATIAL MODELS 451 18.2.1 LINEAR GAUSSIAN PROCESS MODELS 452 18.2.1.1 MCMC FOR LINEAR GPS 453 18.2.2 LINEAR GAUSSIAN MARKOV RANDOM FIELD MODELS 454 18.2.2.1 MCMC FOR LINEAR GMRFS 457 18.2.3 SUMMARY 457 18.3 SPATIAL GENERALIZED LINEAR MODELS 458 18.3.1 THE GENERALIZED LINEAR MODEL FRAMEWORK 458 18.3.2 EXAMPLES 459 18.3.2.1 BINARY DATA 459 18.3.2.2 COUNT DATA 460 18.3.2.3 ZERO-INFLATED DATA 462 18.3.3 MCMC FOR SGLMS 463 18.3.3.1 LANGEVIN-HASTINGS MCMC 463 18.3.3.2 APPROXIMATING AN SGLM BY A LINEAR SPATIAL MODEL 465 18.3.4 MAXIMUM LIKELIHOOD INFERENCE FOR SGLMS 467 18.3.5 SUMMARY 467 18.4 NON-GAUSSIAN MARKOV RANDOM FIELD MODELS 468 18.5 EXTENSIONS 470 18.6 CONCLUSION 471 ACKNOWLEDGMENTS 473 REFERENCES 473 IMAGE 11 19. MODELING PREFERENCE CHANGES VIA A HIDDEN MARKOV ITEM RESPONSE THEORY MODEL 479 JONG HEE PARK 19.1 INTRODUCTION 479 19.2 DYNAMIC IDEAL POINT ESTIMATION 480 19.3 HIDDEN MARKOV ITEM RESPONSE THEORY MODEL 481 19.4 PREFERENCE CHANGES IN US SUPREME COURT JUSTICES 487 19.5 CONCLUSIONS 490 ACKNOWLEDGMENTS 490 REFERENCES 490 20. PARALLEL BAYESIAN MCMC IMPUTATION FOR MULTIPLE DISTRIBUTED LAG MODELS: A CASE STUDY IN ENVIRONMENTAL EPIDEMIOLOGY 493 BRIAN CAFFO, ROGER PENG, FRANCESCO DOMINICI, THOMAS A. LOUIS, AND SCOTT ZEGER 20.1 INTRODUCTION 493 20.2 THE DATA SET 494 20.3 BAYESIAN IMPUTATION 496 20.3.1 SINGLE-LAG MODELS 496 20.3.2 DISTRIBUTED LAG MODELS 496 20.4 MODEL AND NOTATION 498 20.4.1 PRIOR AND HIERARCHICAL MODEL SPECIFICATION 501 20.5 BAYESIAN IMPUTATION 501 20.5.1 SAMPLER 501 20.5.2 A PARALLEL IMPUTATION ALGORITHM 502 20.6 ANALYSIS OF THE MEDICARE DATA 504 20.7 SUMMARY 507 APPENDIX: FULL CONDITIONALS 509 ACKNOWLEDGMENT 510 REFERENCES 510 21. MCMC FOR STATE-SPACE MODELS 513 PAUL FEARNHEAD 21.1 INTRODUCTION: STATE-SPACE MODELS 513 21.2 BAYESIAN ANALYSIS AND MCMC FRAMEWORK 515 21.3 UPDATING THE STATE 515 21.3.1 SINGLE-SITE UPDATES OF THE STATE 515 21.3.2 BLOCK UPDATES FOR THE STATE 518 21.3.3 OTHER APPROACHES 523 21.4 UPDATING THE PARAMETERS 523 21 A.I CONDITIONAL UPDATES OF THE PARAMETERS 523 21.4.2 REPARAMETERIZATION OF THE MODEL 525 21.4.3 JOINT UPDATES OF THE PARAMETERS AND STATE 526 21.5 DISCUSSION 527 REFERENCES 527 IMAGE 12 22. MCMC IN EDUCATIONAL RESEARCH 531 ROY LEVY, ROBERT}. MISLEVY, AND JOHN T. BEHRENS 22.1 INTRODUCTION 531 22.2 STATISTICAL MODELS IN EDUCATION RESEARCH 532 22.3 HISTORICAL AND CURRENT RESEARCH ACTIVITY 534 22.3.1 MULTILEVEL MODELS 534 22.3.2 PSYCHOMETRIC MODELING 535 22.3.2.1 CONTINUOUS LATENT AND OBSERVABLE VARIABLES 535 22.3.2.2 CONTINUOUS LATENT VARIABLES AND DISCRETE OBSERVABLE VARIABLES 536 22.3.2.3 DISCRETE LATENT VARIABLES AND DISCRETE OBSERVABLE VARIABLES 537 22.3.2.4 COMBINATIONS OF MODELS 538 22.4 NAEP EXAMPLE 538 22.5 DISCUSSION: ADVANTAGES OF MCMC 541 22.6 CONCLUSION 542 REFERENCES 542 23. APPLICATIONS OF MCMC IN FISHERIES SCIENCE 547 RUSSELL B. MILLAR 23.1 BACKGROUND 547 23.2 THE CURRENT SITUATION 549 23.2.1 SOFTWARE 550 23.2.2 PERCEPTION OF MCMC IN FISHERIES 551 23.3 ADMB 551 23.3.1 AUTOMATIC DIFFERENTIATION 551 23.3.2 METROPOLIS-HASTINGS IMPLEMENTATION 552 23.4 BAYESIAN APPLICATIONS TO FISHERIES 553 23.4.1 CAPTURING UNCERTAINTY 553 23.4.1.1 STATE-SPACE MODELS OF SOUTH ATLANTIC ALBACORE TUNA BIOMASS 553 23.4.1.2 IMPLEMENTATION 555 23.4.2 HIERARCHICAL MODELING OF RESEARCH TRAWL CATCHABILITY 555 23.4.3 HIERARCHICAL MODELING OF STOCK-RECRUITMENT RELATIONSHIP 557 23.5 CONCLUDING REMARKS 560 ACKNOWLEDGMENT 561 REFERENCES 561 24. MODEL COMPARISON AND SIMULATION FOR HIERARCHICAL MODELS: ANALYZING RURAL-URBAN MIGRATION IN THAILAND 563 FILIZ GARIP AND BRUCE WESTERN 24.1 INTRODUCTION 563 24.2 THAI MIGRATION DATA 564 24.3 REGRESSION RESULTS 568 24.4 POSTERIOR PREDICTIVE CHECKS 569 IMAGE 13 24.5 EXPLORING MODEL IMPLICATIONS WITH SIMULATION 570 24.6 CONCLUSION 572 REFERENCES 574 INDEX 575
any_adam_object 1
author2 Brooks, Steve 1970-
author2_role edt
author2_variant s b sb
author_GND (DE-588)101265978X
author_facet Brooks, Steve 1970-
building Verbundindex
bvnumber BV036520962
classification_rvk QH 233
SK 620
SK 820
classification_tum MAT 629f
MAT 607f
ctrlnum (OCoLC)705625238
(DE-599)GBV621536377
dewey-full 519.233
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.233
dewey-search 519.233
dewey-sort 3519.233
dewey-tens 510 - Mathematics
discipline Mathematik
Wirtschaftswissenschaften
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01654nam a2200409 c 4500</leader><controlfield tag="001">BV036520962</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20130821 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">100624s2011 xx ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781420079418</subfield><subfield code="c">(hbk.) £63.99</subfield><subfield code="9">978-1-4200-7941-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1420079417</subfield><subfield code="c">(hbk.) £63.99</subfield><subfield code="9">1-4200-7941-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)705625238</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV621536377</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-578</subfield><subfield code="a">DE-945</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.233</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 233</subfield><subfield code="0">(DE-625)141548:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 629f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 607f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Handbook of Markov Chain Monte Carlo</subfield><subfield code="c">ed. by Steve Brooks ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton, Fla. [u.a.]</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXV, 592 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Handbooks of modern statistical methods</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">A Chapman &amp; Hall book</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Markov-Ketten-Monte-Carlo-Verfahren</subfield><subfield code="0">(DE-588)4508520-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Markov-Ketten-Monte-Carlo-Verfahren</subfield><subfield code="0">(DE-588)4508520-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brooks, Steve</subfield><subfield code="d">1970-</subfield><subfield code="0">(DE-588)101265978X</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=020442967&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020442967</subfield></datafield></record></collection>
id DE-604.BV036520962
illustrated Illustrated
indexdate 2024-12-24T00:06:18Z
institution BVB
isbn 9781420079418
1420079417
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-020442967
oclc_num 705625238
open_access_boolean
owner DE-20
DE-188
DE-91G
DE-BY-TUM
DE-578
DE-945
DE-11
DE-824
DE-83
DE-634
DE-19
DE-BY-UBM
DE-473
DE-BY-UBG
DE-29T
owner_facet DE-20
DE-188
DE-91G
DE-BY-TUM
DE-578
DE-945
DE-11
DE-824
DE-83
DE-634
DE-19
DE-BY-UBM
DE-473
DE-BY-UBG
DE-29T
physical XXV, 592 S. Ill., graph. Darst.
publishDate 2011
publishDateSearch 2011
publishDateSort 2011
publisher CRC Press
record_format marc
series2 Handbooks of modern statistical methods
A Chapman & Hall book
spellingShingle Handbook of Markov Chain Monte Carlo
Markov-Ketten-Monte-Carlo-Verfahren (DE-588)4508520-1 gnd
subject_GND (DE-588)4508520-1
title Handbook of Markov Chain Monte Carlo
title_auth Handbook of Markov Chain Monte Carlo
title_exact_search Handbook of Markov Chain Monte Carlo
title_full Handbook of Markov Chain Monte Carlo ed. by Steve Brooks ...
title_fullStr Handbook of Markov Chain Monte Carlo ed. by Steve Brooks ...
title_full_unstemmed Handbook of Markov Chain Monte Carlo ed. by Steve Brooks ...
title_short Handbook of Markov Chain Monte Carlo
title_sort handbook of markov chain monte carlo
topic Markov-Ketten-Monte-Carlo-Verfahren (DE-588)4508520-1 gnd
topic_facet Markov-Ketten-Monte-Carlo-Verfahren
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020442967&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT brookssteve handbookofmarkovchainmontecarlo