Handbook of Markov Chain Monte Carlo
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton, Fla. [u.a.]
CRC Press
2011
|
Schriftenreihe: | Handbooks of modern statistical methods
A Chapman & Hall book |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV036520962 | ||
003 | DE-604 | ||
005 | 20130821 | ||
007 | t| | ||
008 | 100624s2011 xx ad|| |||| 00||| eng d | ||
020 | |a 9781420079418 |c (hbk.) £63.99 |9 978-1-4200-7941-8 | ||
020 | |a 1420079417 |c (hbk.) £63.99 |9 1-4200-7941-7 | ||
035 | |a (OCoLC)705625238 | ||
035 | |a (DE-599)GBV621536377 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-20 |a DE-188 |a DE-91G |a DE-578 |a DE-945 |a DE-11 |a DE-824 |a DE-83 |a DE-634 |a DE-19 |a DE-473 |a DE-29T | ||
082 | 0 | |a 519.233 | |
084 | |a QH 233 |0 (DE-625)141548: |2 rvk | ||
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
084 | |a MAT 629f |2 stub | ||
084 | |a MAT 607f |2 stub | ||
245 | 1 | 0 | |a Handbook of Markov Chain Monte Carlo |c ed. by Steve Brooks ... |
264 | 1 | |a Boca Raton, Fla. [u.a.] |b CRC Press |c 2011 | |
300 | |a XXV, 592 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Handbooks of modern statistical methods | |
490 | 0 | |a A Chapman & Hall book | |
650 | 0 | 7 | |a Markov-Ketten-Monte-Carlo-Verfahren |0 (DE-588)4508520-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Markov-Ketten-Monte-Carlo-Verfahren |0 (DE-588)4508520-1 |D s |
689 | 0 | |C b |5 DE-604 | |
700 | 1 | |a Brooks, Steve |d 1970- |0 (DE-588)101265978X |4 edt | |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020442967&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-020442967 |
Datensatz im Suchindex
DE-BY-TUM_call_number | 0048 MAT 607f 2011 B 1129 0102 MAT 607 2011 B 1129 |
---|---|
DE-BY-TUM_katkey | 1766669 |
DE-BY-TUM_location | LSB 01 |
DE-BY-TUM_media_number | 040071408816 040071403888 040010208667 |
_version_ | 1820888485527027712 |
adam_text | IMAGE 1
CONTENTS
PREFACE XIX
EDITORS XXI
CONTRIBUTORS XXIII
PART I FOUNDATIONS, METHODOLOGY, AND ALGORITHMS
1. INTRODUCTION TO MARKOV CHAIN MONTE CARLO 3
CHARLES }. GEYER
1.1 HISTORY 3
1.2 MARKOV CHAINS 4
1.3 COMPUTER PROGRAMS AND MARKOV CHAINS 5
1.4 STATIONARITY 5
1.5 REVERSIBILITY 6
1.6 FUNCTIONALS 6
1.7 THE THEORY OF ORDINARY MONTE CARLO 6
1.8 THE THEORY OF MCMC 8
1.8.1 MULTIVARIATE THEORY 8
1.8.2 THE AUTOCOVARIANCE FUNCTION 9
1.9 AR(1) EXAMPLE 9
1.9.1 A DIGRESSION ON TOY PROBLEMS 10
1.9.2 SUPPORTING TECHNICAL REPORT 11
1.9.3 THE EXAMPLE 11
1.10 VARIANCE ESTIMATION 13
1.10.1 NONOVERLAPPING BATCH MEANS 13
1.10.2 INITIAL SEQUENCE METHODS 16
1.10.3 INITIAL SEQUENCE METHODS AND BATCH MEANS 17
1.11 THE PRACTICE OF MCMC 17
1.11.1 BLACK BOX MCMC 18
1.11.2 PSEUDO-CONVERGENCE 18
1.11.3 ONE LONG RUN VERSUS MANY SHORT RUNS 18
1.11.4 BURN-IN 19
1.11.5 DIAGNOSTICS 21
1.12 ELEMENTARY THEORY OF MCMC 22
1.12.1 THE METROPOLIS-HASTINGS UPDATE 22
1.12.2 THE METROPOLIS-HASTINGS THEOREM 23
1.12.3 THE METROPOLIS UPDATE 24
1.12.4 THE GIBBS UPDATE 24
1.12.5 VARIABLE-AT-A-TIME METROPOLIS-HASTINGS 25
1.12.6 GIBBS IS A SPECIAL CASE OF METROPOLIS-HASTINGS 26
1.12.7 COMBINING UPDATES 26
1.12.7.1 COMPOSITION 26
1.12.7.2 PALINDROMIC COMPOSITION 26
1.12.8 STATE-INDEPENDENT MIXING 26
1.12.9 SUBSAMPLING 27
1.12.10 GIBBS AND METROPOLIS REVISITED 28
V
IMAGE 2
1.13 A METROPOLIS EXAMPLE 29
1.14 CHECKPOINTING 34
1.15 DESIGNING MCMC CODE 35
1.16 VALIDATING AND DEBUGGING MCMC CODE 36
1.17 THE METROPOLIS-HASTINGS-GREEN ALGORITHM 37
1.17.1 STATE-DEPENDENT MIXING 38
1.17.2 RADON-NIKODYM DERIVATIVES 39
1.17.3 MEASURE-THEORETIC METROPOLIS-HASTINGS 40
1.17.3.1 METROPOLIS-HASTINGS-GREEN ELEMENTARY UPDATE 40 1.17.3.2 THE MHG
THEOREM 42
1.17.4 MHG WITH JACOBIANS AND AUGMENTED STATE SPACE 45
1.17.4.1 THE MHGJ THEOREM 46
ACKNOWLEDGMENTS 47
REFERENCES 47
2. A SHORT HISTORY OF MCMC: SUBJECTIVE RECOLLECTIONS FROM INCOMPLETE
DATA 49 CHRISTIAN ROBERT AND GEORGE CASELLA
2.1 INTRODUCTION 49
2.2 BEFORE THE REVOLUTION 50
2.2.1 THE METROPOLIS ET AL. (1953) PAPER 50
2.2.2 THE HASTINGS (1970) PAPER 52
2.3 SEEDS OF THE REVOLUTION 53
2.3.1 BESAG AND THE FUNDAMENTAL (MISSING) THEOREM 53
2.3.2 EM AND ITS SIMULATED VERSIONS AS PRECURSORS 53
2.3.3 GIBBS AND BEYOND 54
2.4 THE REVOLUTION 54
2.4.1 ADVANCES IN MCMC THEORY 56
2.4.2 ADVANCES IN MCMC APPLICATIONS 57
2.5 AFTER THE REVOLUTION 58
2.5.1 A BRIEF GLIMPSE AT PARTICLE SYSTEMS 58
2.5.2 PERFECT SAMPLING 58
2.5.3 REVERSIBLE JUMP AND VARIABLE DIMENSIONS 59
2.5.4 REGENERATION AND THE CENTRAL LIMIT THEOREM 59
2.6 CONCLUSION 60
ACKNOWLEDGMENTS 61
REFERENCES 61
3. REVERSIBLE JUMP MCMC 67
YANAN FAN AND SCOTT A. SISSON
3.1 INTRODUCTION 67
3.1.1 FROM METROPOLIS-HASTINGS TO REVERSIBLE JUMP 67
3.1.2 APPLICATION AREAS 68
3.2 IMPLEMENTATION 71
3.2.1 MAPPING FUNCTIONS AND PROPOSAL DISTRIBUTIONS 72
3.2.2 MARGINALIZATION AND AUGMENTATION 73
3.2.3 CENTERING AND ORDER METHODS 74
3.2.4 MULTI-STEP PROPOSALS 77
3.2.5 GENERIC SAMPLERS 78
IMAGE 3
3.3 POST SIMULATION 80
3.3.1 LABEL SWITCHING 80
3.3.2 CONVERGENCE ASSESSMENT 81
3.3.3 ESTIMATING BAYES FACTORS 82
3.4 RELATED MULTI-MODEL SAMPLING METHODS 84
3.4.1 JUMP DIFFUSION 84
3.4.2 PRODUCT SPACE FORMULATIONS 85
3.4.3 POINT PROCESS FORMULATIONS 85
3.4.4 MULTI-MODEL OPTIMIZATION 85
3.4.5 POPULATION MCMC 86
3.4.6 MULTI-MODEL SEQUENTIAL MONTE CARLO 86
3.5 DISCUSSION AND FUTURE DIRECTIONS 86
ACKNOWLEDGMENTS 87
REFERENCES 87
4. OPTIMAL PROPOSAL DISTRIBUTIONS AND ADAPTIVE MCMC 93
JEFFREY S. ROSENTHAL
4.1 INTRODUCTION 93
4.1.1 THE METROPOLIS-HASTINGS ALGORITHM 93
4.1.2 OPTIMAL SCALING 93
4.1.3 ADAPTIVE MCMC 94
4.1.4 COMPARING MARKOV CHAINS 94
4.2 OPTIMAL SCALING OF RANDOM-WALK METROPOLIS 95
4.2.1 BASIC PRINCIPLES 95
4.2.2 OPTIMAL ACCEPTANCE RATE AS D - CO 96
4.2.3 INHOMOGENEOUS TARGET DISTRIBUTIONS 98
4.2.4 METROPOLIS-ADJUSTED LANGEVIN ALGORITHM 99
4.2.5 NUMERICAL EXAMPLES 99
4.2.5.1 OFF-DIAGONAL COVARIANCE 100
4.2.5.2 INHOMOGENEOUS COVARIANCE 100
4.2.6 FREQUENTLY ASKED QUESTIONS 101
4.3 ADAPTIVE MCMC 102
4.3.1 ERGODICITY OF ADAPTIVE MCMC 103
4.3.2 ADAPTIVE METROPOLIS 104
4.3.3 ADAPTIVE METROPOLIS-WITHIN-GIBBS 105
4.3.4 STATE-DEPENDENT PROPOSAL SCALINGS 107
4.3.5 LIMIT THEOREMS 107
4.3.6 FREQUENTLY ASKED QUESTIONS 108
4.4 CONCLUSION 109
REFERENCES 110
5. MCMC USING HAMILTONIAN DYNAMICS 113
RADFORD M. NEAL
5.1 INTRODUCTION 113
5.2 HAMILTONIAN DYNAMICS 114
5.2.1 HAMILTON S EQUATIONS 114
5.2.1.1 EQUATIONS OF MOTION 114
5.2.1.2 POTENTIAL AND KINETIC ENERGY 115
5.2.1.3 A ONE-DIMENSIONAL EXAMPLE 116
IMAGE 4
5.2.2 PROPERTIES OF HAMILTONIAN DYNAMICS 116
5.2.2.1 REVERSIBILITY 116
5.2.2.2 CONSERVATION OF THE HAMILTONIAN 116
5.2.2.3 VOLUME PRESERVATION 117
5.2.2.4 SYMPLECTICNESS 119
5.2.3 DISCRETIZING HAMILTON S EQUATIONS-THE LEAPFROG METHOD 119 5.2.3.1
EULER S METHOD 119
5.2.3.2 A MODIFICATION OF EULER S METHOD 121
5.2.3.3 THE LEAPFROG METHOD 121
5.2.3.4 LOCAL AND GLOBAL ERROR OF DISCRETIZATION METHODS 122 5.3 MCMC
FROM HAMILTONIAN DYNAMICS 122
5.3.1 PROBABILITY AND THE HAMILTONIAN: CANONICAL DISTRIBUTIONS 122 5.3.2
THE HAMILTONIAN MONTE CARLO ALGORITHM 123
5.3.2.1 THE TWO STEPS OF THE HMC ALGORITHM 124
5.3.2.2 PROOF THAT HMC LEAVES THE CANONICAL DISTRIBUTION INVARIANT 126
5.3.2.3 ERGODICITY OF HMC 127
5.3.3 ILLUSTRATIONS OF HMC AND ITS BENEFITS 127
5.3.3.1 TRAJECTORIES FOR A TWO-DIMENSIONAL PROBLEM 127 5.3.3.2 SAMPLING
FROM A TWO-DIMENSIONAL DISTRIBUTION 128 5.3.3.3 THE BENEFIT OF AVOIDING
RANDOM WALKS 130
5.3.3.4 SAMPLING FROM A 100-DIMENSIONAL DISTRIBUTION 130 5.4 HMC IN
PRACTICE AND THEORY 133
5.4.1 EFFECT OF LINEAR TRANSFORMATIONS 133
5.4.2 TUNING HMC 134
5.4.2.1 PRELIMINARY RUNS AND TRACE PLOTS 134
5.4.2.2 WHAT STEPSIZE? 135
5.4.2.3 WHAT TRAJECTORY LENGTH? 137
5.4.2.4 USING MULTIPLE STEPSIZES 137
5.4.3 COMBINING HMC WITH OTHER MCMC UPDATES 138
5.4.4 SCALING WITH DIMENSIONALITY 139
5.4.4.1 CREATING DISTRIBUTIONS OF INCREASING DIMENSIONALITY BY
REPLICATION 139
5.4.4.2 SCALING OF HMC AND RANDOM-WALK METROPOLIS 139 5.4.4.3 OPTIMAL
ACCEPTANCE RATES 141
5.4.4.4 EXPLORING THE DISTRIBUTION OF POTENTIAL ENERGY 142 5.4.5 HMC FOR
HIERARCHICAL MODELS 142
5.5 EXTENSIONS OF AND VARIATIONS ON HMC 144
5.5.1 DISCRETIZATION BY SPLITTING: HANDLING CONSTRAINTS AND OTHER
APPLICATIONS 145
5.5.1.1 SPLITTING THE HAMILTONIAN 145
5.5.1.2 SPLITTING TO EXPLOIT PARTIAL ANALYTICAL SOLUTIONS 146 5.5.1.3
SPLITTING POTENTIAL ENERGIES WITH VARIABLE COMPUTATION COSTS 146
5.5.1.4 SPLITTING ACCORDING TO DATA SUBSETS 147
5.5.1.5 HANDLING CONSTRAINTS 148
5.5.2 TAKING ONE STEP AT A TIME-THE LANGEVIN METHOD 148
5.5.3 PARTIAL MOMENTUM REFRESHMENT: ANOTHER WAY TO AVOID RANDOM WALKS
150
IMAGE 5
5.5.4 ACCEPTANCE USING WINDOWS OF STATES 152
5.5.5 USING APPROXIMATIONS TO COMPUTE THE TRAJECTORY 155
5.5.6 SHORT-CUT TRAJECTORIES: ADAPTING THE STEPSIZE WITHOUT ADAPTATION .
156 5.5.7 TEMPERING DURING A TRAJECTORY 157
ACKNOWLEDGMENT 160
REFERENCES 160
6. INFERENCE FROM SIMULATIONS AND MONITORING CONVERGENCE 163 ANDREW
GELMAN AND KENNETH SHIRLEY
6.1 QUICK SUMMARY OF RECOMMENDATIONS 163
6.2 KEY DIFFERENCES BETWEEN POINT ESTIMATION AND MCMC INFERENCE 164 6.3
INFERENCE FOR FUNCTIONS OF THE PARAMETERS VS. INFERENCE FOR FUNCTIONS OF
THE TARGET DISTRIBUTION 166
6.4 INFERENCE FROM NONITERATIVE SIMULATIONS 167
6.5 BURN-IN 168
6.6 MONITORING CONVERGENCE COMPARING BETWEEN AND WITHIN CHAINS 170 6.7
INFERENCE FROM SIMULATIONS AFTER APPROXIMATE CONVERGENCE 171 6.8 SUMMARY
172
ACKNOWLEDGMENTS 173
REFERENCES 173
7. IMPLEMENTING MCMC: ESTIMATING WITH CONFIDENCE 175
JAMES M. FLEGAL AND GALIN L. JONES
7.1 INTRODUCTION 175
7.2 INITIAL EXAMINATION OF OUTPUT 176
7.3 POINT ESTIMATES OF Q N 178
7.3.1 EXPECTATIONS 178
7.3.2 QUANTILES 181
7.4 INTERVAL ESTIMATES OF Q N 182
7.4.1 EXPECTATIONS 182
7.4.1.1 OVERLAPPING BATCH MEANS 182
7.4.1.2 PARALLEL CHAINS 184
7.4.2 FUNCTIONS OF MOMENTS 185
7.4.3 QUANTILES 187
7.4.3.1 SUBSAMPLING BOOTSTRAP 187
7.4.4 MULTIVARIATE ESTIMATION 189
7.5 ESTIMATING MARGINAL DENSITIES 189
7.6 TERMINATING THE SIMULATION 192
7.7 MARKOV CHAIN CENTRAL LIMIT THEOREMS 193
7.8 DISCUSSION 194
ACKNOWLEDGMENTS 195
REFERENCES 195
8. PERFECTION WITHIN REACH: EXACT MCMC SAMPLING 199
RADU V. CRAIU AND XIAO-LI MENG
8.1 INTENDED READERSHIP 199
8.2 COUPLING FROM THE PAST 199
8.2.1 MOVING FROM TIME-FORWARD TO TIME-BACKWARD 199
IMAGE 6
8.2.2 HITTING THE LIMIT 200
8.2.3 CHALLENGES FOR ROUTINE APPLICATIONS 201
8.3 COALESCENCE ASSESSMENT 201
8.3.1 ILLUSTRATING MONOTONE COUPLING 201
8.3.2 ILLUSTRATING BRUTE-FORCE COUPLING 202
8.3.3 GENERAL CLASSES OF MONOTONE COUPLING 203
8.3.4 BOUNDING CHAINS 204
8.4 COST-SAVING STRATEGIES FOR IMPLEMENTING PERFECT SAMPLING 206 8.4.1
READ-ONCE CFTP 206
8.4.2 FILL S ALGORITHM 208
8.5 COUPLING METHODS 210
8.5.1 SPLITTING TECHNIQUE 211
8.5.2 COUPLING VIA A COMMON PROPOSAL 212
8.5.3 COUPLING VIA DISCRETE DATA AUGMENTATION 213
8.5.4 PERFECT SLICE SAMPLING 215
8.6 SWINDLES 217
8.6.1 EFFICIENT USE OF EXACT SAMPLES VIA CONCATENATION 218
8.6.2 MULTISTAGE PERFECT SAMPLING 219
8.6.3 ANTITHETIC PERFECT SAMPLING 220
8.6.4 INTEGRATING EXACT AND APPROXIMATE MCMC ALGORITHMS 221 8.7 WHERE
ARE THE APPLICATIONS? 223
ACKNOWLEDGMENTS 223
REFERENCES 223
9. SPATIAL POINT PROCESSES 227
MARK HUBER
9.1 INTRODUCTION 227
9.2 SETUP 227
9.3 METROPOLIS-HASTINGS REVERSIBLE JUMP CHAINS 230
9.3.1 EXAMPLES 232
9.3.2 CONVERGENCE 232
9.4 CONTINUOUS-TIME SPATIAL BIRTH-DEATH CHAINS 233
9.4.1 EXAMPLES 235
9.4.2 SHIFTING MOVES WITH SPATIAL BIRTH AND DEATH CHAINS 236
9.4.3 CONVERGENCE 236
9.5 PERFECT SAMPLING 236
9.5.1 ACCEPTANCE/REJECTION METHOD 236
9.5.2 DOMINATED COUPLING FROM THE PAST 238
9.5.3 EXAMPLES 242
9.6 MONTE CARLO POSTERIOR DRAWS 243
9.7 RUNNING TIME ANALYSIS 245
9.7.1 RUNNING TIME OF PERFECT SIMULATION METHODS 248
ACKNOWLEDGMENT 251
REFERENCES 251
10. THE DATA AUGMENTATION ALGORITHM: THEORY AND METHODOLOGY 253 JAMES P.
HOBERT
10.1 BASIC IDEAS AND EXAMPLES 253
IMAGE 7
10.2 PROPERTIES OF THE DA MARKOV CHAIN 261
10.2.1 BASIC REGULARITY CONDITIONS 261
10.2.2 BASIC CONVERGENCE PROPERTIES 263
10.2.3 GEOMETRIC ERGODICITY 264
10.2.4 CENTRAL LIMIT THEOREMS 267
10.3 CHOOSING THE MONTE CARLO SAMPLE SIZE 269
10.3.1 CLASSICAL MONTE CARLO 269
10.3.2 THREE MARKOV CHAINS CLOSELY RELATED TO X 270
10.3.3 MINORIZATION, REGENERATION AND AN ALTERNATIVE CLT 272 10.3.4
SIMULATING THE SPLIT CHAIN 275
10.3.5 A GENERAL METHOD FOR CONSTRUCTING THE MINORIZATION CONDITION . .
. 277 10.4 IMPROVING THE DA ALGORITHM 279
10.4.1 THE PX-DA AND MARGINAL AUGMENTATION ALGORITHMS 280 10.4.2 THE
OPERATOR ASSOCIATED WITH A REVERSIBLE MARKOV CHAIN 284 10.4.3 A
THEORETICAL COMPARISON OF THE DA AND PX-DA ALGORITHMS 286 10.4.4 IS
THERE A BEST PX-DA ALGORITHM? 288
ACKNOWLEDGMENTS 291
REFERENCES 291
11. IMPORTANCE SAMPLING, SIMULATED TEMPERING, AND UMBRELLA SAMPLING 295
CHARLES ]. GEYER
11.1 IMPORTANCE SAMPLING 295
11.2 SIMULATED TEMPERING 297
11.2.1 PARALLEL TEMPERING UPDATE 299
11.2.2 SERIAL TEMPERING UPDATE 300
11.2.3 EFFECTIVENESS OF TEMPERING 300
11.2.4 TUNING SERIAL TEMPERING 301
11.2.5 UMBRELLA SAMPLING 302
11.3 BAYES FACTORS AND NORMALIZING CONSTANTS 303
11.3.1 THEORY 303
11.3.2 PRACTICE 305
11.3.2.1 SETUP 305
11.3.2.2 TRIAL AND ERROR 307
11.3.2.3 MONTE CARLO APPROXIMATION 308
11.3.3 DISCUSSION 309
ACKNOWLEDGMENTS 310
REFERENCES 310
12. LIKELIHOOD-FREE MCMC 313
SCOTT A. SISSON AND YANAN FAN
12.1 INTRODUCTION 313
12.2 REVIEW OF LIKELIHOOD-FREE THEORY AND METHODS 314
12.2.1 LIKELIHOOD-FREE BASICS 314
12.2.2 THE NATURE OF THE POSTERIOR APPROXIMATION 315
12.2.3 A SIMPLE EXAMPLE 316
12.3 LIKELIHOOD-FREE MCMC SAMPLERS 317
12.3.1 MARGINAL SPACE SAMPLERS 319
12.3.2 ERROR-DISTRIBUTION AUGMENTED SAMPLERS 320
IMAGE 8
12.3.3 POTENTIAL ALTERNATIVE MCMC SAMPLERS 321
12.4 A PRACTICAL GUIDE TO LIKELIHOOD-FREE MCMC 322
12.4.1 AN EXPLORATORY ANALYSIS 322
12.4.2 THE EFFECT OF E 324
12.4.3 THE EFFECT OF THE WEIGHTING DENSITY 326
12.4.4 THE CHOICE OF SUMMARY STATISTICS 327
12.4.5 IMPROVING MIXING 329
12.4.6 EVALUATING MODEL MISSPECIFICATION 330
12.5 DISCUSSION 331
ACKNOWLEDGMENTS 333
REFERENCES 333
PART II APPLICATIONS AND CASE STUDIES
13. MCMC IN THE ANALYSIS OF GENETIC DATA ON RELATED INDIVIDUALS 339
ELIZABETH THOMPSON
13.1 INTRODUCTION 339
13.2 PEDIGREES, GENETIC VARIANTS, AND THE INHERITANCE OF GENOME 340 13.3
CONDITIONAL INDEPENDENCE STRUCTURES OF GENETIC DATA 341
13.3.1 GENOTYPIC STRUCTURE OF PEDIGREE DATA 342
13.3.2 INHERITANCE STRUCTURE OF GENETIC DATA 344
13.3.3 IDENTICAL BY DESCENT STRUCTURE OF GENETIC DATA 347
13.3.4 IBD-GRAPH COMPUTATIONS FOR MARKERS AND TRAITS 348
13.4 MCMC SAMPLING OF LATENT VARIABLES 349
13.4.1 GENOTYPES AND MEIOSES 349
13.4.2 SOME BLOCK GIBBS SAMPLERS 349
13.4.3 GIBBS UPDATES AND RESTRICTED UPDATES ON LARGER BLOCKS 350 13.5
MCMC SAMPLING OF INHERITANCE GIVEN MARKER DATA 351
13.5.1 SAMPLING INHERITANCE CONDITIONAL ON MARKER DATA 351 13.5.2 MONTE
CARLO EM AND LIKELIHOOD RATIO ESTIMATION 351
13.5.3 IMPORTANCE SAMPLING REWEIGHTING 353
13.6 USING MCMC REALIZATIONS FOR COMPLEX TRAIT INFERENCE 354
13.6.1 ESTIMATING A LIKELIHOOD RATIO OR LOD SCORE 354
13.6.2 UNCERTAINTY IN INHERITANCE AND TESTS FOR LINKAGE DETECTION 356
13.6.3 LOCALIZATION OF CAUSAL LOCI USING LATENT P- VALUES 357 13.7
SUMMARY 358
ACKNOWLEDGMENT 359
REFERENCES 359
14. AN MCMC-BASED ANALYSIS OF A MULTILEVEL MODEL FOR FUNCTIONAL MRI DATA
.... 363 BRIAN CAFFO, DUBOIS BOWMAN, LYNN EBERLY, AND SUSAN SPEAR
BASSETT
14.1 INTRODUCTION 363
14.1.1 LITERATURE REVIEW 364
14.1.2 EXAMPLE DATA 365
14.2 DATA PREPROCESSING AND FIRST-LEVEL ANALYSIS 367
14.3 A MULTILEVEL MODEL FOR INCORPORATING REGIONAL CONNECTIVITY 368
14.3.1 MODEL 368
IMAGE 9
14.3.2 SIMULATING THE MARKOV CHAIN 369
14.4 ANALYZING THE CHAIN 371
14.4.1 ACTIVATION RESULTS 371
14.5 CONNECTIVITY RESULTS 374
14.5.1 INTRA-REGIONAL CONNECTIVITY 374
14.5.2 INTER-REGIONAL CONNECTIVITY 375
14.6 DISCUSSION 376
REFERENCES 379
15. PARTIALLY COLLAPSED GIBBS SAMPLING AND PATH-ADAPTIVE
METROPOLIS-HASTINGS IN HIGH-ENERGY ASTROPHYSICS 383
DAVID A. VAN DYK AND TAEYOUNG PARK
15.1 INTRODUCTION 383
15.2 PARTIALLY COLLAPSED GIBBS SAMPLER 384
15.3 PATH-ADAPTIVE METROPOLIS-HASTINGS SAMPLER 388
15.4 SPECTRAL ANALYSIS IN HIGH-ENERGY ASTROPHYSICS 392
15.5 EFFICIENT MCMC IN SPECTRAL ANALYSIS 393
15.6 CONCLUSION 397
ACKNOWLEDGMENTS 397
REFERENCES 397
16. POSTERIOR EXPLORATION FOR COMPUTATIONALLY INTENSIVE FORWARD MODELS
401 DAVID HIGDON, C. SHANE REESE, J. DAVID MOULTON, JASPER A. VRUGT, AND
COLIN FOX
16.1 INTRODUCTION 401
16.2 AN INVERSE PROBLEM IN ELECTRICAL IMPEDANCE TOMOGRAPHY 402 16.2.1
POSTERIOR EXPLORATION VIA SINGLE-SITE METROPOLIS UPDATES 405 16.3
MULTIVARIATE UPDATING SCHEMES 408
16.3.1 RANDOM-WALK METROPOLIS 408
16.3.2 DIFFERENTIAL EVOLUTION AND VARIANTS 409
16.4 AUGMENTING WITH FAST, APPROXIMATE SIMULATORS 411
16.4.1 DELAYED ACCEPTANCE METROPOLIS 413
16.4.2 AN AUGMENTED SAMPLER 414
16.5 DISCUSSION 415
APPENDIX: FORMULATION BASED ON A PROCESS CONVOLUTION PRIOR 416
ACKNOWLEDGMENTS 417
REFERENCES 417
17. STATISTICAL ECOLOGY 419
RUTH KING
17.1 INTRODUCTION 419
17.2 ANALYSIS OF RING-RECOVERY DATA 420
17.2.1 COVARIATE ANALYSIS . 422
17.2.1.1 POSTERIOR CONDITIONAL DISTRIBUTIONS 423
17.2.1.2 RESULTS 424
17.2.2 MIXED EFFECTS MODEL 425
17.2.2.1 OBTAINING POSTERIOR INFERENCE 426
17.2.2.2 POSTERIOR CONDITIONAL DISTRIBUTIONS 427
17.2.2.3 RESULTS 427
IMAGE 10
17.2.3 MODEL UNCERTAINTY 428
17.2.3.1 MODEL SPECIFICATION 430
17.2.3.2 REVERSIBLE JUMP ALGORITHM 430
17.2.3.3 PROPOSAL DISTRIBUTION 431
17.2.3.4 RESULTS 431
17.2.3.5 COMMENTS 432
17.3 ANALYSIS OF COUNT DATA 433
17.3.1 STATE-SPACE MODELS 434
17.3.1.1 SYSTEM PROCESS 434
17.3.1.2 OBSERVATION PROCESS 434
17.3.1.3 MODEL 435
17.3.1.4 OBTAINING INFERENCE 435
17.3.2 INTEGRATED ANALYSIS 435
17.3.2.1 MCMC ALGORITHM 436
17.3.2.2 RESULTS 437
17.3.3 MODEL SELECTION 439
17.3.3.1 RESULTS 440
17.3.3.2 COMMENTS 442
17.4 DISCUSSION 444
REFERENCES 445
18. GAUSSIAN RANDOM FIELD MODELS FOR SPATIAL DATA 449
MURALI HARAN
18.1 INTRODUCTION 449
18.1.1 SOME MOTIVATION FOR SPATIAL MODELING 449
18.1.2 MCMC AND SPATIAL MODELS: A SHARED HISTORY 451
18.2 LINEAR SPATIAL MODELS 451
18.2.1 LINEAR GAUSSIAN PROCESS MODELS 452
18.2.1.1 MCMC FOR LINEAR GPS 453
18.2.2 LINEAR GAUSSIAN MARKOV RANDOM FIELD MODELS 454
18.2.2.1 MCMC FOR LINEAR GMRFS 457
18.2.3 SUMMARY 457
18.3 SPATIAL GENERALIZED LINEAR MODELS 458
18.3.1 THE GENERALIZED LINEAR MODEL FRAMEWORK 458
18.3.2 EXAMPLES 459
18.3.2.1 BINARY DATA 459
18.3.2.2 COUNT DATA 460
18.3.2.3 ZERO-INFLATED DATA 462
18.3.3 MCMC FOR SGLMS 463
18.3.3.1 LANGEVIN-HASTINGS MCMC 463
18.3.3.2 APPROXIMATING AN SGLM BY A LINEAR SPATIAL MODEL 465 18.3.4
MAXIMUM LIKELIHOOD INFERENCE FOR SGLMS 467
18.3.5 SUMMARY 467
18.4 NON-GAUSSIAN MARKOV RANDOM FIELD MODELS 468
18.5 EXTENSIONS 470
18.6 CONCLUSION 471
ACKNOWLEDGMENTS 473
REFERENCES 473
IMAGE 11
19. MODELING PREFERENCE CHANGES VIA A HIDDEN MARKOV ITEM RESPONSE
THEORY MODEL 479
JONG HEE PARK
19.1 INTRODUCTION 479
19.2 DYNAMIC IDEAL POINT ESTIMATION 480
19.3 HIDDEN MARKOV ITEM RESPONSE THEORY MODEL 481
19.4 PREFERENCE CHANGES IN US SUPREME COURT JUSTICES 487
19.5 CONCLUSIONS 490
ACKNOWLEDGMENTS 490
REFERENCES 490
20. PARALLEL BAYESIAN MCMC IMPUTATION FOR MULTIPLE DISTRIBUTED LAG
MODELS: A CASE STUDY IN ENVIRONMENTAL EPIDEMIOLOGY 493 BRIAN CAFFO,
ROGER PENG, FRANCESCO DOMINICI, THOMAS A. LOUIS, AND SCOTT ZEGER
20.1 INTRODUCTION 493
20.2 THE DATA SET 494
20.3 BAYESIAN IMPUTATION 496
20.3.1 SINGLE-LAG MODELS 496
20.3.2 DISTRIBUTED LAG MODELS 496
20.4 MODEL AND NOTATION 498
20.4.1 PRIOR AND HIERARCHICAL MODEL SPECIFICATION 501
20.5 BAYESIAN IMPUTATION 501
20.5.1 SAMPLER 501
20.5.2 A PARALLEL IMPUTATION ALGORITHM 502
20.6 ANALYSIS OF THE MEDICARE DATA 504
20.7 SUMMARY 507
APPENDIX: FULL CONDITIONALS 509
ACKNOWLEDGMENT 510
REFERENCES 510
21. MCMC FOR STATE-SPACE MODELS 513
PAUL FEARNHEAD
21.1 INTRODUCTION: STATE-SPACE MODELS 513
21.2 BAYESIAN ANALYSIS AND MCMC FRAMEWORK 515
21.3 UPDATING THE STATE 515
21.3.1 SINGLE-SITE UPDATES OF THE STATE 515
21.3.2 BLOCK UPDATES FOR THE STATE 518
21.3.3 OTHER APPROACHES 523
21.4 UPDATING THE PARAMETERS 523
21 A.I CONDITIONAL UPDATES OF THE PARAMETERS 523
21.4.2 REPARAMETERIZATION OF THE MODEL 525
21.4.3 JOINT UPDATES OF THE PARAMETERS AND STATE 526
21.5 DISCUSSION 527
REFERENCES 527
IMAGE 12
22. MCMC IN EDUCATIONAL RESEARCH 531
ROY LEVY, ROBERT}. MISLEVY, AND JOHN T. BEHRENS
22.1 INTRODUCTION 531
22.2 STATISTICAL MODELS IN EDUCATION RESEARCH 532
22.3 HISTORICAL AND CURRENT RESEARCH ACTIVITY 534
22.3.1 MULTILEVEL MODELS 534
22.3.2 PSYCHOMETRIC MODELING 535
22.3.2.1 CONTINUOUS LATENT AND OBSERVABLE VARIABLES 535 22.3.2.2
CONTINUOUS LATENT VARIABLES AND DISCRETE OBSERVABLE VARIABLES 536
22.3.2.3 DISCRETE LATENT VARIABLES AND DISCRETE OBSERVABLE VARIABLES 537
22.3.2.4 COMBINATIONS OF MODELS 538
22.4 NAEP EXAMPLE 538
22.5 DISCUSSION: ADVANTAGES OF MCMC 541
22.6 CONCLUSION 542
REFERENCES 542
23. APPLICATIONS OF MCMC IN FISHERIES SCIENCE 547
RUSSELL B. MILLAR
23.1 BACKGROUND 547
23.2 THE CURRENT SITUATION 549
23.2.1 SOFTWARE 550
23.2.2 PERCEPTION OF MCMC IN FISHERIES 551
23.3 ADMB 551
23.3.1 AUTOMATIC DIFFERENTIATION 551
23.3.2 METROPOLIS-HASTINGS IMPLEMENTATION 552
23.4 BAYESIAN APPLICATIONS TO FISHERIES 553
23.4.1 CAPTURING UNCERTAINTY 553
23.4.1.1 STATE-SPACE MODELS OF SOUTH ATLANTIC ALBACORE TUNA BIOMASS 553
23.4.1.2 IMPLEMENTATION 555
23.4.2 HIERARCHICAL MODELING OF RESEARCH TRAWL CATCHABILITY 555
23.4.3 HIERARCHICAL MODELING OF STOCK-RECRUITMENT RELATIONSHIP 557
23.5 CONCLUDING REMARKS 560
ACKNOWLEDGMENT 561
REFERENCES 561
24. MODEL COMPARISON AND SIMULATION FOR HIERARCHICAL MODELS: ANALYZING
RURAL-URBAN MIGRATION IN THAILAND 563
FILIZ GARIP AND BRUCE WESTERN
24.1 INTRODUCTION 563
24.2 THAI MIGRATION DATA 564
24.3 REGRESSION RESULTS 568
24.4 POSTERIOR PREDICTIVE CHECKS 569
IMAGE 13
24.5 EXPLORING MODEL IMPLICATIONS WITH SIMULATION 570
24.6 CONCLUSION 572
REFERENCES 574
INDEX 575
|
any_adam_object | 1 |
author2 | Brooks, Steve 1970- |
author2_role | edt |
author2_variant | s b sb |
author_GND | (DE-588)101265978X |
author_facet | Brooks, Steve 1970- |
building | Verbundindex |
bvnumber | BV036520962 |
classification_rvk | QH 233 SK 620 SK 820 |
classification_tum | MAT 629f MAT 607f |
ctrlnum | (OCoLC)705625238 (DE-599)GBV621536377 |
dewey-full | 519.233 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.233 |
dewey-search | 519.233 |
dewey-sort | 3519.233 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Wirtschaftswissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01654nam a2200409 c 4500</leader><controlfield tag="001">BV036520962</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20130821 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">100624s2011 xx ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781420079418</subfield><subfield code="c">(hbk.) £63.99</subfield><subfield code="9">978-1-4200-7941-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1420079417</subfield><subfield code="c">(hbk.) £63.99</subfield><subfield code="9">1-4200-7941-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)705625238</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV621536377</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-578</subfield><subfield code="a">DE-945</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.233</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 233</subfield><subfield code="0">(DE-625)141548:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 629f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 607f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Handbook of Markov Chain Monte Carlo</subfield><subfield code="c">ed. by Steve Brooks ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton, Fla. [u.a.]</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXV, 592 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Handbooks of modern statistical methods</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">A Chapman & Hall book</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Markov-Ketten-Monte-Carlo-Verfahren</subfield><subfield code="0">(DE-588)4508520-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Markov-Ketten-Monte-Carlo-Verfahren</subfield><subfield code="0">(DE-588)4508520-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brooks, Steve</subfield><subfield code="d">1970-</subfield><subfield code="0">(DE-588)101265978X</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020442967&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020442967</subfield></datafield></record></collection> |
id | DE-604.BV036520962 |
illustrated | Illustrated |
indexdate | 2024-12-24T00:06:18Z |
institution | BVB |
isbn | 9781420079418 1420079417 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020442967 |
oclc_num | 705625238 |
open_access_boolean | |
owner | DE-20 DE-188 DE-91G DE-BY-TUM DE-578 DE-945 DE-11 DE-824 DE-83 DE-634 DE-19 DE-BY-UBM DE-473 DE-BY-UBG DE-29T |
owner_facet | DE-20 DE-188 DE-91G DE-BY-TUM DE-578 DE-945 DE-11 DE-824 DE-83 DE-634 DE-19 DE-BY-UBM DE-473 DE-BY-UBG DE-29T |
physical | XXV, 592 S. Ill., graph. Darst. |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | CRC Press |
record_format | marc |
series2 | Handbooks of modern statistical methods A Chapman & Hall book |
spellingShingle | Handbook of Markov Chain Monte Carlo Markov-Ketten-Monte-Carlo-Verfahren (DE-588)4508520-1 gnd |
subject_GND | (DE-588)4508520-1 |
title | Handbook of Markov Chain Monte Carlo |
title_auth | Handbook of Markov Chain Monte Carlo |
title_exact_search | Handbook of Markov Chain Monte Carlo |
title_full | Handbook of Markov Chain Monte Carlo ed. by Steve Brooks ... |
title_fullStr | Handbook of Markov Chain Monte Carlo ed. by Steve Brooks ... |
title_full_unstemmed | Handbook of Markov Chain Monte Carlo ed. by Steve Brooks ... |
title_short | Handbook of Markov Chain Monte Carlo |
title_sort | handbook of markov chain monte carlo |
topic | Markov-Ketten-Monte-Carlo-Verfahren (DE-588)4508520-1 gnd |
topic_facet | Markov-Ketten-Monte-Carlo-Verfahren |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020442967&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT brookssteve handbookofmarkovchainmontecarlo |