Mutational analysis a joint framework for cauchy problems in and beyond vector spaces

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Lorenz, Thomas 1974- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Berlin [u.a.] Springer 2010
Schriftenreihe:Lecture notes in mathematics 1996
Schlagworte:
Online-Zugang:Inhaltstext
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV036520006
003 DE-604
005 20100714
007 t|
008 100623s2010 gw abd| m||| 00||| eng d
015 |a 10,N11  |2 dnb 
016 7 |a 1000753662  |2 DE-101 
020 |a 9783642124709  |c PB. : ca. EUR 96.25 (freier Pr.), ca. sfr 140.00 (freier Pr.)  |9 978-3-642-12470-9 
020 |a 9783642124716  |9 978-3-642-12471-6 
024 3 |a 9783642124709 
028 5 2 |a 80012301 
035 |a (OCoLC)845676191 
035 |a (DE-599)DNB1000753662 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a gw  |c XA-DE-BE 
049 |a DE-824  |a DE-91G  |a DE-11  |a DE-83  |a DE-188 
082 0 |a 515.35  |2 22/ger 
084 |a SI 850  |0 (DE-625)143199:  |2 rvk 
084 |a 34A60  |2 msc 
084 |a MAT 347f  |2 stub 
084 |a MAT 356f  |2 stub 
084 |a 510  |2 sdnb 
084 |a MAT 606f  |2 stub 
100 1 |a Lorenz, Thomas  |d 1974-  |e Verfasser  |0 (DE-588)131512617  |4 aut 
245 1 0 |a Mutational analysis  |b a joint framework for cauchy problems in and beyond vector spaces  |c Thomas Lorenz 
264 1 |a Berlin [u.a.]  |b Springer  |c 2010 
300 |a XIV, 509 S.  |b Ill., graph. Darst., Kt. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Lecture notes in mathematics  |v 1996 
650 0 7 |a Mengenwertige Abbildung  |0 (DE-588)4270772-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Nichtlineare Evolutionsgleichung  |0 (DE-588)4221363-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Nichtglatte Analysis  |0 (DE-588)4379207-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Verallgemeinerte Differentialgleichung  |0 (DE-588)4187509-6  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)4113937-9  |a Hochschulschrift  |2 gnd-content 
689 0 0 |a Verallgemeinerte Differentialgleichung  |0 (DE-588)4187509-6  |D s 
689 0 1 |a Nichtlineare Evolutionsgleichung  |0 (DE-588)4221363-0  |D s 
689 0 2 |a Nichtglatte Analysis  |0 (DE-588)4379207-8  |D s 
689 0 3 |a Mengenwertige Abbildung  |0 (DE-588)4270772-9  |D s 
689 0 |5 DE-604 
830 0 |a Lecture notes in mathematics  |v 1996  |w (DE-604)BV000676446  |9 1996 
856 4 2 |q text/html  |u http://deposit.dnb.de/cgi-bin/dokserv?id=3439853&prov=M&dok_var=1&dok_ext=htm  |3 Inhaltstext 
856 4 2 |m DNB Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020442023&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-020442023 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102 MAT 001z 2001 B 999
DE-BY-TUM_katkey 1733472
DE-BY-TUM_location 01
DE-BY-TUM_media_number 040010231677
_version_ 1820853466975698944
adam_text CONTENTS PREFACE V ACKNOWLEDGMENTS VII 0 INTRODUCTION 1 0.1 DIVERSE EVOLUTIONS COME TOGETHER UNDER THE SAME ROOF 1 0.2 SOME INTRODUCTORY EXAMPLES 3 0.2.1 A REGION GROWING METHOD OF IMAGE SEGMENTATION 3 0.2.2 IMAGE SMOOTHING VIA ANISOTROPIE DIFFUSION 8 0.2.3 A STOCHASTIC DIFFERENTIAL GAME WITHOUT PRECISELY KNOWN REALIZATIONS OF OPPONENTS 11 0.3 EXTENDING THE TRADITIONAL HORIZON: EVOLUTION EQUATIONS BEYOND VECTOR SPACES 12 0.3.1 AUBIN S INITIAL NOTION: REGARD AFFINE LINEAR MAPS JUST AS A SPECIAL TYPE OF ELEMENTARY DEFORMATIONS 12 0.3.2 MUTATIONAL ANALYSIS AS AN ADAPTIVE BLACK BOX FOR INITIAL VALUE PROBLEMS 15 0.3.3 THE INITIAL PROBLEM DECOMPOSITION AND THE FINAL LINK TO MORE POPULAR MEANINGS OF ABSTRACT SOLUTIONS 17 0.3.4 THE NEW STEPS OF GENERALIZATION 18 0.4 MUTATIONAL INCLUSIONS 29 1 EXTENDING ORDINARY DIFFERENTIAL EQUATIONS TO METRIC SPACES: AUBIN S SUGGESTION 31 1 . 1 THE KEY FOR AVOIDING (AFFINE) LINEAR STRUCTURES: TRANSITIONS 31 1.2 THE MUTATION AS COUNTERPART OF TIME DERIVATIVE 37 1.3 FEEDBACK LEADS TO MUTATIONAL EQUATIONS 38 1.4 PROOFS FOR EXISTENCE AND UNIQUENESS OF SOLUTIONS WITHOUT STATE CONSTRAINTS 40 1.5 AN ESSENTIAL ADVANTAGE OF MUTATIONAL EQUATIONS: SOLUTIONS TO SYSTEMS 44 1.6 PROOF FOR EXISTENCE OF SOLUTIONS UNDER STATE CONSTRAINTS 47 1. BIBLIOGRAFISCHE INFORMATIONEN HTTP://D-NB.INFO/1000753662 DIGITALISIERT DURCH X CONTENTS 1.9 EXAMPLE: MORPHOLOGICAL EQUATIONS FOR COMPACT SETS IN R N 57 1.9.1 THE POMPEIU-HAUSDORFF DISTANCE D 57 1.9.2 MORPHOLOGICAL TRANSITIONS ON (JFR(R N ),D) 60 1.9.3 MORPHOLOGICAL PRIMITIVES AS REACHABLE SETS 64 1.9.4 SOME EXAMPLES OF MORPHOLOGICAL PRIMITIVES 66 1.9.5 SOME EXAMPLES OF CONTINGENT TRANSITION SETS 67 1.9.6 SOLUTIONS TO MORPHOLOGICAL EQUATIONS 74 1.10 EXAMPLE: MORPHOLOGICAL TRANSITIONS FOR IMAGE SEGMENTATION 79 1.10.1 ANALYTICAL TOOLS OF THE CONTINUOUS SEGMENTATION PROBLEM . 80 1.10.2 SOLVING THE CONTINUOUS SEGMENTATION PROBLEM 83 1.10.3 THE APPLICATION TO COMPUTER IMAGES 90 1.11 EXAMPLE: MODIFIED MORPHOLOGICAL EQUATIONS VIA BOUNDED ONE-SIDED LIPSCHITZ MAPS 96 2 ADAPTING MUTATIONAL EQUATIONS TO EXAMPLES IN VECTOR SPACES 103 2.1 THE TOPOLOGICAL ENVIRONMENT OF THIS CHAPTER 104 2.2 SPECIFYING TRANSITIONS AND MUTATION ON (E,{DJ)JE^,( : J)IEJ ) * * * * 104 2.3 SOLUTIONS TO MUTATIONAL EQUATIONS 107 2.3.1 CONTINUITY WITH RESPECT TO INITIAL STATES AND RIGHT-HAND SIDE 108 2.3.2 LIMITS OF POINTWISE CONVERGING SOLUTIONS: CONVERGENCE THEOREM 109 2.3.3 EXISTENCE FOR MUTATIONAL EQUATIONS WITHOUT STATE CONSTRAINTS 112 2.3.4 CONVERGENCE THEOREM AND EXISTENCE FOR SYSTEMS 116 2.3. CONTENTS XI 3 CONTINUITY OF DISTANCES REPLACES THE TRIANGLE INEQUALITY 181 3.1 GENERAL ASSUMPTIONS OF THIS CHAPTER 182 3.2 THE ESSENTIAL FEATURES OF TRANSITIONS DO NOT CHANGE 185 3.3 SOLUTIONS TO MUTATIONAL EQUATIONS 186 3.3.1 CONTINUITY WITH RESPECT TO INITIAL STATES AND RIGHT-HAND SIDE 189 3.3.2 LIMITS OF GRAPHICALLY CONVERGING SOLUTIONS: CONVERGENCE THEOREM 190 3.3.3 EXISTENCE FOR MUTATIONAL EQUATIONS WITH DELAY AND WITHOUT STATE CONSTRAINTS 193 3.3.4 EXISTENCE FOR SYSTEMS OF MUTATIONAL EQUATIONS WITH DELAY .198 3.3.5 EXISTENCE UNDER STATE CONSTRAINTS FOR A SINGLE INDEX 202 3.3.6 EXPLOITING A GENERALIZED FORM OF WEAK COMPACTNESS: CONVERGENCE AND EXISTENCE WITHOUT STATE CONSTRAINTS 206 3.3.7 EXISTENCE OF SOLUTIONS DUE TO COMPLETENESS: EXTENDING THE CAUCHY-LIPSCHITZ THEOREM 212 3.4 LOCAL CO-CONTRACTIVITY OF TRANSITIONS CAN BECOME DISPENSABLE .... 214 3.5 CONSIDERING TUPLES WITH A SEPARATE REAL TIME COMPONENT 221 3.6 EXAMPLE: STRONG SOLUTIONS TO NONLOCAL STOCHASTIC DIFFERENTIAL EQUATIONS 231 3.6.1 THE GENERAL ASSUMPTIONS FOR THIS EXAMPLE 233 3.6.2 SOME STANDARD RESULTS ABOUT ITO INTEGRALS AND STRONG SOLUTIONS TO STOCHASTIC ORDINARY DIFFERENTIAL EQUATIONS .... 233 3.6.3 A SHORT CUT TO EXISTENCE OF STRONG SOLUTIONS 235 3.6.4 A SPECIAL CASE WITH FIXED ADDITIVE NOISE IN MORE DETAIL .. 238 3.7 EXAMPLE: STOCHASTIC MORPHOLOGICAL EQUATIONS FOR SQUARE INTEGRABLE RANDOM CLOSED SETS IN R CONTENTS 3.9 EXAMPLE: NONLOCAL PARABOLIC EQUATIONS IN CYLINDRICAL DOMAINS ... 278 3.9.1 MOTIVATION: SMOOTHING AN IMAGE, BUT PRESERVING ITS EDGES . 278 3.9.2 THE MAIN RESULT 279 3.9.3 THE UNDERLYING DETAILS IN TERMS OF MUTATIONAL ANALYSIS ... 282 3.10 EXAMPLE: SEMILINEAR EVOLUTION EQUATIONS IN ANY BANACH SPACES .. 291 3.10.1 THE DISTANCE FUNCTIONS (D) * C *+,(E/) I - (= *+ ONX =M XX . . 293 3.10.2 THE VARIATION OF CONSTANTS INDUCES TRANSITIONS ON X 298 3.10.3 MILD SOLUTIONS TO SEMILINEAR EVOLUTION EQUATIONS IN X * USING AN IMMEDIATELY COMPACT SEMIGROUP 300 3.10.4 EXPLOITING RELATIVELY COMPACT TERMS OF INHOMOGENEITY ... 306 3.11 EXAMPLE: PARABOLIC DIFFERENTIAL EQUATIONS IN NONCYLINDRICAL DOMAINS 311 3.11.1 THE GENERAL ASSUMPTIONS FOR THIS EXAMPLE 311 3.11.2 SOME RESULTS OF LUMER AND SCHNAUBELT 313 3.11.3 SEMILINEAR PARABOLIC DIFFERENTIAL EQUATIONS IN A FIXED NONCYLINDRICAL DOMAIN 317 3.11.4 THE TUSK CONDITION FOR APPROXIMATIVE CAUCHY BARRIERS ... 326 3.11.5 SUCCESSIVE COUPLING OF NONLINEAR PARABOLIC PROBLEM AND MORPHOLOGICAL EQUATION 329 INTRODUCING DISTRIBUTION-LIKE SOLUTIONS TO MUTATIONAL EQUATIONS 331 4.1 GENERAL ASSUMPTIONS OF THIS CHAPTER 334 4.2 COMPARING WITH TEST ELEMENTS OF @ CONTENTS XIII 4.5 FURTHER EXAMPLE: MUTATIONAL EQUATIONS FOR COMPACT SETS DEPENDING ON NORMAL CONES 372 4.5.1 SPECIFYING SETS AND DISTANCE FUNCTIONS 373 4.5.2 REACHABLE SETS INDUCE TIMED TRANSITIONS 376 4.5.3 EXISTENCE DUE TO STRONG-WEAK TRANSITIONAL EULER COMPACTNESS 381 4.5.4 UNIQUENESS OF TIMED SOLUTIONS 383 5 MUTATIONAL INCLUSIONS IN METRIC SPACES 385 5.1 MUTATIONAL INCLUSIONS WITHOUT STATE CONSTRAINTS 386 5.1.1 SOLUTIONS TO MUTATIONAL INCLUSIONS: DEFINITION AND EXISTENCE 386 5.1.2 A SELECTION PRINCIPLE GENERALIZING THE THEOREM OF ANTOSIEWICZ-CELLINA 388 5.1.3 PROOFS ON THE WAY TO EXISTENCE THEOREM 5.4 395 5.2 MORPHOLOGICAL INCLUSIONS WITH STATE CONSTRAINTS: A VIABILITY THEOREM 399 5.2.1 (WELL-KNOWN) VIABILITY THEOREM FOR DIFFERENTIAL INCLUSIONS 400 5.2.2 ADAPTING THIS CONCEPT TO MORPHOLOGICAL INCLUSIONS: THE MAIN THEOREM 401 5.2.3 THE STEPS FOR PROVING THE MORPHOLOGICAL VIABILITY THEOREM 403 5.3 MORPHOLOGICAL CONTROL PROBLEMS FOR COMPACT SETS IN R^ WITH STATE CONSTRAINTS 413 5.3.1 FORMULATION 415 5.3.2 THE LINK TO MORPHOLOGICAL INCLUSIONS 416 5.3.3 APPLICATION TO CONTROL PROBLEMS WITH STATE CONSTRAINTS 418 5.3.4 RELAXED CONTROL PROBLEMS WITH STATE CONSTRAINTS 420 5.3.5 CLARKE TANGENT CONE IN THE MORPHOLOGICAL FRAMEWORK: THE CIRCATANGENT TRANSITION SET 426 5.3.6 THE HYPERTANGENT TRANSITION SET 433 5.3.7 CLOSED CONTROL LOOPS FOR PROBLEMS WITH STATE CONSTRAINTS.. 436 TOOL CONTENTS A.5 REGULARITY OF REACHABLE SETS OF DIFFERENTIAL INCLUSIONS 454 A.5.1 NORMAL CONES AND COMPACT SETS: DEFINITIONS AND NOTATION . 454 A.5.2 ADJOINT ARCS FOR EVOLVING NORMAL CONES TO REACHABLE SETS 456 A.5.3 HAMILTONIAN SYSTEM HELPS PRESERVING C 1 1 BOUNDARIES .... 458 A.5.4 HOW TO GUARANTEE REVERSIBILITY OF REACHABLE SETS IN TIME . 461 A.5.5 HOW TO MAKE POINTS EVOLVE INTO CONVEX SETS OF POSITIVE EROSION 463 A.5.6 REACHABLE SETS OF BALLS AND THEIR COMPLEMENTS 469 A.5.7 THE (UNIFORM) TUSK CONDITION FOR GRAPHS OF REACHABLE SETS 473 A.6 REYNOLDS TRANSPORT THEOREM FOR DIFFERENTIAL INCLUSIONS WITH CARATHEODORY MAPS 476 A.7 DIFFERENTIAL INCLUSIONS WITH ONE-SIDED LIPSCHITZ CONTINUOUS MAPS. 480 A.8 STOCHASTIC DIFFERENTIAL INCLUSIONS IN M. N 482 A.8.1 FILIPPOV-LIKE THEOREM OF DA PRATO AND FRANKOWSKA 482 A.8.2 A SUFFICIENT CONDITION ON INVARIANT SUBSETS 486 A.9 PROXIMAL NORMALS OF SET SEQUENCES IN R N 487 A.10 TOOLS FOR SET-VALUED MAPS 489 A.10.1 MEASURABLE SET-VALUED MAPS 489 A. 10.2 PARAMETERIZATION OF SET-VALUED MAPS 491 A.I 1 COMPACTNESS OF CONTINUOUS FUNCTIONS BETWEEN METRIC SPACES .... 491 A. 12 BOCHNER INTEGRALS AND WEAK COMPACTNESS IN L) 492 BIBLIOGRAPHICAL NOTES 493 REFERENCE
any_adam_object 1
author Lorenz, Thomas 1974-
author_GND (DE-588)131512617
author_facet Lorenz, Thomas 1974-
author_role aut
author_sort Lorenz, Thomas 1974-
author_variant t l tl
building Verbundindex
bvnumber BV036520006
classification_rvk SI 850
classification_tum MAT 347f
MAT 356f
MAT 606f
ctrlnum (OCoLC)845676191
(DE-599)DNB1000753662
dewey-full 515.35
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515.35
dewey-search 515.35
dewey-sort 3515.35
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02477nam a2200577 cb4500</leader><controlfield tag="001">BV036520006</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100714 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">100623s2010 gw abd| m||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">10,N11</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1000753662</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642124709</subfield><subfield code="c">PB. : ca. EUR 96.25 (freier Pr.), ca. sfr 140.00 (freier Pr.)</subfield><subfield code="9">978-3-642-12470-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642124716</subfield><subfield code="9">978-3-642-12471-6</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783642124709</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">80012301</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)845676191</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1000753662</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.35</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">34A60</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 347f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 356f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 606f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lorenz, Thomas</subfield><subfield code="d">1974-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)131512617</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mutational analysis</subfield><subfield code="b">a joint framework for cauchy problems in and beyond vector spaces</subfield><subfield code="c">Thomas Lorenz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 509 S.</subfield><subfield code="b">Ill., graph. Darst., Kt.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1996</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mengenwertige Abbildung</subfield><subfield code="0">(DE-588)4270772-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Evolutionsgleichung</subfield><subfield code="0">(DE-588)4221363-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtglatte Analysis</subfield><subfield code="0">(DE-588)4379207-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verallgemeinerte Differentialgleichung</subfield><subfield code="0">(DE-588)4187509-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Verallgemeinerte Differentialgleichung</subfield><subfield code="0">(DE-588)4187509-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtlineare Evolutionsgleichung</subfield><subfield code="0">(DE-588)4221363-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Nichtglatte Analysis</subfield><subfield code="0">(DE-588)4379207-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Mengenwertige Abbildung</subfield><subfield code="0">(DE-588)4270772-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1996</subfield><subfield code="w">(DE-604)BV000676446</subfield><subfield code="9">1996</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=3439853&amp;prov=M&amp;dok_var=1&amp;dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=020442023&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020442023</subfield></datafield></record></collection>
genre (DE-588)4113937-9 Hochschulschrift gnd-content
genre_facet Hochschulschrift
id DE-604.BV036520006
illustrated Illustrated
indexdate 2024-12-24T00:06:17Z
institution BVB
isbn 9783642124709
9783642124716
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-020442023
oclc_num 845676191
open_access_boolean
owner DE-824
DE-91G
DE-BY-TUM
DE-11
DE-83
DE-188
owner_facet DE-824
DE-91G
DE-BY-TUM
DE-11
DE-83
DE-188
physical XIV, 509 S. Ill., graph. Darst., Kt.
publishDate 2010
publishDateSearch 2010
publishDateSort 2010
publisher Springer
record_format marc
series Lecture notes in mathematics
series2 Lecture notes in mathematics
spellingShingle Lorenz, Thomas 1974-
Mutational analysis a joint framework for cauchy problems in and beyond vector spaces
Lecture notes in mathematics
Mengenwertige Abbildung (DE-588)4270772-9 gnd
Nichtlineare Evolutionsgleichung (DE-588)4221363-0 gnd
Nichtglatte Analysis (DE-588)4379207-8 gnd
Verallgemeinerte Differentialgleichung (DE-588)4187509-6 gnd
subject_GND (DE-588)4270772-9
(DE-588)4221363-0
(DE-588)4379207-8
(DE-588)4187509-6
(DE-588)4113937-9
title Mutational analysis a joint framework for cauchy problems in and beyond vector spaces
title_auth Mutational analysis a joint framework for cauchy problems in and beyond vector spaces
title_exact_search Mutational analysis a joint framework for cauchy problems in and beyond vector spaces
title_full Mutational analysis a joint framework for cauchy problems in and beyond vector spaces Thomas Lorenz
title_fullStr Mutational analysis a joint framework for cauchy problems in and beyond vector spaces Thomas Lorenz
title_full_unstemmed Mutational analysis a joint framework for cauchy problems in and beyond vector spaces Thomas Lorenz
title_short Mutational analysis
title_sort mutational analysis a joint framework for cauchy problems in and beyond vector spaces
title_sub a joint framework for cauchy problems in and beyond vector spaces
topic Mengenwertige Abbildung (DE-588)4270772-9 gnd
Nichtlineare Evolutionsgleichung (DE-588)4221363-0 gnd
Nichtglatte Analysis (DE-588)4379207-8 gnd
Verallgemeinerte Differentialgleichung (DE-588)4187509-6 gnd
topic_facet Mengenwertige Abbildung
Nichtlineare Evolutionsgleichung
Nichtglatte Analysis
Verallgemeinerte Differentialgleichung
Hochschulschrift
url http://deposit.dnb.de/cgi-bin/dokserv?id=3439853&prov=M&dok_var=1&dok_ext=htm
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020442023&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000676446
work_keys_str_mv AT lorenzthomas mutationalanalysisajointframeworkforcauchyproblemsinandbeyondvectorspaces