Transport Equations and Multi-D Hyperbolic Conservation Laws

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Ambrosio, Luigi 1963- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Berlin, Heidelberg Springer-Verlag Berlin Heidelberg 2008
Schriftenreihe:Lecture notes of the Unione Matematica Italiana 5
Schlagworte:
Online-Zugang:DE-634
DE-91
DE-384
DE-703
DE-29
DE-739
Volltext
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV036492402
003 DE-604
005 20230104
007 cr|uuu---uuuuu
008 100609s2008 xx o|||| 10||| eng d
020 |a 9783540767817  |9 978-3-540-76781-7 
035 |a (OCoLC)1184394301 
035 |a (DE-599)BVBBV036492402 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-634  |a DE-703  |a DE-29  |a DE-91  |a DE-384  |a DE-83  |a DE-739 
082 0 |a 515.3535  |2 22//ger 
084 |a MAT 000  |2 stub 
100 1 |a Ambrosio, Luigi  |d 1963-  |e Verfasser  |0 (DE-588)133791408  |4 aut 
245 1 0 |a Transport Equations and Multi-D Hyperbolic Conservation Laws  |c by Luigi Ambrosio, Gianluca Crippa, Camillo Lellis, Felix Otto, Michael Westdickenberg 
264 1 |a Berlin, Heidelberg  |b Springer-Verlag Berlin Heidelberg  |c 2008 
300 |a 1 Online-Ressource 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 1 |a Lecture notes of the Unione Matematica Italiana  |v 5 
650 4 |a Mathematik 
650 4 |a Calculus of Variations and Optimal Control; Optimization 
650 4 |a Differential Equations 
650 4 |a Mathematics 
650 4 |a Measure and Integration 
650 4 |a Ordinary Differential Equations 
650 4 |a Partial Differential Equations 
650 4 |a Differential equations, partial 
650 4 |a Mathematical optimization 
650 0 7 |a Geometrische Maßtheorie  |0 (DE-588)4125258-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Nichtlineare hyperbolische Differentialgleichung  |0 (DE-588)4228136-2  |2 gnd  |9 rswk-swf 
655 7 |8 1\p  |0 (DE-588)1071861417  |a Konferenzschrift  |y 2005  |z Bologna  |2 gnd-content 
689 0 0 |a Nichtlineare hyperbolische Differentialgleichung  |0 (DE-588)4228136-2  |D s 
689 0 1 |a Geometrische Maßtheorie  |0 (DE-588)4125258-5  |D s 
689 0 |8 2\p  |5 DE-604 
700 1 |a Crippa, Gianluca  |e Sonstige  |4 oth 
700 1 |a Westdickenberg, Michael  |d 1972-  |e Sonstige  |0 (DE-588)1044329165  |4 oth 
700 1 |a Otto, Felix  |d 1966-  |e Sonstige  |0 (DE-588)135534305  |4 oth 
700 1 |a De Lellis, Camillo  |d 1976-  |e Sonstige  |0 (DE-588)122562321  |4 oth 
830 0 |a Lecture notes of the Unione Matematica Italiana  |v 5  |w (DE-604)BV035421262  |9 5 
856 4 0 |u https://doi.org/10.1007/978-3-540-76781-7  |x Verlag  |3 Volltext 
856 4 2 |m DNB Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020414991&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
912 |a ZDB-2-SMA 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-020414991 
966 e |u https://doi.org/10.1007/978-3-540-76781-7  |l DE-634  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-540-76781-7  |l DE-91  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-540-76781-7  |l DE-384  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-540-76781-7  |l DE-703  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-540-76781-7  |l DE-29  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-540-76781-7  |l DE-739  |p ZDB-2-SMA  |x Verlag  |3 Volltext 

Datensatz im Suchindex

DE-BY-TUM_katkey 1963261
_version_ 1820881969682055168
adam_text CONTENTS PARTI EXISTENCE, UNIQUENESS, STABILITY AND DIFFERENTIABILITY PROPERTIES OF THE FLOW ASSOCIATED TO WEAKLY DIFFERENTIABLE VECTOR FIELDS 3 LUIGI AMBROSIO AND GIANLUCA CRIPPA 1 INTRODUCTION 3 2 THE CONTINUITY EQUATION 5 3 THE CONTINUITY EQUATION WITHIN THE CAUCHY-LIPSCHITZ FRAMEWORK 7 4 (ODE) UNIQUENESS VS. (PDE) UNIQUENESS 11 5 THE FLOW ASSOCIATED TO SOBOLEV OR BV VECTOR FIELDS 19 6 MEASURE-THEORETIC DIFFERENTIALS 32 7 DIFFERENTIABILITY OF THE FLOW IN THE W L 1 CASE 38 8 DIFFERENTIABILITY AND COMPACTNESS OF THE FLOW IN THE W LP CASE 40 9 BIBLIOGRAPHICAL NOTES AND OPEN PROBLEMS 52 REFERENCES 54 PARTLL A NOTE ON ALBERTI S RANK-ONE THEOREM 61 CAMILLO DE LELLIS 1 INTRODUCTION 61 2 DIMENSIONAL REDUCTION 63 3 A BLOW-UP ARGUMENT LEADING TO A PARTIAL RESULT 65 4 THE FUNDAMENTAL LEMMA 66 5 PROOF OF THEOREM 1.1 IN THE PLANAR CASE 68 REFERENCES 74 GESCANNT DURCH BIBLIOGRAFISCHE INFORMATIONEN HTTP://D-NB.INFO/987389114 DIGITALISIERT DURCH EXISTENCE, UNIQUENESS, STABILITY AND DIFFERENTIABILITY PROPERTIES OF THE FLOW ASSOCIATED TO WEAKLY DIFFERENTIABLE VECTOR FIELDS LUIGI AMBROSIO AND GIANLUCA CRIPPA SCUOLA NORMALE SUPERIORE, PIAZZA DEI CAVALIERI 7, 56126 PISA, ITALY E-MAIL: L.AMBROSIO@SNS.IT, G.CRIPPA@SNS.IT URL: HTTP://CVGMT.SNS.IT/PEOPLE/AMBROSIO/ 1 INTRODUCTION 3 2 THE CONTINUITY EQUATION 5 3 THE CONTINUITY EQUATION WITHIN THE CAUCHY*LIPSCHITZ FRAMEWORK 7 4 (ODE) UNIQUENESS VS. (PDE) UNIQUENESS 11 5 THE FLOW ASSOCIATED TO SOBOLEV OR BV VECTOR FIELDS 19 6 MEASURE-THEORETIC DIFFERENTIALS 32 7 DIFFERENTIABILITY OF THE FLOW IN THE W M CASE 38 8 DIFFERENTIABILITY AND COMPACTNESS OF THE FLOW IN THE W L * CASE 40 9 BIBLIOGRAPHICAL NOTES AND OPEN PROBLEMS 52 REFERENCES 54 REFERENCES 74 A NOTE ON ALBERTI S RANK-ONE THEOREM CAMILLO DE LELLIS INSTITUT FURMATHEMATIK, UNIVERSITAT ZURICH, WINTERTHURERSTRASSE 190, CH-8057 ZURICH, SWITZERLAND E-MAIL: DELELLIS@MATH.UNIZH.CH URL: HTTP://WWW.MATH.UNIZH.CH/ 1 INTRODUCTION 61 2 DIMENSIONAL REDUCTION 63 3 A BLOW-UP ARGUMENT LEADING TO A PARTIAL RESULT 65 4 THE FUNDAMENTAL LEMMA 66 5 PROOF OF THEOREM 1.1 IN THE PLANARCASE 68 77 REGULARIZING EFFECT OF NONLINEARITY IN MULTIDIMENSIONAL SCALAR CONSERVATION LAWS GIANLUCA CRIPPA 1 , FELIX OTTO 2 , AND MICHAEL WESTDICKENBERG 3 SCUOLA NORMALE SUPERIORE, PIAZZA DEI CAVALIERI 7,1-56126 PISA, ITALY E-MAIL: G.CRIPPA@SNS.IT 2 INSTIRUT FUR ANGEWANDTE MATHEMATIK, UNIVERSITAT BONN, WEGELERSTRABE 10, D-53115 BONN, GERMANY E-MAIL: OTTO@IAM.UNI-BONN.DE 3 SCHOOL OF MATHEMATICS, GEORGIA INSTITUTE OF TECHNOLOGY, 686 CHERRY STREET, ATLANTA, GEORGIA 30332-0160, U.S.A. E-MAIL: MWEST@MATH.GATECH.EDU URL: HTTP://WWW.MATHPHYS.IAM.UNIBONN.DE/~OTTO/ URL: HTTP://WWW.MATH.GATECH.EDU/~MWEST/ 1 INTRODUCTION 77 2 BACKGROUND MATERIAL 79 3 ENTROPY SOLUTIONS WITH BV-REGULARIRY 84 4 STRUCTURE OF ENTROPY SOLUTIONS 87 5 KINETIC FORMULATION, BLOW-UPS AND SPLIT STATES 91 6 CLASSIFICATION OF SPLIT STATES 98 6.1 SPECIAL SPLIT STATES: NO ENTROPY DISSIPATION 98 6.2 SPECIAL SPLIT STATES: V SUPPORTED ON A HYPERPLANE 101 6.3 SPECIAL SPLIT STATES: V SUPPORTED ON HAIFA HYPERPLANE 103 6.4 CLASSIFICATION OF GENERAL SPLIT STATES 105 7 PROOF OF THE MAIN THEOREM 106 8 PROOFS OF THE REGULARITY THEOREMS 112 REFERENCES 127
any_adam_object 1
author Ambrosio, Luigi 1963-
author_GND (DE-588)133791408
(DE-588)1044329165
(DE-588)135534305
(DE-588)122562321
author_facet Ambrosio, Luigi 1963-
author_role aut
author_sort Ambrosio, Luigi 1963-
author_variant l a la
building Verbundindex
bvnumber BV036492402
classification_tum MAT 000
collection ZDB-2-SMA
ctrlnum (OCoLC)1184394301
(DE-599)BVBBV036492402
dewey-full 515.3535
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515.3535
dewey-search 515.3535
dewey-sort 3515.3535
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-3-540-76781-7
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03330nam a2200661zcb4500</leader><controlfield tag="001">BV036492402</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230104 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">100609s2008 xx o|||| 10||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540767817</subfield><subfield code="9">978-3-540-76781-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184394301</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV036492402</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.3535</subfield><subfield code="2">22//ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ambrosio, Luigi</subfield><subfield code="d">1963-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)133791408</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Transport Equations and Multi-D Hyperbolic Conservation Laws</subfield><subfield code="c">by Luigi Ambrosio, Gianluca Crippa, Camillo Lellis, Felix Otto, Michael Westdickenberg</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer-Verlag Berlin Heidelberg</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes of the Unione Matematica Italiana</subfield><subfield code="v">5</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measure and Integration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordinary Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Maßtheorie</subfield><subfield code="0">(DE-588)4125258-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4228136-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">2005</subfield><subfield code="z">Bologna</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4228136-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geometrische Maßtheorie</subfield><subfield code="0">(DE-588)4125258-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Crippa, Gianluca</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Westdickenberg, Michael</subfield><subfield code="d">1972-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1044329165</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Otto, Felix</subfield><subfield code="d">1966-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)135534305</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">De Lellis, Camillo</subfield><subfield code="d">1976-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)122562321</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes of the Unione Matematica Italiana</subfield><subfield code="v">5</subfield><subfield code="w">(DE-604)BV035421262</subfield><subfield code="9">5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-540-76781-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=020414991&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020414991</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-540-76781-7</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-540-76781-7</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-540-76781-7</subfield><subfield code="l">DE-384</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-540-76781-7</subfield><subfield code="l">DE-703</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-540-76781-7</subfield><subfield code="l">DE-29</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-540-76781-7</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
genre 1\p (DE-588)1071861417 Konferenzschrift 2005 Bologna gnd-content
genre_facet Konferenzschrift 2005 Bologna
id DE-604.BV036492402
illustrated Not Illustrated
indexdate 2024-12-24T00:05:38Z
institution BVB
isbn 9783540767817
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-020414991
oclc_num 1184394301
open_access_boolean
owner DE-634
DE-703
DE-29
DE-91
DE-BY-TUM
DE-384
DE-83
DE-739
owner_facet DE-634
DE-703
DE-29
DE-91
DE-BY-TUM
DE-384
DE-83
DE-739
physical 1 Online-Ressource
psigel ZDB-2-SMA
publishDate 2008
publishDateSearch 2008
publishDateSort 2008
publisher Springer-Verlag Berlin Heidelberg
record_format marc
series Lecture notes of the Unione Matematica Italiana
series2 Lecture notes of the Unione Matematica Italiana
spellingShingle Ambrosio, Luigi 1963-
Transport Equations and Multi-D Hyperbolic Conservation Laws
Lecture notes of the Unione Matematica Italiana
Mathematik
Calculus of Variations and Optimal Control; Optimization
Differential Equations
Mathematics
Measure and Integration
Ordinary Differential Equations
Partial Differential Equations
Differential equations, partial
Mathematical optimization
Geometrische Maßtheorie (DE-588)4125258-5 gnd
Nichtlineare hyperbolische Differentialgleichung (DE-588)4228136-2 gnd
subject_GND (DE-588)4125258-5
(DE-588)4228136-2
(DE-588)1071861417
title Transport Equations and Multi-D Hyperbolic Conservation Laws
title_auth Transport Equations and Multi-D Hyperbolic Conservation Laws
title_exact_search Transport Equations and Multi-D Hyperbolic Conservation Laws
title_full Transport Equations and Multi-D Hyperbolic Conservation Laws by Luigi Ambrosio, Gianluca Crippa, Camillo Lellis, Felix Otto, Michael Westdickenberg
title_fullStr Transport Equations and Multi-D Hyperbolic Conservation Laws by Luigi Ambrosio, Gianluca Crippa, Camillo Lellis, Felix Otto, Michael Westdickenberg
title_full_unstemmed Transport Equations and Multi-D Hyperbolic Conservation Laws by Luigi Ambrosio, Gianluca Crippa, Camillo Lellis, Felix Otto, Michael Westdickenberg
title_short Transport Equations and Multi-D Hyperbolic Conservation Laws
title_sort transport equations and multi d hyperbolic conservation laws
topic Mathematik
Calculus of Variations and Optimal Control; Optimization
Differential Equations
Mathematics
Measure and Integration
Ordinary Differential Equations
Partial Differential Equations
Differential equations, partial
Mathematical optimization
Geometrische Maßtheorie (DE-588)4125258-5 gnd
Nichtlineare hyperbolische Differentialgleichung (DE-588)4228136-2 gnd
topic_facet Mathematik
Calculus of Variations and Optimal Control; Optimization
Differential Equations
Mathematics
Measure and Integration
Ordinary Differential Equations
Partial Differential Equations
Differential equations, partial
Mathematical optimization
Geometrische Maßtheorie
Nichtlineare hyperbolische Differentialgleichung
Konferenzschrift 2005 Bologna
url https://doi.org/10.1007/978-3-540-76781-7
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020414991&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV035421262
work_keys_str_mv AT ambrosioluigi transportequationsandmultidhyperbolicconservationlaws
AT crippagianluca transportequationsandmultidhyperbolicconservationlaws
AT westdickenbergmichael transportequationsandmultidhyperbolicconservationlaws
AT ottofelix transportequationsandmultidhyperbolicconservationlaws
AT delelliscamillo transportequationsandmultidhyperbolicconservationlaws