The complexity of partition functions

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Thurley, Marc 1981- (VerfasserIn)
Format: Abschlussarbeit Buch
Sprache:English
Veröffentlicht: 2009
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV036057850
003 DE-604
005 20100618
007 t|
008 100302s2009 xx d||| m||| 00||| eng d
035 |a (OCoLC)624534869 
035 |a (DE-599)GBV617760071 
040 |a DE-604  |b ger 
041 0 |a eng 
049 |a DE-706  |a DE-91  |a DE-11  |a DE-634 
082 0 |a 511.352  |2 22/ger 
084 |a ST 134  |0 (DE-625)143590:  |2 rvk 
100 1 |a Thurley, Marc  |d 1981-  |e Verfasser  |0 (DE-588)140655131  |4 aut 
245 1 0 |a The complexity of partition functions  |c Marc Thurley 
264 1 |c 2009 
300 |a VII S., S. 9 - 236  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
502 |a Berlin, Humboldt-Univ., Diss., 2009 
650 0 7 |a Berechnungskomplexität  |0 (DE-588)4134751-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Partitionsfunktion  |0 (DE-588)4319801-6  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)4113937-9  |a Hochschulschrift  |2 gnd-content 
689 0 0 |a Partitionsfunktion  |0 (DE-588)4319801-6  |D s 
689 0 1 |a Berechnungskomplexität  |0 (DE-588)4134751-1  |D s 
689 0 |5 DE-604 
856 4 2 |m GBV Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018949401&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-018949401 

Datensatz im Suchindex

DE-BY-TUM_call_number 0001 DB 2010 32
DE-BY-TUM_katkey 1723374
DE-BY-TUM_location Mag
DE-BY-TUM_media_number 040007039836
_version_ 1820806461557571584
adam_text THE COMPLEXITY OF PARTITION FUNCTIONS DISSERTATION ZUR ERLANGUNG DES AKADEMISCHEN GRADES DOCTOR RERUM NATURALIUM (DR. RER. NAT.) IM FACH INFORMATIK EINGEREICHT AN DER MATHEMATISCH-NATURWISSENSCHAFTLICHEN FAKULTAET II HUMBOLDT-UNIVERSITAET ZU BERLIN VON HERR DIPL.-INF. MARC THURLEY GEBOREN AM 28.03.1981 IN STAAKEN PRAESIDENT DER HUMBOLDT-UNIVERSITAET ZU BERLIN: PROF. DR. DR. H.C. CHRISTOPH MARKSCHIES DEKAN DER MATHEMATISCH-NATURWISSENSCHAFTLICHEN FAKULTAET II: PROF. DR. PETER FRENSCH GUTACHTER: 1. PROF. DR. MARTIN GROHE 2. PROF. DR. HERIBERT VOLLMER 3. PROF. ANDREI BULATOV EINGEREICHT AM: 07. JULI 2009 TAG DER MUENDLICHEN PRUEFUNG: 18. SEPTEMBER 2009 CONTENTS 1 INTRODUCTION 9 1.1 CONTRIBUTIONS OF THIS THESIS 14 1.2 BASIC NOTATION 16 2 ORIGINS OF PARTITION FUNCTIONS 19 2.1 STATISTICAL PHYSICS 19 2.1.1 STATISTICAL MECHANICS MODELS ON GRAPHS 21 2.1.2 SOLVING MODELS AND COMPUTING PARTITION FUNCTIONS 23 2.2 COMBINATORICS 27 2.2.1 THE TUTTE POLYNOMIAL 27 2.2.2 PARTITION FUNCTIONS 29 3 A COMBINATORIAL PROPERTY OF PARTITION FUNCTIONS 35 3.1 DETERMINING MATRICES BY PARTITION FUNCTIONS 36 3.1.1 THE TWIN REDUCTION LEMMA 37 3.1.2 THE RECONSTRUCTION LEMMA 39 3.1.3 THE PROOF OF THEOREM 3.1.1 45 4 PARTITION FUNCTIONS AND THEIR COMPLEXITY 47 4.1 COUNTING COMPLEXITY 48 4.2 COUNTING COMPLEXITY AND PARTITION FUNCTIONS 49 4.3 THE ARITHMETICAL STRUCTURE OF PARTITION FUNCTIONS 52 4.3.1 FUNDAMENTAL TECHNICAL TOOLS 52 4.3.2 THE EQUIVALENCE OF EVAL PIN (A, ) AND COUNT PIN (A, ) 53 4.3.3 LOOKING AT THE STRUCTURE: THE PROOF OF LEMMA 4.3.1 55 4.4 FURTHER PREPARATORY CONSIDERATIONS 58 4.4.1 GENERAL PRINCIPLES 58 4.4.2 EDGE PRODUCTS 60 4.4.3 RANK 1 MATRICES AND TRACTABILITY 61 4.5 PINNING VERTICES 63 4.6 BOUNDED DEGREES AND ELIMINATING VERTEX WEIGHTS 67 4.6.1 SOME TECHNICAL TOOLS 68 4.6.2 THE PROOF OF LEMMA 4.6.2 70 V * 4.6.3 THE PROOF OF LEMMA 4.6.1 73 5 NON-NEGATIVE MATRICES 79 5.1 PRELIMINARIES 80 5.2 AN ITINERARY 81 5.3 THE GENERAL CONDITIONING LEMMA 82 5.3.1 FROM GENERAL MATRICES TO POSITIVE MATRICES . 82 5.3.2 FROM POSITIVE MATRICES TO X-MATRICES 82 5.3.3 FROM X-MATRICES TO THE GENERAL CONDITIONING LEMMA 84 5.4 THE TWO 1-CELL LEMMA 85 5.5 THE SINGLE 1-CELL LEMMA 89 5.5.1 PROOF OF THE SINGLE-1-CELL TECHNICAL CORE LEMMA 5.5.4 94 6 PARTITION FUNCTIONS ON HERMITIAN MATRICES 99 6.1 CONGRUENTIAL PARTITION FUNCTIONS 100 6.2 AN ITINERARY 100 6.2.1 THE GENERAL CASE 101 6.2.2 HADAMARD COMPONENTS 102 6.2.3 THE POLYNOMIAL TIME CASE 107 6.2.4 THE PROOF OF THEOREM 6.1 107 6.3 TECHNICAL PRELIMINARIES 109 6.3.1 GENERAL PRINCIPLES FOR CONGRUENTIAL PARTITION FUNCTIONS 109 6.3.2 EDGE PRODUCTS 110 6.3.3 BASIC COMPLEXITY RESULTS FOR CONGRUENTIAL PARTITION FUNCTIONS . . . . 110 7 CONNECTED HERMITIAN MATRICES 111 7.1 SOME TECHNICAL PRELIMINARIES 112 7.2 THE NON-BIPARTITE CASE . 114 7.2.1 SATISFYING SHAPE CONDITIONS (CI) AND (DL) 118 7.2.2 THE REMAINING CONDITIONS (C2), (D2) AND (D3) 124 7.2.3 FINISHING THE PROOF OF LEMMA 7.1 131 7.3 THE PROOF OF THE BIPARTITE CASE . 132 7.3.1 SATISFYING THE BIPARTITE SHAPE CONDITIONS (B-CL) AND (B-DL) ... 139 7.3.2 THE REMAINING CONDITIONS (B-C2), (B-D2) AND (B-D3) 146 7.3.3 FINISHING THE PROOF OF LEMMA 7.2 153 8 HADAMARD COMPONENTS 155 8.1 BOUNDING THE MAXIMUM DEGREE 156 8.2 NON-BIPARTITE HADAMARD COMPONENTS 158 8.2.1 THE GROUP CONDITION (GC) 159 8.2.2 THE REPRESENTATION CONDITIONS (RL) THROUGH (R5) 161 8.2.3 THE AFFINITY CONDITION (AF) 164 8.2.4 THE PROOF OF THE NON-BIPARTITE CASE LEMMA 8.1 173 VI 8.3 BIPARTITE HADAMARD COMPONENTS 173 8.3.1 THE GROUP CONDITION (GC) 173 8.3.2 THE REPRESENTATION ACCORDING TO (B-RL) THROUGH (B-R5) 176 8.3.3 THE AFFINITY CONDITION (B-AF) 180 8.3.4 THE PROOF OF THE BIPARTITE CASE LEMMA 8.2 189 9 POLYNOMIAL TIME COMPUTABLE PARTITION FUNCTIONS 191 9.1 A POLYNOMIAL TIME COMPUTABLE PROBLEM 192 9.1.1 SOLVING EVAL(G) FOR Q A POWER OF AN ODD PRIME 193 9.1.2 SOLVING EVAL(Q) FOR Q A POWER OF 2 196 9.2 COMPUTING PARTITION FUNCTIONS * THE NON-BIPARTITE CASE 200 9.2.1 THE STRUCTURE OF THE MAPPINGS P C 200 9.2.2 THE FINAL REDUCTION 203 9.3 COMPUTING PARTITION FUNCTIONS * THE BIPARTITE CASE 210 9.3.1 THE STRUCTURE OF THE MAPPINGS P CJROW AND P CICO I 210 9.3.2 THE PROOF OF LEMMA 9.2 211 10 EPILOGUE 221 10.1 IMPLICATIONS ON POLYNOMIAL TIME COMPUTABILITY 221 10.2 OPEN QUESTIONS 223 A SOME MATHEMATICAL BACKGROUND 225 A.L VANDERMONDE DETERMINANTS 225 A.2 IMPORTANT FACTS FROM GROUP THEORY 225 A.2.1 FOURIER ANALYSIS OF ABELIAN GROUPS 226 BIBLIOGRAPHY 231 VLL
any_adam_object 1
author Thurley, Marc 1981-
author_GND (DE-588)140655131
author_facet Thurley, Marc 1981-
author_role aut
author_sort Thurley, Marc 1981-
author_variant m t mt
building Verbundindex
bvnumber BV036057850
classification_rvk ST 134
ctrlnum (OCoLC)624534869
(DE-599)GBV617760071
dewey-full 511.352
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 511 - General principles of mathematics
dewey-raw 511.352
dewey-search 511.352
dewey-sort 3511.352
dewey-tens 510 - Mathematics
discipline Informatik
Mathematik
format Thesis
Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01412nam a2200361 c 4500</leader><controlfield tag="001">BV036057850</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100618 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">100302s2009 xx d||| m||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)624534869</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV617760071</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.352</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 134</subfield><subfield code="0">(DE-625)143590:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Thurley, Marc</subfield><subfield code="d">1981-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)140655131</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The complexity of partition functions</subfield><subfield code="c">Marc Thurley</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VII S., S. 9 - 236</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="a">Berlin, Humboldt-Univ., Diss., 2009</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Berechnungskomplexität</subfield><subfield code="0">(DE-588)4134751-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partitionsfunktion</subfield><subfield code="0">(DE-588)4319801-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partitionsfunktion</subfield><subfield code="0">(DE-588)4319801-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Berechnungskomplexität</subfield><subfield code="0">(DE-588)4134751-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=018949401&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018949401</subfield></datafield></record></collection>
genre (DE-588)4113937-9 Hochschulschrift gnd-content
genre_facet Hochschulschrift
id DE-604.BV036057850
illustrated Illustrated
indexdate 2024-12-23T22:58:05Z
institution BVB
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-018949401
oclc_num 624534869
open_access_boolean
owner DE-706
DE-91
DE-BY-TUM
DE-11
DE-634
owner_facet DE-706
DE-91
DE-BY-TUM
DE-11
DE-634
physical VII S., S. 9 - 236 graph. Darst.
publishDate 2009
publishDateSearch 2009
publishDateSort 2009
record_format marc
spellingShingle Thurley, Marc 1981-
The complexity of partition functions
Berechnungskomplexität (DE-588)4134751-1 gnd
Partitionsfunktion (DE-588)4319801-6 gnd
subject_GND (DE-588)4134751-1
(DE-588)4319801-6
(DE-588)4113937-9
title The complexity of partition functions
title_auth The complexity of partition functions
title_exact_search The complexity of partition functions
title_full The complexity of partition functions Marc Thurley
title_fullStr The complexity of partition functions Marc Thurley
title_full_unstemmed The complexity of partition functions Marc Thurley
title_short The complexity of partition functions
title_sort the complexity of partition functions
topic Berechnungskomplexität (DE-588)4134751-1 gnd
Partitionsfunktion (DE-588)4319801-6 gnd
topic_facet Berechnungskomplexität
Partitionsfunktion
Hochschulschrift
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018949401&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT thurleymarc thecomplexityofpartitionfunctions