Survival and event history analysis a process point of view

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Aalen, Odd O. (VerfasserIn), Borgan, Ørnulf (VerfasserIn), Gjessing, Håkon K. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: New York, NY Springer 2008
Schriftenreihe:Statistics for biology and health
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV035856543
003 DE-604
005 20221129
007 t
008 091202s2008 xxud||| |||| 00||| eng d
010 |a 2008927364 
015 |a GBA847728  |2 dnb 
020 |a 9780387202877  |c hbk.  |9 978-0-387-20287-7 
020 |a 0387202870  |c hbk.  |9 0-387-20287-0 
035 |a (OCoLC)213855657 
035 |a (DE-599)BVBBV035856543 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
044 |a xxu  |c US 
049 |a DE-19  |a DE-355  |a DE-11  |a DE-473  |a DE-384 
050 0 |a QA274 
082 0 |a 519.23 
084 |a MR 2100  |0 (DE-625)123488:  |2 rvk 
084 |a QH 252  |0 (DE-625)141562:  |2 rvk 
084 |a SK 840  |0 (DE-625)143261:  |2 rvk 
100 1 |a Aalen, Odd O.  |e Verfasser  |0 (DE-588)170647293  |4 aut 
245 1 0 |a Survival and event history analysis  |b a process point of view  |c Odd O. Aalen, Ornulf Borgan, Håkon K. Gjessing 
264 1 |a New York, NY  |b Springer  |c 2008 
300 |a xviii, 539 S.  |b graph. Darst.  |c 25 cm 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Statistics for biology and health 
500 |a Includes bibliographical references (p. 499-520) and indexes 
650 7 |a Ereignisdatenanalyse  |2 swd 
650 4 |a Stochastic processes 
650 0 7 |a Ereignisdatenanalyse  |0 (DE-588)4132103-0  |2 gnd  |9 rswk-swf 
689 0 0 |a Ereignisdatenanalyse  |0 (DE-588)4132103-0  |D s 
689 0 |C b  |5 DE-604 
700 1 |a Borgan, Ørnulf  |e Verfasser  |0 (DE-588)170587290  |4 aut 
700 1 |a Gjessing, Håkon K.  |e Verfasser  |0 (DE-588)1038563240  |4 aut 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-0-387-68560-1 
856 4 2 |m Digitalisierung UB Regensburg  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018714483&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-018714483 

Datensatz im Suchindex

DE-473_call_number 31/MR 2100 WX 74848
DE-473_location 3
DE-BY-UBG_katkey 2931772
DE-BY-UBG_media_number 013107096276
_version_ 1811360061098819584
adam_text Contents Preface . VH 1 An introduction to survival and event history analysis .............. 1 1.1 Survival analysis: basic concepts and examples .................. 2 1.1.1 What makes survival special: censoring and truncation ..... 3 1.1.2 Survival function and hazard rate ....................... 5 1.1.3 Regression and frailty models .......................... 7 1.1.4 The past ............................................ 9 1 . 1 .5 Some illustrative examples ............................ 9 1.2 Event history analysis: models and examples .................... 16 1.2.1 Recurrent event data .................................. 17 1.2.2 Multistate models .................................... 18 1.3 Data that do not involve time ................................. 24 1.4 Counting processes ......................................... 25 1.4.1 What is a counting process? ........................... 25 1 .4.2 Survival times and counting processes .................. 28 1.4.3 Event histories and counting processes .................. 32 1.5 Modeling event history data .................................. 33 1.5.1 The multiplicative intensity model ...................... 34 1.5.2 Regression models ................................... 34 1.5.3 Frailty models and first passage time models ............. 35 1.5.4 Independent or dependent data? ........................ 36 1.6 Exercises ................................................. 37 2 Stochastic processes in event history analysis ...................... 41 2.1 Stochastic processes in discrete time ........................... 43 2.1.1 Martingales in discrete time ........................... 43 2.1.2 Variation processes ................................... 44 2 Л .3 Stopping times and transformations ..................... 45 2.1.4 The Doob decomposition .............................. 47 2.2 Processes in continuous time ................................. 48 xjj Contents 2.2.1 Martingales in continuous time ......................... 48 2.2.2 Stochastic integrals ................................... 50 2.2.3 The Doob-Meyer decomposition ....................... 52 2.2.4 The Poisson process .................................. 52 2.2.5 Counting processes ................................... 53 2.2.6 Stochastic integrals for counting process martingales ...... 55 2.2.7 The innovation theorem ............................... 56 2.2.8 Independent censoring ................................ 57 2.3 Processes with continuous sample paths ........................ 61 2.3.1 The Wiener process and Gaussian martingales ........... 61 2.3.2 Asymptotic theory for martingales: intuitive discussion .... 62 2.3.3 Asymptotic theory for martingales: mathematical formulation ......................................... 63 2.4 Exercises ................................................. 66 3 Nonparametric analysis of survival and event history data .......... 69 3.1 The Nelson-Aalen estimator .................................. 70 3.1.1 The survival data situation ............................. 71 3.1.2 The multiplicative intensity model ...................... 76 3.1.3 Handling of ties ..................................... 83 3.1.4 Smoothing the Nelson- Aalen estimator .................. 85 3.1.5 The estimator and its small sample properties ............. 87 3.1.6 Large sample properties ............................... 89 3.2 The Kaplan-Meier estimator ................................. 90 3.2.1 The estimator and confidence intervals .................. 90 3.2.2 Handling tied survival times ........................... 94 3.2.3 Median and mean survival times ........................ 95 3.2.4 Product-integral representation ......................... 97 3.2.5 Excess mortality and relative survival ................... 99 3.2.6 Martingale representation and statistical properties ........103 3.3 Nonparametric tests .........................................104 3.3.1 The two-sample case .................................105 3.3.2 Extension to more than two samples ....................109 3.3.3 Stratified tests .......................................110 3.3.4 Handling of tied observations .......................... Ill 3.3.5 Asymptotics ........................................112 3.4 The empirical transition matrix ...............................114 3.4.1 Competing risks and cumulative incidence functions .......114 3.4.2 An illness-death model ...............................117 3.4.3 The general case .....................................120 3.4.4 Martingale representation and large sample properties .....123 3.4.5 Estimation of («^variances ............................124 3.5 Exercises .................................................126 Contents Regression models.............................................. 131 4.1 Relative risk regression ......................................133 4.1.1 Partial likelihood and inference for regression coefficients .. 134 4.1.2 Estimation of cumulative hazards and survival probabilities .141 4.1.3 Martingale residual processes and model check ...........142 4.1.4 Stratified models ......... ^ ...........................148 4.1.5 Large sample properties of β ..........................149 4.1.6 Large sample properties of estimators of cumulative hazards and survival functions .........................152 4.2 Additive regression models ..................................154 4.2.1 Estimation in the additive hazard model .................157 4.2.2 Interpreting changes over time .........................163 4.2.3 Martingale tests and a generalized log-rank test ...........164 4.2.4 Martingale residual processes and model check ...........167 4.2.5 Combining the Cox and the additive models ..............171 4.2.6 Adjusted monotone survival curves for comparing groups .. 172 4.2.7 Adjusted Kaplan-Meier curves under dependent censoring .. 175 4.2.8 Excess mortality models and the relative survival function .. 179 4.2.9 Estimation of Markov transition probabilities .............181 4.3 Nested case-control studies ..................................190 4.3.1 A general framework for nested-case control sampling .....192 4.3.2 Two important nested case-control designs ...............194 4.3.3 Counting process formulation of nested case-control sampling ...........................................195 4.3.4 Relative risk regression for nested case-control data .......196 4.3.5 Additive regression for nested case-control data: results .... 200 4.3.6 Additive regression for nested case-control data: theory .... 202 4.4 Exercises .................................................203 Parametric counting process models ..............................207 5.1 Likelihood inference ........................................208 5.1.1 Parametric models for survival times ....................208 5.1.2 Likelihood for censored survival times ..................209 5.1.3 Likelihood for counting process models .................210 5.1.4 The maximum likelihood estimator and related tests .......213 5.1.5 Some applications ...................................214 5.2 Parametric regression models .................................223 5.2.1 Poisson regression ...................................223 5.3 Proof of large sample properties ..............................226 5.4 Exercises .................................................228 Unobserved heterogeneity: The odd effects of frailty ...............231 6.1 What is randomness in survival models? .......................233 6.2 The proportional frailty model ................................234 6.2.1 Basic properties .....................................234 Contents 6.2.2 The Gamma frailty distribution .........................235 6.2.3 The PVF family of frailty distributions ..................238 6.2.4 Lévy-type frailty distributions ..........................242 6.3 Hazard and frailty of survivors ...............................243 6.3.1 Results for the PVF distribution ........................243 6.3.2 Cure models ........................................244 6.3.3 Asymptotic distribution of survivors ....................245 6.4 Parametric models derived from frailty distributions .............246 6.4.1 A model based on Gamma frailty: the Burr distribution ___246 6.4.2 A model based on PVF frailty ..........................247 6.4.3 The Weibull distribution derived from stable frailty .......248 6.4.4 Frailty and estimation ................................249 6.5 The effect of frailty on hazard ratio ...........................250 6.5.1 Decreasing relative risk and crossover ..................250 6.5.2 The effect of discontinuing treatment ...................253 6.5.3 Practical implications of artifacts ......................255 6.5.4 Frailty models yielding proportional hazards .............257 6.6 Competing risks and false protectivity .........................260 6.7 A frailty model for the speed of a process ......................262 6.8 Frailty and association between individuals ....................264 6.9 Case study: A frailty model for testicular cancer ................265 6.10 Exercises .................................................268 Multìvariate frailty models .....................................271 7.1 Censoring in the multivariate case .............................272 7.1.1 Censoring for recurrent event data ......................273 7.1.2 Censoring for clustered survival data ....................274 7.2 Shared frailty models .......................................275 7.2.1 Joint distribution .....................................276 7.2.2 Likelihood ..........................................276 7.2.3 Empirical Bayes estimate of individual frailty ............278 7.2.4 Gamma distributed frailty .............................279 7.2.5 Other frailty distributions suitable for the shared frailty model ..............................................284 7.3 Frailty and counting processes ................................286 7.4 Hierarchical multivariate frailty models .......................288 7.4.1 A multivariate model based on Lévy-type distributions .....289 7.4.2 A multivariate stable model ............................290 7.4.3 The PVF distribution with m = 1.......................290 7.4.4 A invariate model ....................................290 7.4.5 A simple genetic model ...............................291 7.5 Case study: A hierarchical frailty model for testicular cancer ......293 7.6 Random effects models for transformed times ...................296 7.6.1 Likelihood function ..................................296 7.6.2 General case ........................................298 Contents 7.6.3 Comparing frailty and random effects models ............299 7.7 Exercises .................................................299 Marginal and dynamic models for recurrent events and clustered survival data ...................................................301 8.1 Intensity models and rate models ..............................302 8.1.1 Dynamic covariates ..................................304 8.1.2 Connecting intensity and rate models in the additive case ... 305 8.2 Nonparametric statistical analysis .............................308 8.2.1 A marginal Nelson- Aalen estimator for clustered survival data ................................................308 8.2.2 A dynamic Nelson-Aalen estimator for recurrent event data . 309 8.3 Regression analysis of recurrent events and clustered survival data .311 8.3.1 Relative risk models ..................................313 8.3.2 Additive models .....................................315 8.4 Dynamic path analysis of recurrent event data ...................324 8.4.1 General considerations ................................325 8.5 Contrasting dynamic and frailty models ........................331 8.6 Dynamic models - theoretical considerations ...................333 8.6.1 A dynamic view of the frailty model for Poisson processes . 333 8.6.2 General view on the connection between dynamic and frailty models ....................................334 8.6.3 Are dynamic models well defined? ......................336 8.7 Case study: Protection from natural infections with enterotoxigenic Escherichia coli ..........................340 8.8 Exercises .................................................346 Causality ......................................................347 9.1 Statistics and causality ......................................347 9.1.1 Schools of statistical causality .........................349 9.1.2 Some philosophical aspects ............................351 9.1.3 Traditional approaches to causality in epidemiology .......353 9.1.4 The great theory still missing? .........................353 9.2 Graphical models for event history analysis .....................354 9.2.1 Time-dependent covariates ............................356 9.3 Local characteristics - dynamic model .........................361 9.3.1 Dynamic path analysis - a general view .................363 9.3.2 Direct and indirect effects - a general concept ............365 9.4 Granger-Schweder causality and local dependence ...............367 9.4.1 Local dependence ....................................367 9.4.2 A general definition of Granger-Schweder causality .......370 9.4.3 Statistical analysis of local dependence ..................371 9.5 Counterfactual causality .....................................373 9.5.1 Standard survival analysis and counterfactuals ............376 9.5.2 Censored and missing data ............................377 xvi Contents 9.5.3 Dynamic treatment regimes ............................378 9.5.4 Marginal versus joint modeling ........................380 9.6 Marginal modeling .........................................380 9.6.1 Marginal structural models ............................380 9.6.2 G-computation: A Markov modeling approach ............382 9.7 Joint modeling .............................................383 9.7.1 Joint modeling as an alternative to marginal structural models .............................................384 9.7.2 Modeling dynamic systems ............................385 9.8 Exercises .................................................385 10 First passage time models: Understanding the shape of the hazard rate ...........................................................387 10.1 First hitting time; phase type distributions ......................389 10.1.1 Finite birth-death process with absorbing state ............389 10.1.2 First hitting time as the time to event ....................390 10.1.3 The risk distribution of survivors .......................392 10.1.4 Reversibility and progressive models ....................393 10.2 Quasi-stationary distributions ................................395 10.2.1 Infinite birth-death process (infinite random walk) .........397 10.2.2 Interpretation ........................................398 10.3 Wiener process models ......................................399 10.3.1 The inverse Gaussian hitting time distribution ............400 10.3.2 Comparison of hazard rates ............................402 10.3.3 The distribution of survivors ..........................404 10.3.4 Quasi-stationary distributions for the Wiener process with absorption ......................................405 10.3.5 Wiener process with a random initial value ...............407 10.3.6 Wiener process with lower absorbing and upper reflecting barriers ............................................408 10.3.7 Wiener process with randomized drift ..................408 10.3.8 Analyzing the effect of covariates for the randomized Wiener process ......................................410 10.4 Diffusion process models ....................................416 10.4.1 The Kolmogorov equations and a formula for the hazard rate ...............................................418 10.4.2 An equation for the quasi-stationary distribution ..........419 10.4.3 The Ornstein-Uhlenbeck process .......................421 10.5 Exercises .................................................424 11 Diffusion and Levy process models for dynamic frailty .............425 11.1 Population versus individual survival ..........................426 11.2 Diffusion models for the hazard ..............................428 11.2.1 A simple Wiener process model ........................428 Contents xvji 11.2.2 The hazard rate as the square of an Ornstein-Uhlenbeck process ............................................430 11.2.3 More general diffusion processes .......................431 11.3 Models based on Levy processes ..............................432 11.4 Levy processes and subordinators .............................433 11.4.1 Laplace exponent ....................................433 11.4.2 Compound Poisson processes and the PVF process .......434 11.4.3 Other examples of subordinators .......................435 1 1 .4.4 Levy measure .......................................436 11.5 A Levy process model for the hazard ..........................438 11.5.1 Population survival ..................................440 11.5.2 The distribution of h conditional on no event .............440 11.5.3 Standard frailty models ...............................441 11.5.4 Moving average .....................................441 11.5.5 Accelerated failure times .............................443 11.6 Results for the PVF processes ................................444 11.6.1 Distribution of survivors for the PVF processes ...........445 11.6.2 Moving average and the PVF process ...................446 11.7 Parameterization and estimation ..............................448 11.8 Limit results and quasi-stationary distributions ..................450 11.8.1 Limits for the PVF process ............................452 11.9 Exercises .................................................453 A Markov processes and the product-integral .......................457 A. 1 Hazard, survival, and the product-integral ......................458 A.2 Markov chains, transition intensities, and the Kolmogorov equations .................................................461 A.2.1 Discrete time-homogeneous Markov chains ..............463 A.2.2 Continuous time-homogeneous Markov chains ...........465 A.2.3 The Kolmogorov equations for homogeneous Markov chains .............................................467 A.2.4 Inhomogeneous Markov chains and the product-integral ___468 A.2.5 Common multistate models ............................471 A.3 Stationary and quasi-stationary distributions ....................475 A.3. 1 The stationary distribution of a discrete Markov chain .....475 A.3.2 The quasi-stationary distribution of a Markov chain with an absorbing state ...............................477 A.4 Diffusion processes and stochastic differential equations ..........479 A.4.1 The Wiener process ..................................480 A.4.2 Stochastic differential equations ........................482 A.4.3 The Ornstein-Uhlenbeck process .......................484 A.4.4 The infinitesimal generator and the Kolmogorov equations for a diffusion process ................................486 A.4.5 The Feynman-Kac formula ............................488 A.5 Levy processes and subordinators .............................490 xviii Contents A.5.1 The Levy process ..................■..................491 A.5.2 The Laplace exponent................................ 493 В Vector-valued counting processes, martingales and stochastic integrals ......................................................495 B.I Counting processes, intensity processes and martingales ..........495 B.2 Stochastic integrals .........................................496 B.3 Martingale central limit theorem ..............................497 References .........................................................499 Author index .......................................................521 Index .............................................................529
any_adam_object 1
author Aalen, Odd O.
Borgan, Ørnulf
Gjessing, Håkon K.
author_GND (DE-588)170647293
(DE-588)170587290
(DE-588)1038563240
author_facet Aalen, Odd O.
Borgan, Ørnulf
Gjessing, Håkon K.
author_role aut
aut
aut
author_sort Aalen, Odd O.
author_variant o o a oo ooa
ø b øb
h k g hk hkg
building Verbundindex
bvnumber BV035856543
callnumber-first Q - Science
callnumber-label QA274
callnumber-raw QA274
callnumber-search QA274
callnumber-sort QA 3274
callnumber-subject QA - Mathematics
classification_rvk MR 2100
QH 252
SK 840
ctrlnum (OCoLC)213855657
(DE-599)BVBBV035856543
dewey-full 519.23
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.23
dewey-search 519.23
dewey-sort 3519.23
dewey-tens 510 - Mathematics
discipline Soziologie
Mathematik
Wirtschaftswissenschaften
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01969nam a2200493 c 4500</leader><controlfield tag="001">BV035856543</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221129 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">091202s2008 xxud||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2008927364</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA847728</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387202877</subfield><subfield code="c">hbk.</subfield><subfield code="9">978-0-387-20287-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387202870</subfield><subfield code="c">hbk.</subfield><subfield code="9">0-387-20287-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)213855657</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035856543</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-384</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA274</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MR 2100</subfield><subfield code="0">(DE-625)123488:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 252</subfield><subfield code="0">(DE-625)141562:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 840</subfield><subfield code="0">(DE-625)143261:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aalen, Odd O.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)170647293</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Survival and event history analysis</subfield><subfield code="b">a process point of view</subfield><subfield code="c">Odd O. Aalen, Ornulf Borgan, Håkon K. Gjessing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xviii, 539 S.</subfield><subfield code="b">graph. Darst.</subfield><subfield code="c">25 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Statistics for biology and health</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 499-520) and indexes</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ereignisdatenanalyse</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic processes</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ereignisdatenanalyse</subfield><subfield code="0">(DE-588)4132103-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ereignisdatenanalyse</subfield><subfield code="0">(DE-588)4132103-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Borgan, Ørnulf</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)170587290</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gjessing, Håkon K.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1038563240</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-0-387-68560-1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=018714483&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018714483</subfield></datafield></record></collection>
id DE-604.BV035856543
illustrated Illustrated
indexdate 2024-09-27T16:26:41Z
institution BVB
isbn 9780387202877
0387202870
language English
lccn 2008927364
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-018714483
oclc_num 213855657
open_access_boolean
owner DE-19
DE-BY-UBM
DE-355
DE-BY-UBR
DE-11
DE-473
DE-BY-UBG
DE-384
owner_facet DE-19
DE-BY-UBM
DE-355
DE-BY-UBR
DE-11
DE-473
DE-BY-UBG
DE-384
physical xviii, 539 S. graph. Darst. 25 cm
publishDate 2008
publishDateSearch 2008
publishDateSort 2008
publisher Springer
record_format marc
series2 Statistics for biology and health
spellingShingle Aalen, Odd O.
Borgan, Ørnulf
Gjessing, Håkon K.
Survival and event history analysis a process point of view
Ereignisdatenanalyse swd
Stochastic processes
Ereignisdatenanalyse (DE-588)4132103-0 gnd
subject_GND (DE-588)4132103-0
title Survival and event history analysis a process point of view
title_auth Survival and event history analysis a process point of view
title_exact_search Survival and event history analysis a process point of view
title_full Survival and event history analysis a process point of view Odd O. Aalen, Ornulf Borgan, Håkon K. Gjessing
title_fullStr Survival and event history analysis a process point of view Odd O. Aalen, Ornulf Borgan, Håkon K. Gjessing
title_full_unstemmed Survival and event history analysis a process point of view Odd O. Aalen, Ornulf Borgan, Håkon K. Gjessing
title_short Survival and event history analysis
title_sort survival and event history analysis a process point of view
title_sub a process point of view
topic Ereignisdatenanalyse swd
Stochastic processes
Ereignisdatenanalyse (DE-588)4132103-0 gnd
topic_facet Ereignisdatenanalyse
Stochastic processes
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018714483&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT aalenoddo survivalandeventhistoryanalysisaprocesspointofview
AT borganørnulf survivalandeventhistoryanalysisaprocesspointofview
AT gjessinghakonk survivalandeventhistoryanalysisaprocesspointofview