Introduction to econometrics

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Maddala, Gangadharrao S. 1933- (VerfasserIn), Lahiri, Kajal 1947- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Chichester Wiley 2009
Ausgabe:4. ed.
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV035812152
003 DE-604
005 20141216
007 t
008 091106s2009 xxud||| |||| 00||| eng d
010 |a 2009015942 
020 |a 9780470015124  |c pbk.  |9 978-0-470-01512-4 
035 |a (OCoLC)319063959 
035 |a (DE-599)BVBBV035812152 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
044 |a xxu  |c US 
049 |a DE-M49  |a DE-355  |a DE-945  |a DE-384  |a DE-2070s  |a DE-N2  |a DE-188  |a DE-739  |a DE-20 
050 0 |a HB139 
082 0 |a 330.01/5195 
084 |a QH 300  |0 (DE-625)141566:  |2 rvk 
084 |a QH 310  |0 (DE-625)141567:  |2 rvk 
084 |a WIR 017f  |2 stub 
100 1 |a Maddala, Gangadharrao S.  |d 1933-  |e Verfasser  |0 (DE-588)120849844  |4 aut 
245 1 0 |a Introduction to econometrics  |c G. S. Maddala ; Kajal Lahiri 
250 |a 4. ed. 
264 1 |a Chichester  |b Wiley  |c 2009 
300 |a XX, 634 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
500 |a Literaturangaben 
650 4 |a Econometrics 
650 0 7 |a Ökonometrie  |0 (DE-588)4132280-0  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)4123623-3  |a Lehrbuch  |2 gnd-content 
689 0 0 |a Ökonometrie  |0 (DE-588)4132280-0  |D s 
689 0 |5 DE-604 
700 1 |a Lahiri, Kajal  |d 1947-  |e Verfasser  |0 (DE-588)13377080X  |4 aut 
856 4 2 |m Digitalisierung UB Regensburg  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018671051&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-018671051 

Datensatz im Suchindex

DE-BY-TUM_call_number 1002/WIR 017f 2009 A 9148(4)
DE-BY-TUM_katkey 1711945
DE-BY-TUM_media_number 040050817157
_version_ 1816713017354616832
adam_text Contents Foreword xvii Preface to the Fourth Edition xix Part I Introduction and the Linear Regression Model 1 CHAPTER 1 What is Econometrics? 3 What is in this Chapter? 3 1.1 What is econometrics? 3 1.2 Economic and econometric models 4 1.3 The aims and methodology of econometrics 6 1.4 What constitutes a test of an economic theory ľ 8 Summary and an outline of the book 9 References 10 CHAPTER 2 Statistical Background and Matrix Algebra 11 What is in this Chapter ľ 11 2.1 Introduction 11 2.2 Probability ■ 12 Addition rules of probability 13 Conditional probability and the multiplication rule 14 Bayes theorem 14 Summation and product operations 15 2.3 Random variables and probability distributions 17 Joint, marginal, and conditional distributions 17 Illustrative example 18 2.4 The normal probability distribution and related distributions 18 The normal distribution 19 Related distributions 19 2.5 Classical statistical inference 21 2.6 Properties of estimators 22 Unbiasedness 23 Efficiency 2 Ì Consistency 2 Ì Other asymptotic properties 24 [vi] Contents 2.7 Sampling distributions for samples from a normal population 26 2.8 Interval estimation 26 2.9 Testing of hypotheses 28 2.10 Relationship between confidence interval procedures and tests of hypotheses 31 2.11 Combining independent tests 32 Summary 33 Exercises 33 Appendix: Matrix algebra 40 Exercises on matrix algebra 56 References 57 CHAPTER 3 Simple Regression 59 What is in this Chapter? 59 3.1 Introduction 59 Example 1 : Simple regression 60 Example 2: Multiple regression 60 3.2 Specification of the relationships 61 3.3 The method of moments 65 Illustrative example 66 3-4 The method of least squares 68 Reverse regression 71 Illustrative example 72 3.5 Statistical inference in the linear regression model 76 Illustrative example 78 Confidence intervals for α, β, and σ2 78 Testing of hypotheses 80 Example of comparing test scores from the GRE and GMAT tests 81 Regression with no constant term 83 3.6 Analysis of variance for the simple regression model 83 3.7 Prediction with the simple regression model 85 Prediction of expected values 87 Illustrative example 87 3.8 Outliers 88 Some illustrative examples 90 3.9 Alternative functional forms for regression equations 95 Illustrative example 97 *3.10 Inverse prediction in the least squares regression model1 99 *3.ll Stochastic regressors 102 *3.12 The regression fallacy 102 The bivariate normal distribution 102 Galton s result and the regression fallacy 104 A note on the term regression 105 Summary Ю5 1 Here and below, the * indicates that this is an optional section. Contents [vü] Exercises 106 Appendix: Proofs 113 References 126 CHAPTER 4 Multiple Regression 127 What is in this Chapter? 127 4.1 Introduction 127 4.2 A model with two explanatory variables 129 The least squares method 129 Illustrative example 132 4.3 Statistical inference in the multiple regression model 134 Illustrative example 135 Formulas for the general case of к explanatory variables 139 Some illustrative examples 140 4-4 Interpretation of the regression coefficients 143 Illustrative example 146 4.5 Partial correlations and multiple correlation 146 4.6 Relationships among simple, partial, and multiple correlation coefficients 147 Two illustrative examples 148 4.7 Prediction in the multiple regression model 153 Illustrative example 154 4-8 Analysis of variance and tests of hypotheses 155 Nested and nonnested hypotheses 157 Tests for linear functions of parameters 158 Illustrative example 159 4-9 Omission of relevant variables and inclusion of irrelevant variables 160 Omission of relevant variables 161 Example 1: Demand for food in the United States 163 Example 2: Production functions and management bias 163 Inclusion of irrelevant variables 164 4-Ю Degrees of freedom and R^ 165 4-11 Tests for stability 169 The analysis of variance test 169 Example 1 : Stability of the demand for food function 170 Example 2: Stability of production functions 171 Predictive tests for stability 174 Illustrative example 174 4.12 The LR, W, and LM tests 176 Illustrative example 177 Summary 178 Exercises 180 Appendix 4-І: The multiple regression model in matrix notation 187 Appendix 4-2: Nonlinear regressions 193 Appendix 4-3: Large-sample theory 196 Data sets 202 References 207 [viii] Contents Part II Violation of the Assumptions of the Basic Regression Model 209 CHAPTERS Heteroskedasticity 211 What is in this Chapter? 111 5.1 Introduction 111 Illustrative example гіг 5.2 Detection of heteroskedasticity 214 Illustrative example 214 Some other tests 215 Illustrative example 217 An intuitive justification for the Breusch-Pagan test 218 5.3 Consequences of heteroskedasticity 219 Estimation of the variance of the OLS estimator under heteroskedasticity 221 5.4 Solutions to the heteroskedasticity problem 221 Illustrative example 223 5.5 Heteroskedasticity and the use of deflators 224 Illustrative example: The density gradient model 226 5.6 Testing the linear versus log-linear functional form 228 The Box -Сох test 229 The BM test 230 The PE test 231 Summary 231 Exercises 232 Appendix: Generalized least squares 235 References 237 CHAPTER 6 Autocorrelation 239 What is in this Chapter? 239 6.1 Introduction 239 6.2 The Durbin-Watson test 240 Illustrative example 241 6.3 Estimation in levels versus first differences 242 Some illustrative examples 243 6.4 Estimation procedures with autocorrelated errors 246 Iterative procedures 248 Grid-search procedures 249 Illustrative example 250 6.5 Effect of AR( I ) errors on OLS estimates 250 6.6 Some further comments on the DW test 254 The win Neumann ratio 255 The Berenbktt-Webh test 255 6.7 Tests for serial correlation in models with lagged dependent variables 257 Durbin :· h-tcst 258 Durban s alternative test 258 Illustrative example 258 Contents [ їх ] 6.8 A general test for higher-order serial correlation: The LM test 259 6.9 Strategies when the DW test statistic is significant 261 Autocorrelation caused by omitted variables 261 - Serial correlation due to misspecified dynamics 263 The Wald test 264 Illustrative example 265 *6. 10 Trends and random walks 266 Spurious trends 268 Differencing and long-run effects: The concept of cointegration 270 *6.11 ARCH models and serial correlation 271 6.12 Some comments on the DW test and Durban s h-test and i-test 272 Summary 273 Exercises 274 References 276 CHAPTER 7 Multicollinearity 279 What is in this Chapter? 279 7.1 Introduction 279 7.2 Some illustrative examples 280 7.3 Some measures of multicollinearity 283 7.4 Problems with measuring multicollinearity 286 7.5 Solutions to the multicollinearity problem: Ridge regression 290 7.6 Principal component regression 292 7.7 Dropping variables 297 7.8 Miscellaneous other solutions 300 Using ratios or first differences 300 Using extraneous estimates 300 Getting more data 301 Summary 302 Exercises 302 Appendix: Linearly dependent explanatory variables 304 References 311 CHAPTER 8 Dummy Variables and Truncated Variables 313 What is in this Chapter. 313 8.1 Introduction 313 8.2 Dummy variables for changes in the intercept term 314 Illustrative example 317 Two more illustrative examples 317 8.3 Dummy variables for changes in slope coefficients 319 8.4 Dummy variables for cross-equation constraints 322 8.5 Dummy variables for testing stability of regression coefficients 324 8.6 Dummy variables under heteroskedasticity and autocorrelation 327 8.7 Dummy dependent variables 329 [χ] Contents 8.8 The linear probability model and the linear discriminant function 329 The linear probability model 329 The linear discriminant function 332 8.9 The probit and logit models 333 Illustrative example 335 The problem of disproportionate sampling 336 Prediction of effects of changes in the explanatory variables 337 Measuring goodness of fit 338 Illustrative example 340 8.10 Truncated variables: The tobit model 343 Some examples 344 Method of estimation 345 Limitations of the tobit model 346 The truncated regression model 347 Summary 349 Exercises 350 References 352 CHAPTER 9 Simultaneous Equation Models 355 What is in this Chapter? 355 9.1 Introduction 355 9.2 Endogenous ¡md exogenous variables 357 9.3 The identification problem: Identification through reduced form 357 Illustrative example 360 9.4 Necessary and sufficient conditions for identification 362 Illustrative example 364 9.5 Methods of estimation: The instrumental variable method 365 Measuring R 368 Illustrative example 368 9.6 Methods of estimation: The two-stage least squares method 371 Computing standard errors 373 Illustrative example 375 9.7 The question of normalization 378 *9.8 The limited-information maximum likelihood method 379 Illustrative example 330 *9.9 On the use of OLS in the estimation of simultaneous equation models 380 Working s concept of identification 382 Recursive systems 384 Estimation ofCobb-Douglas production functions 385 *9.10 Exogeneity and causality З86 Weak exogeneity 389 Superexogeneity 389 Strong exogeneity 389 Granger causality 390 Contents [x¡] Granger causality and exogeneity 390 Tests for exogeneity 391 9.11 Some problems with instrumental variable methods 392 Summary 392 Exercises 394 Appendix 396 References 400 CHAPTER 10 Diagnostic Checking, Model Selection, and Specification Testing 401 What is in this Chapter? 401 10.1 Introduction 401 10.2 Diagnostic tests based on least squares residuals 402 Tests for omitted variables 402 Tests for ARCH effects 404 10.3 Problems with least squares residuals 404 10.4 Some other types of residual 405 Predicted residuals and studentized residuals 406 Dummy variable method for studentized residuals 407 BLUS residuals 407 Recursive residuals 408 Illustrative example 409 10.5 DFFITS and bounded influence estimation 411 Illustrative example 413 10.6 Model selection 414 Hypothesis-testing search 415 Interpreti ve search 416 Simplification search 416 Proxy variable search 416 Data selection search 417 Post-data model construction 417 Hendry s approach to model selection 418 10.7 Selection of regressors 419 Theil s R criterion 421 Criteria based on minimizing the mean-squared error of prediction 421 Akaike s information criterion 422 10.8 Implied F-ratios for the various criteria 423 Bayes theorem and posterior odds for model selection 425 10.9 Cross-validation 427 10.10 Hausman s specification error test 428 An application: Testing for errors in variables or exogeneity 430 Some illustrative examples 431 An omitted variable interpretation of the Hausman test 433 10.11 The Plosser-Schwert-White differencing test 435 10.12 Tests for nonnested hypotheses 436 [xii] Contents The Davidson and MacKinnon test 437 The encompassing test 439 A basic problem in testing nonnested hypotheses 440 Hypothesis testing versus model selection as a research strategy 440 10.13 Nonnormality of errors 440 Tests for normality 441 10.14 Data transformations 441 Summary 442 Exercises 444 Appendix 446 References 447 CHAPTER 11 Errors in Variables 451 What is in this Chapter. 451 11.1 Introduction 451 11.2 The classical solution for a single-equation model with one explanatory variable 452 11.3 The single-equation model with two explanatory variables 455 Two explanatory variables: One measured with error 455 Illustrative example 459 Two explanatory variables: Both measured with error 460 11.4 Reverse regression 463 11.5 Instrumental variable methods 465 11 .6 Proxy variables 468 Coefficient for the proxy variable 470 11.7 Some other problems 471 The case of multiple equations 471 Correlated errors 472 Summary 473 Exercises 474 References 476 Part III Special Topics 479 CHAPTER 12 Introduction to Time-Series Analysis 481 Whar is in this Chapter. 4g j 12.1 Introduction 481 12.2 Two methods of time-series analysis: Frequency domain and time domain 482 12.3 Stationary and nonstationary time series 482 Strict stationarity 48З Weak stationarity 48З Properties of autocorrelation function 484 Nonstationarity 484 12.4 Some useful models tor time series 485 Purely random process 485 Contents [хні] Random walk 486 Moving average process 486 Autoregressive process 488 Autoregressive moving average process 490 Autoregressive integrated moving average process 491 12.5 Estimation of AR, MA, and ARMA models 492 Estimation of MA models 492 Estimation of ARMA models 492 Residuals from the ARMA models 494 Testing goodness of fit 494 12.6 The Box-Jenkins approach 496 Forecasting from Box-Jenkins models 497 Illustrative example 499 Trend elimination: The traditional method 500 A summary assessment 500 Seasonality in the Box-Jenkins modeling 502 12.7 R2 measures m time-series models 503 Summary 506 Exercises 506 Data sets 507 References 508 CHAPTER 13 Models of Expectations and Distributed Lags 509 What is in this Chapter? 509 13.1 Models of expectations 509 13.2 Naive models of expectations 510 13.3 The adaptive expectations model 512 13.4 Estimation with the adaptive expectations model 514 Estimation in the autoregressive form 514 Estimation in the distributed lag form 515 13.5 Two illustrative examples 516 13.6 Expectational variables and adjustment lags 520 13.7 Partial adjustment with adaptive expectations 524 13.8 Alternative distributed lag models: Polynomial lags 526 Finite lags: The polynomial lag 527 Illustrative example 530 Choosing the degree of the polynomial 532 13.9 Rational lags 533 13.10 Rational expectations 534 13.11 Tests for rationality 536 13.12 Estimation of a demand and supply model under rational expectations 538 Case 1 538 Case 2 539 Illustrative example 542 13.13 The serial correlation problem in rational expectations models 544 [xiv] Contents Summary 545 Exercises 547 References 548 CHAPTER 14 Vector Autoregressions, Unit Roots, and Cointegration 551 What is in this Chapter? 551 14-1 Introduction 551 14.2 Vector autoregressions 551 14.3 Problems with VAR models in practice 553 14.4 Unit roots 554 14.5 Unit root tests 555 The Dickey-Fuller tests 556 The serial correlation problem ■ 556 The low power of unit root tests 557 The DF-GLS test 557 What are the null and alternative hypotheses in unit root tests? 558 Tests with stationarity as null 559 Confirmatory analysis 560 Panel data unit root tests 561 Structural change and unit roots 562 14.6 Cointegration 563 14.7 The eointegrating regression 564 14-8 Vector autoregressions and eointegration 567 14-9 Cointegration and error correction models 571 14-10 Tests tor cointegration 571 14-11 Cointegration and testing of the REH and МЕН 572 І4Л2 A summary assessment of cointegration 574 Summary 575 Exercises 576 References 579 CHAPTER 15 Panel Data Analysis 583 What is in this Chapter? 583 15.1 Introduction 583 15.2 The LSDV or fixed effects model 584 Illustrative example: Fixed effect estimation 585 15.3 The random effects model 586 15.4 Fixed effects versus random effects 589 Hausman test 589 Breusch and Pagan test 59O Tests tor serial correlation 59O 15.5 Dynamic panel data models 59I 15.6 Panel data models with correlated effects and simultaneity 593 15.7 Errors in variables in panel data 595 Contents [xv] 15.8 The SUR model 597 15.9 The random coefficient model 597 Summary 599 References 599 CHAPTER 16 Small-Sample Inference: Resampling Methods 601 What is in this Chapter? 601 16.1 Introduction 601 16.2 Monte Carlo methods 602 More efficient Monte Carlo methods 603 Response surfaces 603 16.3 Resampling methods: Jackknife and bootstrap 603 Some illustrative examples 604 Other issues relating to the bootstrap 605 16.4 Bootstrap confidence intervals 605 16.5 Hypothesis testing with the bootstrap 606 16.6 Bootstrapping residuals versus bootstrapping the data 607 16.7 Non-IID errors and nonstationary models 607 Heteroskedasticity and autocorrelation 607 Unit root tests based on the bootstrap 608 Cointegration tests 608 Miscellaneous other applications 608 Summary 609 References 609 Appendix 611 Index 621
any_adam_object 1
author Maddala, Gangadharrao S. 1933-
Lahiri, Kajal 1947-
author_GND (DE-588)120849844
(DE-588)13377080X
author_facet Maddala, Gangadharrao S. 1933-
Lahiri, Kajal 1947-
author_role aut
aut
author_sort Maddala, Gangadharrao S. 1933-
author_variant g s m gs gsm
k l kl
building Verbundindex
bvnumber BV035812152
callnumber-first H - Social Science
callnumber-label HB139
callnumber-raw HB139
callnumber-search HB139
callnumber-sort HB 3139
callnumber-subject HB - Economic Theory and Demography
classification_rvk QH 300
QH 310
classification_tum WIR 017f
ctrlnum (OCoLC)319063959
(DE-599)BVBBV035812152
dewey-full 330.01/5195
dewey-hundreds 300 - Social sciences
dewey-ones 330 - Economics
dewey-raw 330.01/5195
dewey-search 330.01/5195
dewey-sort 3330.01 45195
dewey-tens 330 - Economics
discipline Wirtschaftswissenschaften
edition 4. ed.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01647nam a2200445 c 4500</leader><controlfield tag="001">BV035812152</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20141216 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">091106s2009 xxud||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2009015942</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470015124</subfield><subfield code="c">pbk.</subfield><subfield code="9">978-0-470-01512-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)319063959</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035812152</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-M49</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-945</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-2070s</subfield><subfield code="a">DE-N2</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HB139</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">330.01/5195</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 300</subfield><subfield code="0">(DE-625)141566:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 310</subfield><subfield code="0">(DE-625)141567:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WIR 017f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Maddala, Gangadharrao S.</subfield><subfield code="d">1933-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120849844</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to econometrics</subfield><subfield code="c">G. S. Maddala ; Kajal Lahiri</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">4. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Chichester</subfield><subfield code="b">Wiley</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 634 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Econometrics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ökonometrie</subfield><subfield code="0">(DE-588)4132280-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ökonometrie</subfield><subfield code="0">(DE-588)4132280-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lahiri, Kajal</subfield><subfield code="d">1947-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)13377080X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=018671051&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018671051</subfield></datafield></record></collection>
genre (DE-588)4123623-3 Lehrbuch gnd-content
genre_facet Lehrbuch
id DE-604.BV035812152
illustrated Illustrated
indexdate 2024-11-25T17:26:05Z
institution BVB
isbn 9780470015124
language English
lccn 2009015942
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-018671051
oclc_num 319063959
open_access_boolean
owner DE-M49
DE-BY-TUM
DE-355
DE-BY-UBR
DE-945
DE-384
DE-2070s
DE-N2
DE-188
DE-739
DE-20
owner_facet DE-M49
DE-BY-TUM
DE-355
DE-BY-UBR
DE-945
DE-384
DE-2070s
DE-N2
DE-188
DE-739
DE-20
physical XX, 634 S. graph. Darst.
publishDate 2009
publishDateSearch 2009
publishDateSort 2009
publisher Wiley
record_format marc
spellingShingle Maddala, Gangadharrao S. 1933-
Lahiri, Kajal 1947-
Introduction to econometrics
Econometrics
Ökonometrie (DE-588)4132280-0 gnd
subject_GND (DE-588)4132280-0
(DE-588)4123623-3
title Introduction to econometrics
title_auth Introduction to econometrics
title_exact_search Introduction to econometrics
title_full Introduction to econometrics G. S. Maddala ; Kajal Lahiri
title_fullStr Introduction to econometrics G. S. Maddala ; Kajal Lahiri
title_full_unstemmed Introduction to econometrics G. S. Maddala ; Kajal Lahiri
title_short Introduction to econometrics
title_sort introduction to econometrics
topic Econometrics
Ökonometrie (DE-588)4132280-0 gnd
topic_facet Econometrics
Ökonometrie
Lehrbuch
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018671051&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT maddalagangadharraos introductiontoeconometrics
AT lahirikajal introductiontoeconometrics