New trends in mathematical physics selected contributions of the XVth International Congress on Mathematical Physics

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Sidoravicius, Vladas (HerausgeberIn)
Format: Tagungsbericht Buch
Sprache:English
Veröffentlicht: Berlin Springer 2009
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV035685126
003 DE-604
005 20120508
007 t
008 090819s2009 gw ad|| |||| 00||| eng d
016 7 |a 993988393  |2 DE-101 
020 |a 9789048128099  |c GB. : ca. EUR 148.73 (freier Pr.), ca. sfr 413.50 (freier Pr.)  |9 978-90-481-2809-9 
035 |a (OCoLC)360205404 
035 |a (DE-599)BVBBV035685126 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a gw  |c XA-DE-BE 
049 |a DE-19  |a DE-91G 
050 0 |a QC19.2 
082 0 |a 830.15  |2 22 
084 |a SD 2006  |0 (DE-625)142740:  |2 rvk 
084 |a MAT 344f  |2 stub 
084 |a 510  |2 sdnb 
084 |a PHY 011f  |2 stub 
245 1 0 |a New trends in mathematical physics  |b selected contributions of the XVth International Congress on Mathematical Physics  |c ed.: Vladas Sidoravicius 
264 1 |a Berlin  |b Springer  |c 2009 
300 |a XLII, 872 S.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
650 4 |a Mathematische Physik 
650 4 |a Mathematical physics  |v Congresses 
650 0 7 |a Dynamisches System  |0 (DE-588)4013396-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Differentialgleichung  |0 (DE-588)4012249-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Mathematische Physik  |0 (DE-588)4037952-8  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)1071861417  |a Konferenzschrift  |y 2006  |z Rio de Janeiro  |2 gnd-content 
689 0 0 |a Differentialgleichung  |0 (DE-588)4012249-9  |D s 
689 0 1 |a Dynamisches System  |0 (DE-588)4013396-5  |D s 
689 0 2 |a Mathematische Physik  |0 (DE-588)4037952-8  |D s 
689 0 |5 DE-604 
700 1 |a Sidoravicius, Vladas  |0 (DE-588)123889308  |4 edt 
711 2 |a International Congress on Mathematical Physics  |n 15  |d 2006  |c Rio de Janeiro  |j Sonstige  |0 (DE-588)6527563-9  |4 oth 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-90-481-2810-5 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017739320&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-017739320 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102/PHY 011 2011 A 1658
DE-BY-TUM_katkey 1758360
DE-BY-TUM_media_number 040010204958
_version_ 1816713570620014592
adam_text Titel: New trends in mathematical physics Autor: Sidoravicius, Vladas Jahr: 2009 Contents Entropy of Eigenfunctions........................................ 1 Nalini Anantharaman, Herbert Koch and Stephane Nonnenmacher 1 Motivations.............................................. 1 2 Main Result.............................................. 4 3 Outline of the Proof....................................... 7 3.1 Definition of the Metric Entropy..................... 7 3.2 From Classical to Quantum Dynamical Entropy........ 9 3.3 Entropic Uncertainty Principle....................... 13 3.4 Applying the Entropic Uncertainty Principle to the Laplacian Eigenstates.............................. 14 References............................................... 21 Stability of Doubly Warped Product Spacetimes ..................... 23 Lars Andersson 1 Introduction.............................................. 23 2 Warped Product Spacetimes ................................ 24 2.1 Asymptotic Behavior.............................. 26 3 Fuchsian Method ......................................... 27 3.1 Velocity Dominated Equations....................... 28 3.2 Velocity Dominated Solution........................ 29 4 Stability................................................. 30 References............................................... 31 Rigorous Construction of Luttinger Liquids Through Ward Identities ... 33 Giuseppe Benfatto 1 Introduction.............................................. 33 2 The Tomonaga Model with Infrared Cutoff.................... 34 3 The RG Analysis.......................................... 35 4 The Dyson Equation....................................... 37 5 The First Ward Identity.................................... 39 6 The Second Ward Identity.................................. 40 xxviii Contents 7 The Euclidean Thirring Model.............................. 41 References............................................... 43 New Algebraic Aspects of Perturbative and Non-perturbative Quantum Field Theory ................................................... 45 Christoph Bergbauer and Dirk Kreimer 1 Introduction.............................................. 45 2 Lie and Hopf Algebras of Feynman Graphs ................... 46 3 From Hochschild Cohomology to Physics..................... 50 4 Dyson-Schwinger Equations................................ 51 5 Feynman Integrals and Periods of Mixed (Tate) Hodge Structures................................................ 55 References............................................... 57 Exact Solution of the Six-Vertex Model with Domain Wall Boundary Conditions..................................................... 59 Pavel M. Bleher 1 Six-Vertex Model......................................... 59 2 Phase Diagram of the Six-Vertex Model ...................... 62 3 Izergin-Korepin Determinantal Formula...................... 63 4 The Six-Vertex Model with DWBC and a Random Matrix Model................................................... 63 5 Asymptotic Formula for the Recurrence Coefficients............ 65 6 Previous Exact Results..................................... 67 7 Zinn-Justin s Conjecture................................... 70 8 Large N Asymptotics of Z# in the Ferroelectric Phase.......... 71 References............................................... 71 Mathematical Issues in Loop Quantum Cosmology................... 73 Martin Bojowald 1 Introduction.............................................. 73 2 Quantum Representation and Dynamical Equations............. 75 2.1 Quantum Reduction ............................... 75 2.2 Dynamics........................................ 76 3 Quantum Singularity Problem............................... 78 4 Examples for Properties of Solutions......................... 79 5 Effective Theory.......................................... 81 6 Summary................................................ 84 References............................................... 84 Boundary Effects on the Interface Dynamics for the Stochastic Allen-Cahn Equation............................................ 87 Lorenzo Bertini, Stella Brassesco and Paolo Butta 1 Introduction.............................................. 87 2 Results and Strategy of Proofs .............................. 89 References............................................... 92 Contents xxjx Dimensional Entropies and Semi-Uniform Hyperbolicity.............. 95 Jerome Buzzi 1 Introduction.............................................. 95 2 Low Dimension........................................... 97 2.1 Interval Maps..................................... 97 2.2 Surface Transformations............................ 98 3 Dimensional Entropies..................................... 99 3.1 Singular Disks.................................... 99 3.2 Entropy of Collections of Subsets....................100 3.3 Definitions of the Dimensional Entropies..............101 4 Other Growth Rates of Submanifolds.........................102 4.1 Volume Growth...................................102 4.2 Resolution Entropies...............................106 5 Properties of Dimensional Entropies......................... 107 5.1 Link between Topological and Resolution Entropies .... 107 5.2 Gap Between Uniform and Ordinary Dimensional Entropies ........................................108 5.3 Continuity Properties ..............................109 6 Hyperbolicity from Entropies...............................110 6.1 A Ruelle-Newhouse Type Inequality .................110 6.2 Entropy-Expanding Maps...........................110 6.3 Entropy-Hyperbolicity.............................112 6.4 Examples of Entropy-Hyperbolic Diffeomorphisms.....113 7 Further Directions and Questions............................113 7.1 Variational Principles..............................113 7.2 Dimensional Entropies of Examples..................113 7.3 Other Types of Dimensional Complexity..............114 7.4 Necessity of Topological Assumptions................114 7.5 Entropy-Hyperbolicity.............................114 7.6 Generalized Entropy-Hyperbolicity ..................115 8 C Sizes.................................................115 References...............................................116 The Scaling Limit of (Near-)Critical 2D Percolation .................. 117 Federico Camia 1 Introduction..............................................117 1.1 Critical Scaling Limits and SLE.....................117 1.2 Percolation.......................................120 2 The Critical Loop Process..................................121 2.1 General Features.................................. 121 2.2 Construction of a Single Loop....................... 122 3 The Near-Critical Scaling Limit............................. 124 References............................................... 125 xxx Contents Black Hole Entropy Function and Duality........................... I27 Gabriel Lopes Cardoso 1 Introduction..............................................1^7 2 Entropy Function and Electric/Magnetic Duality Covariance.....128 3 Application to N = 2 Supergravity ..........................130 4 Duality Invariant OSV Integral..............................133 References...............................................133 Weak Turbulence for Periodic NLS ................................ 135 James Colliander 1 Introduction..............................................135 2 NLS as an Infinite System of ODEs..........................137 3 Conditions on a Finite Set A c Z2 ..........................138 4 Arnold Diffusion for the Toy Model ODE.....................139 5 Construction of the Resonant Set A..........................140 References...............................................142 Angular Momentum-Mass Inequality for Axisymmetric Black Holes----- 143 Sergio Dain 1 Introduction..............................................143 2 Variational Principle for the Mass............................144 References...............................................147 Almost Everything About the Fibonacci Operator.................... 149 David Damanik 1 Introduction..............................................149 2 The Trace Map...........................................150 3 The Cantor Structure and the Dimension of the Spectrum........152 4 The Spectral Type.........................................154 5 Bounds on Wavepacket Spreading...........................156 References...............................................158 Entanglement-Assisted Quantum Error-Correcting Codes............. 161 Igor Devetak, Todd A. Brun and Min-Hsiu Hsieh 1 Introduction..............................................161 2 Notations................................................162 3 Entanglement-Assisted Quantum Error-Correcting Codes........163 3.1 The Channel Model: Discretization of Errors ..........164 3.2 The Entanglement-Assisted Canonical Code...........165 3.3 The General Case .................................167 3.4 Distance.........................................169 3.5 Generalized F4 Construction........................169 3.6 Bounds on Performance............................170 4 Conclusions..............................................171 References...............................................171 Contents xxxi Particle Decay in Ising Field Theory with Magnetic Field.............. 173 Gesualdo Delfino 1 Ising Field Theory ........................................173 2 Evolution of the Mass Spectrum.............................175 3 Particle Decay off the Critical Isotherm.......................176 4 Unstable Particles in Finite Volume..........................182 References...............................................184 Fluctuations and Large Deviations in Non-equilibrium Systems........ 187 Bernard Derrida 1 Introduction..............................................187 2 Large Deviation Function of the Density......................188 3 Free Energy Functional....................................189 4 Simple Exclusion Processes (SSEP)..........................191 5 The Large Deviation Function (p(x)) for the SSEP...........193 6 The Matrix Ansatz for the Symmetric Exclusion Process........194 7 Additivity as a Consequence of the Matrix Ansatz..............197 8 Large Deviation Function of Density Profiles..................198 9 Non-locality of the Large Deviation Functional of the Density and Long Range Correlations...............................200 10 The Macroscopic Fluctuation Theory.........................202 11 Large Deviation of the Current..............................203 12 Generalized Detailed Balance and the Fluctuation Theorem......204 13 Current Fluctuations in the SSEP............................206 14 The Additivity Principle....................................207 References...............................................209 Robust Heterodimensional Cycles and Tame Dynamics................ 211 Lorenzo J. Diaz 1 Robust Heterodimensional Cycles ...........................211 1.1 General Setting...................................211 1.2 Basic Definitions..................................213 1.3 Robust Cycles at Heterodimensional Cycles...........214 1.4 Questions and Consequences........................216 2 Cycles and Non-hyperbolic Tame Dynamics...................217 2.1 Setting ..........................................217 2.2 Tangencies, Heterodimensional Cycles, and Examples... 218 3 Robust Homoclinic Tangencies, Non-dominated Dynamics, and Heterodimensional Cycles..................................220 4 Ingredients of the Proof of Theorem 2........................222 4.1 Strong Homoclinic Intersections of Saddle-Nodes......223 4.2 Model Blenders___ ...............................225 References...............................................227 xxxii Contents Hamiltonian Perturbations of Hyperbolic PDEs: from Classification Results to the Properties of Solutions............................... 231 Boris Dubrovin 1 Introduction..............................................231 2 Towards Classification of Hamiltonian PDEs..................235 3 Deformation Theory of Integrable Hierarchies.................238 4 Frobenius Manifolds and Integrable Hierarchies of the Topological Type....................................249 5 Critical Behaviour in Hamiltonian PDEs, the Dispersionless Case....................................................264 6 Universality in Hamiltonian PDEs...........................269 References...............................................273 Lattice Supersymmetry from the Ground Up........................ 277 Paul Fendley and Kareljan Schoutens References...............................................284 Convergence of Symmetric Trap Models in the Hypercube............. 285 L.R.G. Fontes and P.H.S. Lima 1 Introduction..............................................285 1.1 The Model.......................................286 2 Convergence to the K Process...............................287 2.1 Proof of Theorem 1................................288 3 The REM-Like Trap Model and the Random Hopping Times Dynamics for the REM ....................................294 3.1 The REM-Like Trap Model.........................294 3.2 Random Hopping Times Dynamics for the REM.......295 References...............................................296 Spontaneous Replica Symmetry Breaking in the Mean Field Spin Glass Model......................................................... 299 Francesco Guerra 1 Introduction..............................................299 2 The Mean Field Spin Glass Model. Basic Definitions...........302 3 The Thermodynamic Limit.................................304 4 The Parisi Representation for the Free Energy .................305 5 Conclusion and Outlook for Future Developments..............309 References...............................................310 Surface Operators and Knot Homologies........................... 313 Sergei Gukov 1 Introduction..............................................313 2 Gauge Theory and Categorification..........................316 2.1 Incorporating Surface Operators.....................318 2.2 Braid Group Actions...............................320 Contents xxxiii 3 Surface Operators and Knot Homologies in .jY = 2 Gauge Theory..................................................323 3.1 Donaldson-Witten Theory and the Equivariant Knot Signature ........................................323 3.2 Seiberg-Witten Theory.............................326 4 Surface Operators and Knot Homologies in «yK = 4 Gauge Theory..................................................330 References...............................................340 Conformal Field Theory and Operator Algebras..................... 345 Yasuyuki Kawahigashi 1 Introduction..............................................345 2 Conformal Quantum Field Theory...........................346 3 Representation Theory.....................................349 4 Classification Theory......................................350 5 Moonshine Conjecture.....................................352 References...............................................354 Diffusion and Mixing in Fluid Flow: A Review....................... 357 Alexander Kiselev 1 Introduction..............................................357 2 The Heart of the Matter....................................363 3 Open Questions...........................................367 References...............................................368 Random Schrodinger Operators: Localization and Delocalization, and All That....................................................... 371 Francois Germinet and Abel Klein 1 Random Schrodinger Operators.............................371 2 Basic Examples of Random Schrodinger Operators.............372 2.1 The Anderson (Tight-Binding) Model ................373 2.2 The (Continuum) Anderson Hamiltonian..............373 2.3 The Random Landau Hamiltonian....................373 2.4 The Poisson Hamiltonian...........................374 3 The Metal-Insulator Transition..............................374 4 The Spectra] Metal-Insulator Transition.......................375 4.1 Anderson Localization.............................375 4.2 Absolutely Continuous Spectrum....................377 4.3 The Spectral Metal-Insulator Transition for the Anderson Model on the Bethe Lattice..........377 5 The Dynamical Metal-Insulator Transition....................378 5.1 Dynamical Localization............................378 5.2 Transport Exponents...............................379 5.3 The Dynamical Spectral Regions ....................380 5.4 The Region of Complete Localization ................381 xxxiv Contents 6 The Dynamical Transition in the Random Landau Hamiltonian ... 382 References...............................................384 Unifying R-Symmetry in M-Theory................................ 389 Axel Kleinschmidt 1 Introduction..............................................389 2 Kinematics...............................................392 2.1 Definition of eio and K(e o) ........................392 2.2 Level Decompositions for D = 11, IIA and IIB ........393 2.3 Representations of K(t o)..........................394 3 Dynamics................................................396 4 Discussion...............................................398 4.1 Remarks.........................................398 4.2 Outlook..........................................399 References...............................................400 Stable Maps are Dense in Dimensional One ......................... 403 Oleg Kozlovski, and Sebastian van Strien 1 Introduction..............................................403 2 Density of Hyperbolicity...................................404 3 Quasi-Conformal Rigidity..................................405 4 How to Prove Rigidity?....................................405 4.1 The Strategy of the Proof of QC-Rigidity..............406 5 Enhanced Nest Construction................................407 6 Small Distortion of Thin Annuli.............................409 7 Approximating Non-renormalizable Complex Polynomials......411 References...............................................412 Large Gap Asymptotics for Random Matrices.......................413 Igor Krasovsky References...............................................419 On the Derivation of Fourier s Law................................ 421 Antti Kupiainen 1 Introduction..............................................421 2 Coupled Oscillators .......................................422 3 Closure Equations.........................................424 4 Kinetic Limit.............................................427 References...............................................431 Noncommutative Manifolds and Quantum Groups...................433 Giovanni Landi 1 Introduction..............................................433 2 The Algebras and the Representations........................435 2.1 The Algebras of Functions and of Symmetries.........435 2.2 The Equivariant Representation of s/(SUq{2)).........438 2.3 The Spin Representation............................439 Contents xxxv 3 The Equivariant Dirac Operator.............................442 4 The Real Structure........................................444 4.1 The Tomita Operator of the Regular Representation.....444 4.2 The Real Structure on Spinors.......................445 5 The Local Index Formula for SUq{2).........................447 5.1 The Cosphere Bundle and the Dimension Spectrum.....448 5.2 The Local Index Formula for 3-Dimensional Geometries.......................................450 5.3 The Pairing Between HCX and ^i...................452 References...............................................454 Topological Strings on Local Curves ............................... 457 Marcos Marino 1 Introduction..............................................457 2 Topological Strings on Local Curves.........................459 2.1 A Model.........................................459 2.2 Relation to Hurwitz Theory.........................460 2.3 Mirror Symmetry from Large Partitions...............462 2.4 Higher Genus and Matrix Models....................464 3 Phase Transitions, Critical Behavior and Double-Scaling Limit ... 465 3.1 Review of Phase Transitions in Topological String Theory..........................................465 3.2 Phase Transitions for Local Curves...................467 4 Non-perturbative Effects and Large Order Behavior.............469 References...............................................472 Repeated Interaction Quantum Systems............................ 475 Marco Merkli 1 Introduction..............................................475 2 Deterministic Systems.....................................477 2.1 Mathematical Description ..........................477 2.2 Results..........................................481 2.3 Asymptotic State..................................481 2.4 Correlations Reconstruction of Initial State..........482 3 Random Systems .........................................482 3.1 Dynamics and Random Matrix Products ..............482 3.2 Results...........................................484 4 An Example: Spins........................................486 5 Some Proofs .............................................490 References...............................................494 String-Localized Quantum Fields, Modular Localization, and Gauge Theories....................................................... 495 Jens Mund 1 The Notion of String-Localized Quantum Fields...............495 xxxvi Contents 2 Modular Localization and the Construction of Free String-Localized Fields....................................497 3 Results on Free String-Localized Fields.......................499 3.1 Fields and Two-Point Functions .....................499 3.2 Feynman Propagators..............................503 4 Outlook: Interacting String-Localized Fields...................504 References...............................................507 Kinks and Particles in Non-integrable Quantum Field Theories........ 509 Giuseppe Mussardo 1 Introduction..............................................509 2 A Semiclassical Formula...................................513 3 Symmetric Wells..........................................515 4 Asymmetric Wells ........................................519 5 Conclusions..............................................522 References...............................................523 Exponential Decay Laws in Perturbation Theory of Threshold and Embedded Eigenvalues....................................... 525 Arne Jensen and Gheorghe Nenciu 1 Introduction..............................................525 2 The Basic Formula........................................528 3 The Results..............................................530 3.1 Properly Embedded Eigenvalues.....................530 3.2 Threshold Eigenvalues.............................531 4 A Uniqueness Result......................................533 5 Examples................................................534 5.1 Example 1: One Channel Case, v = — 1 ..............534 5.2 Example 2: Two Channel Case, v = -1, 1 ............535 5.3 Example 3: Two Channel Radial Case, v 3..........536 References...............................................537 Energy Diffusion and Superdiffusion in Oscillators Lattice Networks___ 539 Stefano Olla 1 Introduction..............................................539 2 Conservative Stochastic Dynamics...........................541 3 Diffusive Evolution: Green-Kubo Formula....................544 4 Kinetic Limits: Phonon Boltzmann Equation..................545 5 Levy s Superdiffusion of Energy.............................546 References...............................................546 Trying to Characterize Robust and Generic Dynamics................ 549 Enrique R. Pujals 1 Introduction..............................................549 2 Robust Transitivity: Hyperbolicity, Partial Hyperbolicity and Dominated Splitting ...................................551 Contents xxxvii 2.1 Hyperbolicity.....................................553 2.2 Partial Hyperbolicity...............................554 2.3 Dominated Splitting...............................555 2.4 A General Question About Weak Form of Hyperbolicity ..................................557 2.5 Robust Transitivity and Mechanisms: Heterodimensional Cycle...........................557 3 Wild Dynamics...........................................558 3.1 Wild Dynamic and Homoclinic Tangency.............558 3.2 Surfaces Diffeomorphisms and Beyond...............559 4 Generic Dynamics: Mechanisms and Phenomenas..............560 References...............................................561 Dynamics of Bose-Einstein Condensates............................ 565 Benjamin Schlein 1 Introduction..............................................565 2 Heuristic Derivation of the Gross-Pitaevskii Equation...........567 3 Main Results.............................................571 4 General Strategy of the Proof and Previous Results.............574 5 Convergence to the Infinite Hierarchy........................576 6 Uniqueness of the Solution to the Infinite Hierarchy............580 6.1 Higher Order Energy Estimates......................581 6.2 Expansion in Feynman Graphs ......................583 References...............................................589 Locality Estimates for Quantum Spin Systems....................... 591 Bruno Nachtergaele and Robert Sims 1 Introduction..............................................591 2 Lieb-Robinson Bounds.....................................593 3 Quasi-Locality of the Dynamics.............................598 4 Exponential Clustering.....................................601 5 The Lieb-Schultz-Mattis Theorem...........................604 5.1 The Result and Some Words on the Proof.............605 5.2 A More Detailed Outline of the Proof.................607 References...............................................614 On Resolvent Identities in Gaussian Ensembles at the Edge of the Spectrum................................................. 615 Alexander Soshnikov 1 Introduction..............................................615 2 Proof of Theorems 1 and 3 .................................622 3 Proof of Theorems 4 and 5 .................................624 4 Non-Gaussian Case .......................................625 References...............................................626 xxxviii Contents Energy Current Correlations for Weakly Anharmonic Lattices 629 Herbert Spohn 1 Introduction..............................................629 2 Anharmonic Lattice Dynamics..............................630 3 Energy Current Correlations................................633 4 The Linearized Collision Operator...........................637 5 Gaussian Fluctuation Theory................................639 References...............................................640 Metastates, Translation Ergodicity, and Simplicity of Thermodynamic States in Disordered Systems: an Illustration........................ 643 Charles M. Newman and Daniel L. Stein 1 Introduction..............................................643 2 The Sherrington-Kirkpatrick Model and the Parisi Replica Symmetry Breaking Solution ...............................644 3 Open Problems...........................................645 4 Metastates...............................................645 5 Invariance and Ergodicity ..................................646 6 A Strategy for Rigorous Studies of Spin Glasses ...............647 7 Summary................................................651 References...............................................651 Random Matrices, Non-intersecting Random Walks, and Some Aspects of Universality.................................................. 653 Toufic M. Suidan 1 Introduction..............................................653 1.1 Selected Basic Facts from Random Matrix Theory......654 1.2 The Karlin-McGregor Formula......................654 2 The Models..............................................655 2.1 Longest Increasing Subsequence of a Random Permutation......................................655 2.2 ABC-Hexagon....................................657 2.3 Last Passage Percolation ...........................657 2.4 Non-intersecting Brownian Motion...................660 3 Universality..............................................661 3.1 Last Passage Percolation ...........................662 3.2 Non-intersecting Random Walks.....................662 References...............................................664 Homogenization of Periodic Differential Operators as a Spectral Threshold Effect................................................ 667 Mikhail S. Birman and Tatiana A. Suslina 1 Introduction..............................................667 2 Periodic DO s. The Effective Matrix.........................668 3 Homogenization of Periodic DO s. Principal Term of Approximation for the Resolvent..........................670 Contents xxxix 4 More Accurate Approximation for the Resolvent in the L2-Operator Norm...................................671 5 (L2 - H )-Approximation of the Resolvent. Approximation of the Fluxes in Li........................................673 6 The Method of Investigation................................674 7 Some Applications........................................678 8 On Further Development of the Method ......................681 References...............................................682 ABCD and ODEs ............................................... 685 Patrick Dorey, Clare Dunning, Davide Masoero, Junji Suzuki and Roberto Tateo 1 Introduction..............................................685 2 Bethe Ansatz for Classical Lie Algebras......................688 3 The Pseudo-Differential Equations...........................689 4 Conclusions..............................................693 References...............................................694 Nonrational Conformal Field Theory............................... 697 J6rg Teschner 1 Introduction..............................................697 2 Constraints from Conformal Symmetry.......................699 2.1 Motivation: Chiral Factorization of Physical Correlation Functions........................................699 2.2 Vertex Algebras...................................700 2.3 Representations of Vertex Algebras ..................701 2.4 Conformal Blocks.................................701 2.5 Correlation Functions vs. Hermitian Forms............703 3 Behavior Near the Boundary of Moduli Space.................704 3.1 Gluing of Riemann Surfaces ........................705 3.2 Gluing of Conformal Blocks........................708 3.3 Correlation Functions..............................710 3.4 Conformal Blocks as Matrix Elements................712 4 From one Boundary to Another..............................713 4.1 The Modular Groupoid.............................714 4.2 Representation of the Generators on Spaces of Conformal Blocks...............................717 4.3 Representation of the Relations on Spaces of Conformal Blocks...........................................718 5 Notion of a Stable Modular Functor..........................719 5.1 Towers of Representations of the Modular Groupoid .... 719 5.2 Unitary Modular Functors..........................721 5.3 Similarity of Modular Functors......................722 5.4 Friedan-Shenker Modular Geometry..................722 6 Example of a Nonrational Modular Functor...................723 xj Contents 6.1 Unitary Positive Energy Representations of the Virasoro Algebra..........................................724 6.2 Construction of Virasoro Conformal Blocks in Genus Zero.............................................725 6.3 Factorization Property..............................726 6.4 The Hilbert Space Structure.........................727 6.5 Extension to Higher Genus..........................728 6.6 Remarks.........................................729 7 Existence of a Canonical Scalar Product?.....................729 7.1 Existence of a Canonical Hermitian Form from the Factorization Property......................730 7.2 Unitary Fusion....................................732 7.3 Associativity of Unitary Fusion......................733 7.4 Discussion.......................................735 8 Outlook.................................................735 8.1 Modular Functors from W-algebras and Langlands Duality..........................................735 8.2 Boundary CFT....................................736 8.3 Nonrational Verlinde Formula?......................736 References...............................................738 Kinetically Constrained Models................................... 741 Nicoletta Cancrini, Fabio Martinelli, Cyril Roberto and Cristina Toninelli References...............................................751 The Distributions of Random Matrix Theory and their Applications .... 753 Craig A. Tracy and Harold Widom 1 Random Matrix Models: Gaussian Ensembles.................753 1.1 Largest Eigenvalue Distributions Fp. Painleve II Representations...................................754 1.2 Next-Largest, Next-Next Largest, Etc. Eigenvalue Distributions .....................................757 2 Universality Theorems.....................................757 2.1 Invariant Ensembles...............................757 2.2 Wigner Ensembles.................................759 3 Multivariate Statistical Analysis.............................759 3.1 Principal Component Analysis (PCA) ................760 3.2 Testing the Null Hypothesis.........................760 3.3 Spiked Populations: BBP Phase Transition............761 4 Conclusions..............................................763 References...............................................763 Hybrid Formalism and Topological Amplitudes...................... 767 Jiirg Kappeli and Stefan Theisen and Pierre Vanhove 1 Introduction..............................................767 2 Compactified String Theory in RNS and Hybrid Variables.......768 Contents xli 2.1 Hybrid Variables..................................768 2.2 RNS Variables....................................772 2.3 Field Redefinition from RNS to Hybrid Variables.......773 2.4 Physical State Conditions and J^ = 4-embeddings.....776 2.5 Massless Vertex Operators..........................778 3 Amplitudes and Correlation Functions........................780 3.1 Amplitudes.......................................780 3.2 Correlation Functions of Chiral Bosons...............782 4 Topological Amplitudes....................................783 4.1 Generalities......................................783 4.2 tf-charge (g - 1, g - 1)............................784 4.3 /^-charge (1 - g, 1 - g)............................785 4.4 /^-charges (g - 1, 1 - g) and (1 - g, g - 1)...........787 4.5 Summary of the Amplitude Computation..............788 A Appendix: Conventions and Notations........................789 A. 1 Spinors and Superspace............................789 A.2 Hybrid Variables and JV = 2 Algebra................790 A.3 The Integrated Vertex Operator......................791 B Appendix: Mapping the RNS to the Hybrid Variables...........792 B. 1 Field Redefinition from RNS to Chiral GS Variables___792 B.2 Similarity Transformation Relating Chiral GS to Hybrid Variables................................792 B.3 Hermitian Conjugation of the Hybrid Variables.........793 B.4 Hermitian Conjugation of the RNS Variables ..........794 C Appendix: Vertex Operators ................................797 C.I Massless RNS Vertex Operators.....................797 C.2 Universal Massless Multiplets.......................799 C.3 Compactification Dependent Massless Multiplets.......799 References...............................................802 Quantum Phases of Cold Bosons in an Optical Lattice ................ 805 Michael Aizenman, Elliot H. Lieb, Robert Seiringer, Jan Philip Solovej and Jakob Yngvason 1 Introduction..............................................806 2 Reflection Positivity.......................................810 3 Proof of BEC for Small X. and T.............................811 4 Absence of BEC and Mott Insulator Phase....................816 5 The Non-interacting Gas...................................820 6 Conclusion...............................................821 References...............................................821 Random Walks in Random Environments in the Perturbative Regime ... 823 Ofer Zeitouni 1 Introduction..............................................823 2 Local Limits for Exit Measures..............................825 References...............................................826 xlji Contents Appendix: Complete List of Abstracts.............................. 827 YRS and XV ICMP 1 Young Researchers Symposium Plenary Lectures ..............827 2 XV International Congress on Mathematical Physics Plenary Lectures.................................................830 3 XV International Congress on Mathematical Physics Specialized Sessions.................................................835 3.1 Condensed Matter Physics..........................835 3.2 Dynamical Systems................................836 3.3 Equilibrium Statistical Mechanics....................839 3.4 Non-equilibrium Statistical Mechanics................840 3.5 Exactly Solvable Systems...........................843 3.6 General Relativity.................................844 3.7 Operator Algebras.................................846 3.8 Partial Differential Equations........................847 3.9 Probability Theory ................................849 3.10 Quantum Mechanics...............................850 3.11 Quantum Field Theory.............................852 3.12 2D Quantum Field Theory..........................854 3.13 Quantum Information..............................855 3.14 Random Matrices .................................858 3.15 Stochastic PDE...................................860 3.16 String Theory.....................................861 Index.......................................................... 865
any_adam_object 1
author2 Sidoravicius, Vladas
author2_role edt
author2_variant v s vs
author_GND (DE-588)123889308
author_facet Sidoravicius, Vladas
building Verbundindex
bvnumber BV035685126
callnumber-first Q - Science
callnumber-label QC19
callnumber-raw QC19.2
callnumber-search QC19.2
callnumber-sort QC 219.2
callnumber-subject QC - Physics
classification_rvk SD 2006
classification_tum MAT 344f
PHY 011f
ctrlnum (OCoLC)360205404
(DE-599)BVBBV035685126
dewey-full 830.15
dewey-hundreds 800 - Literature (Belles-lettres) and rhetoric
dewey-ones 830 - Literatures of Germanic languages
dewey-raw 830.15
dewey-search 830.15
dewey-sort 3830.15
dewey-tens 830 - Literatures of Germanic languages
discipline Physik
Germanistik / Niederlandistik / Skandinavistik
Mathematik
format Conference Proceeding
Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02160nam a2200505 c 4500</leader><controlfield tag="001">BV035685126</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120508 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090819s2009 gw ad|| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">993988393</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048128099</subfield><subfield code="c">GB. : ca. EUR 148.73 (freier Pr.), ca. sfr 413.50 (freier Pr.)</subfield><subfield code="9">978-90-481-2809-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)360205404</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035685126</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC19.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">830.15</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SD 2006</subfield><subfield code="0">(DE-625)142740:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 344f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 011f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">New trends in mathematical physics</subfield><subfield code="b">selected contributions of the XVth International Congress on Mathematical Physics</subfield><subfield code="c">ed.: Vladas Sidoravicius</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Springer</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XLII, 872 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">2006</subfield><subfield code="z">Rio de Janeiro</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sidoravicius, Vladas</subfield><subfield code="0">(DE-588)123889308</subfield><subfield code="4">edt</subfield></datafield><datafield tag="711" ind1="2" ind2=" "><subfield code="a">International Congress on Mathematical Physics</subfield><subfield code="n">15</subfield><subfield code="d">2006</subfield><subfield code="c">Rio de Janeiro</subfield><subfield code="j">Sonstige</subfield><subfield code="0">(DE-588)6527563-9</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-90-481-2810-5</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=017739320&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017739320</subfield></datafield></record></collection>
genre (DE-588)1071861417 Konferenzschrift 2006 Rio de Janeiro gnd-content
genre_facet Konferenzschrift 2006 Rio de Janeiro
id DE-604.BV035685126
illustrated Illustrated
indexdate 2024-11-25T17:37:10Z
institution BVB
institution_GND (DE-588)6527563-9
isbn 9789048128099
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-017739320
oclc_num 360205404
open_access_boolean
owner DE-19
DE-BY-UBM
DE-91G
DE-BY-TUM
owner_facet DE-19
DE-BY-UBM
DE-91G
DE-BY-TUM
physical XLII, 872 S. Ill., graph. Darst.
publishDate 2009
publishDateSearch 2009
publishDateSort 2009
publisher Springer
record_format marc
spellingShingle New trends in mathematical physics selected contributions of the XVth International Congress on Mathematical Physics
Mathematische Physik
Mathematical physics Congresses
Dynamisches System (DE-588)4013396-5 gnd
Differentialgleichung (DE-588)4012249-9 gnd
Mathematische Physik (DE-588)4037952-8 gnd
subject_GND (DE-588)4013396-5
(DE-588)4012249-9
(DE-588)4037952-8
(DE-588)1071861417
title New trends in mathematical physics selected contributions of the XVth International Congress on Mathematical Physics
title_auth New trends in mathematical physics selected contributions of the XVth International Congress on Mathematical Physics
title_exact_search New trends in mathematical physics selected contributions of the XVth International Congress on Mathematical Physics
title_full New trends in mathematical physics selected contributions of the XVth International Congress on Mathematical Physics ed.: Vladas Sidoravicius
title_fullStr New trends in mathematical physics selected contributions of the XVth International Congress on Mathematical Physics ed.: Vladas Sidoravicius
title_full_unstemmed New trends in mathematical physics selected contributions of the XVth International Congress on Mathematical Physics ed.: Vladas Sidoravicius
title_short New trends in mathematical physics
title_sort new trends in mathematical physics selected contributions of the xvth international congress on mathematical physics
title_sub selected contributions of the XVth International Congress on Mathematical Physics
topic Mathematische Physik
Mathematical physics Congresses
Dynamisches System (DE-588)4013396-5 gnd
Differentialgleichung (DE-588)4012249-9 gnd
Mathematische Physik (DE-588)4037952-8 gnd
topic_facet Mathematische Physik
Mathematical physics Congresses
Dynamisches System
Differentialgleichung
Konferenzschrift 2006 Rio de Janeiro
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017739320&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT sidoraviciusvladas newtrendsinmathematicalphysicsselectedcontributionsofthexvthinternationalcongressonmathematicalphysics
AT internationalcongressonmathematicalphysicsriodejaneiro newtrendsinmathematicalphysicsselectedcontributionsofthexvthinternationalcongressonmathematicalphysics