An introduction to statistical inference and its applications with R

"Emphasizing concepts rather than recipes, An Introduction to Statistical Inference and Its Applications with R provides a clear exposition of the methods of statistical inference for students who are comfortable with mathematical notation. Numerous examples, case studies, and exercises are inc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Trosset, Michael W. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Boca Raton [u.a.] CRC Press 2009
Schriftenreihe:Texts in statistical science
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV035682212
003 DE-604
005 20100128
007 t|
008 090818s2009 xx |||| 00||| eng d
010 |a 2009015981 
020 |a 9781584889472  |c (hbk. : alk. paper)  |9 978-1-58488-947-2 
035 |a (OCoLC)637343708 
035 |a (DE-599)BSZ309592054 
040 |a DE-604  |b ger 
041 0 |a eng 
049 |a DE-91G  |a DE-473  |a DE-11  |a DE-188 
050 0 |a QA276 
082 0 |a 519.5/4  |2 22 
084 |a QH 231  |0 (DE-625)141546:  |2 rvk 
084 |a SK 840  |0 (DE-625)143261:  |2 rvk 
084 |a ST 250  |0 (DE-625)143626:  |2 rvk 
084 |a DAT 368f  |2 stub 
084 |a MAT 620f  |2 stub 
100 1 |a Trosset, Michael W.  |e Verfasser  |4 aut 
245 1 0 |a An introduction to statistical inference and its applications with R  |c Michael W. Trosset 
264 1 |a Boca Raton [u.a.]  |b CRC Press  |c 2009 
300 |a XXVII, 467 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Texts in statistical science 
520 3 |a "Emphasizing concepts rather than recipes, An Introduction to Statistical Inference and Its Applications with R provides a clear exposition of the methods of statistical inference for students who are comfortable with mathematical notation. Numerous examples, case studies, and exercises are included. R is used to simplify computation, create figures, and draw pseudorandom samples - not to perform entire analyses. After discussing the importance of chance in experimentation, the text develops basic tools of probability. The plug-in principle then provides a transition from populations to samples, motivating a variety of summary statistics and diagnostic techniques. The heart of the text is a careful exposition of point estimation, hypothesis testing, and confidence intervals. The author then explains procedures for 1- and 2-sample location problems, analysis of variance, goodness-of-fit, and correlation and regression. He concludes by discussing the role of simulation in modern statistical inference."--Publisher's description. 
650 7 |a Afleiding (logica)  |2 gtt 
650 7 |a R (computerprogramma)  |2 gtt 
650 7 |a Statistische methoden  |2 gtt 
650 4 |a Mathematical statistics 
650 4 |a Probabilities 
650 4 |a R (Computer program language) 
650 0 7 |a R  |g Programm  |0 (DE-588)4705956-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Statistik  |0 (DE-588)4056995-0  |2 gnd  |9 rswk-swf 
689 0 0 |a Statistik  |0 (DE-588)4056995-0  |D s 
689 0 1 |a R  |g Programm  |0 (DE-588)4705956-4  |D s 
689 0 |5 DE-604 
856 4 2 |m Digitalisierung UB Bamberg  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017736465&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-017736465 

Datensatz im Suchindex

_version_ 1820162645562490880
adam_text Contents List of Figures xv List of Tables xix Preface xxiii 1 Experiments 1 1.1 Examples . 1 1.1.1 Spinning a Penny . 2 1.1.2 The Speed of Light . 3 1.1.3 Termite Foraging Behavior . 5 1.2 Randomization . 7 1.3 The Importance of Probability . 12 1.4 Games of Chance . 14 1.5 Exercises . 19 2 Mathematical Preliminaries 23 2.1 Sets . 23 2.2 Counting . 27 2.3 Functions . 34 2.4 Limits . 35 2.5 Exercises . 36 3 Probability 43 3.1 Interpretations of Probability . 43 3.2 Axioms of Probability . 44 3.3 Finite Sample Spaces . 52 3.4 Conditional Probability . 58 3.5 Random Variables . 69 ix x CONTENTS 3.6 Case Study: Padrolling in Milton Murayama's All I asking for is my body . 77 3.7 Exercises . 82 4 Discrete Random Variables 89 4.1 Basic Concepts . 89 4.2 Examples . 90 4.3 Expectation . 94 4.4 Binomial Distributions . 105 4.5 Exercises . 110 5 Continuous Random Variables 117 5.1 A Motivating Example . 117 5.2 Basic Concepts . 120 5.3 Elementary Examples . 124 5.4 Normal Distributions . 128 5.5 Normal Sampling Distributions . 132 5.6 Exercises . 136 6 Quantifying Population Attributes 141 6.1 Symmetry . 141 6.2 Quantités . 143 6.2.1 The Median of a Population . 146 6.2.2 The Interquartile Range of a Population . 147 6.3 The Method of Least Squares . 148 6.3.1 The Mean of a Population . 148 6.3.2 The Standard Deviation of a Population . 149 6.4 Exercises . 150 7 Data 153 7.1 The Plug-In Principle . 154 7.2 Plug-In Estimates of Mean and Variance . 156 7.3 Plug-In Estimates of Quantiles . 158 7.3.1 Box Plots . 160 7.3.2 Normal Probability Plots . 163 7.4 Kernel Density Estimates . 164 7.5 Case Study: Forearm Lengths . 167 7.6 Transformations . 173 7.7 Exercises . 175 CONTENTS xi 8 Lots of Data 181 8.1 Averaging Decreases Variation .183 8.2 The Weak Law of Large Numbers .185 8.3 The Central Limit Theorem .187 8.4 Exercises .194 9 Inference 197 9.1 A Motivating Example . 198 9.2 Point Estimation . 200 9.2.1 Estimating a Population Mean . 200 9.2.2 Estimating a Population Variance . 201 9.3 Heuristics of Hypothesis Testing . 202 9.4 Testing Hypotheses about a Population Mean . 212 9.4.1 One-Sided Hypotheses . 216 9.4.2 Formulating Suitable Hypotheses . 217 9.4.3 Statistical Significance and Material Significance . . . 221 9.5 Set Estimation . 222 9.5.1 Sample Size . 225 9.5.2 One-Sided Confidence Intervals . 226 9.6 Exercises . 227 10 1-Sample Location Problems 233 10.1 The Normal 1-Sample Location Problem .236 10.1.1 Point Estimation .236 10.1.2 Hypothesis Testing .237 10.1.3 Set Estimation .241 10.2 The General 1-Sample Location Problem .243 10.2.1 Hypothesis Testing .243 10.2.2 Point Estimation .246 10.2.3 Set Estimation .247 10.3 The Symmetric 1-Sample Location Problem .248 10.3.1 Hypothesis Testing .249 10.3.2 Point Estimation .254 10.3.3 Set Estimation .256 10.4 Case Study: Deficit Unawareness .257 10.5 Exercises .262 11 2-Sample Location Problems 269 11.1 The Normal 2-Sample Location Problem .271 11.1.1 Known Variances .274 xii CONTENTS 11.1.2 Unknown Common Variance .275 11.1.3 Unknown Variances .278 11.2 The Case of a General Shift Family .282 11.2.1 Hypothesis Testing .283 11.2.2 Point Estimation .287 11.2.3 Set Estimation .289 11.3 Case Study: Etruscan versus Italian Head Breadth .290 11.4 Exercises .294 12 The Analysis of Variance 305 12.1 The Fundamental Null Hypothesis .306 12.2 Testing the Fundamental Null Hypothesis .307 12.2.1 Known Population Variance .308 12.2.2 Unknown Population Variance .309 12.3 Planned Comparisons .313 12.3.1 Orthogonal Contrasts .318 12.3.2 Bonferroni i-Tests .321 12.4 Post Hoc Comparisons .323 12.4.1 Bonferroni i-Tests .323 12.4.2 Scheffé F-Tests .324 12.5 Case Study: Treatments of Anorexia .325 12.6 Exercises .328 13 Goodness-of-Fit 337 13.1 Partitions .337 13.2 Test Statistics .338 13.3 Testing Independence .341 13.4 Exercises .344 14 Association 349 14.1 Divariate Distributions . 350 14.2 Normal Random Variables . 351 14.2.1 Divariate Normal Samples . 353 14.2.2 Inferences about Correlation . 357 14.3 Monotonie Association . 362 14.4 Explaining Association . 368 14.5 Case Study: Anorexia Treatments Revisited . 369 14.6 Exercises . 372 CONTENTS xiii 15 Simple Linear Regression 379 15.1 The Regression Line.380 15.2 The Method of Least Squares.385 15.3 Computation .393 15.4 The Simple Linear Regression Model .395 15.5 Assessing Linearity .400 15.6 Case Study: Are Thick Books More Valuable? .406 15.7 Exercises .408 16 Simulation-Based Inference 417 16.1 Termite Foraging Revisited .418 16.2 The Bootstrap .423 16.3 Case Study: Adventure Racing .427 16.4 Exercises .431 R A Statistical Programming Language 435 R.I Introduction .435 R.I.I What Is R? .435 R.1.2 Why Use R? .435 R.1.3 Installing R .436 R.1.4 Learning about R .437 R.2 Using R .437 R.2.1 Vectors .438 R.2.2 R Is a Calculator! .440 R.2.3 Some Statistics Functions .440 R.2.4 Matrices .440 R.2. 5 Creating New Functions .443 R.3 Functions That Accompany This Book .445 R.3.1 Inferences about a Center of Symmetry .446 R.3. 2 Inferences about a Shift Parameter .449 R.3.3 Inferences about Monotonie Association .452 R.3. 4 Exploring Bivariate Normal Data .455 R.3. 5 Simulating Random Termite Foraging .459 Index 463
any_adam_object 1
author Trosset, Michael W.
author_facet Trosset, Michael W.
author_role aut
author_sort Trosset, Michael W.
author_variant m w t mw mwt
building Verbundindex
bvnumber BV035682212
callnumber-first Q - Science
callnumber-label QA276
callnumber-raw QA276
callnumber-search QA276
callnumber-sort QA 3276
callnumber-subject QA - Mathematics
classification_rvk QH 231
SK 840
ST 250
classification_tum DAT 368f
MAT 620f
ctrlnum (OCoLC)637343708
(DE-599)BSZ309592054
dewey-full 519.5/4
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.5/4
dewey-search 519.5/4
dewey-sort 3519.5 14
dewey-tens 510 - Mathematics
discipline Informatik
Mathematik
Wirtschaftswissenschaften
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV035682212</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100128</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">090818s2009 xx |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2009015981</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781584889472</subfield><subfield code="c">(hbk. : alk. paper)</subfield><subfield code="9">978-1-58488-947-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)637343708</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BSZ309592054</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA276</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5/4</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 231</subfield><subfield code="0">(DE-625)141546:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 840</subfield><subfield code="0">(DE-625)143261:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 250</subfield><subfield code="0">(DE-625)143626:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 368f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 620f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Trosset, Michael W.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to statistical inference and its applications with R</subfield><subfield code="c">Michael W. Trosset</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton [u.a.]</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVII, 467 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Texts in statistical science</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"Emphasizing concepts rather than recipes, An Introduction to Statistical Inference and Its Applications with R provides a clear exposition of the methods of statistical inference for students who are comfortable with mathematical notation. Numerous examples, case studies, and exercises are included. R is used to simplify computation, create figures, and draw pseudorandom samples - not to perform entire analyses. After discussing the importance of chance in experimentation, the text develops basic tools of probability. The plug-in principle then provides a transition from populations to samples, motivating a variety of summary statistics and diagnostic techniques. The heart of the text is a careful exposition of point estimation, hypothesis testing, and confidence intervals. The author then explains procedures for 1- and 2-sample location problems, analysis of variance, goodness-of-fit, and correlation and regression. He concludes by discussing the role of simulation in modern statistical inference."--Publisher's description.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Afleiding (logica)</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">R (computerprogramma)</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Statistische methoden</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probabilities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">R (Computer program language)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bamberg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=017736465&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017736465</subfield></datafield></record></collection>
id DE-604.BV035682212
illustrated Not Illustrated
indexdate 2025-01-02T18:25:52Z
institution BVB
isbn 9781584889472
language English
lccn 2009015981
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-017736465
oclc_num 637343708
open_access_boolean
owner DE-91G
DE-BY-TUM
DE-473
DE-BY-UBG
DE-11
DE-188
owner_facet DE-91G
DE-BY-TUM
DE-473
DE-BY-UBG
DE-11
DE-188
physical XXVII, 467 S.
publishDate 2009
publishDateSearch 2009
publishDateSort 2009
publisher CRC Press
record_format marc
series2 Texts in statistical science
spelling Trosset, Michael W. Verfasser aut
An introduction to statistical inference and its applications with R Michael W. Trosset
Boca Raton [u.a.] CRC Press 2009
XXVII, 467 S.
txt rdacontent
n rdamedia
nc rdacarrier
Texts in statistical science
"Emphasizing concepts rather than recipes, An Introduction to Statistical Inference and Its Applications with R provides a clear exposition of the methods of statistical inference for students who are comfortable with mathematical notation. Numerous examples, case studies, and exercises are included. R is used to simplify computation, create figures, and draw pseudorandom samples - not to perform entire analyses. After discussing the importance of chance in experimentation, the text develops basic tools of probability. The plug-in principle then provides a transition from populations to samples, motivating a variety of summary statistics and diagnostic techniques. The heart of the text is a careful exposition of point estimation, hypothesis testing, and confidence intervals. The author then explains procedures for 1- and 2-sample location problems, analysis of variance, goodness-of-fit, and correlation and regression. He concludes by discussing the role of simulation in modern statistical inference."--Publisher's description.
Afleiding (logica) gtt
R (computerprogramma) gtt
Statistische methoden gtt
Mathematical statistics
Probabilities
R (Computer program language)
R Programm (DE-588)4705956-4 gnd rswk-swf
Statistik (DE-588)4056995-0 gnd rswk-swf
Statistik (DE-588)4056995-0 s
R Programm (DE-588)4705956-4 s
DE-604
Digitalisierung UB Bamberg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017736465&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
spellingShingle Trosset, Michael W.
An introduction to statistical inference and its applications with R
Afleiding (logica) gtt
R (computerprogramma) gtt
Statistische methoden gtt
Mathematical statistics
Probabilities
R (Computer program language)
R Programm (DE-588)4705956-4 gnd
Statistik (DE-588)4056995-0 gnd
subject_GND (DE-588)4705956-4
(DE-588)4056995-0
title An introduction to statistical inference and its applications with R
title_auth An introduction to statistical inference and its applications with R
title_exact_search An introduction to statistical inference and its applications with R
title_full An introduction to statistical inference and its applications with R Michael W. Trosset
title_fullStr An introduction to statistical inference and its applications with R Michael W. Trosset
title_full_unstemmed An introduction to statistical inference and its applications with R Michael W. Trosset
title_short An introduction to statistical inference and its applications with R
title_sort an introduction to statistical inference and its applications with r
topic Afleiding (logica) gtt
R (computerprogramma) gtt
Statistische methoden gtt
Mathematical statistics
Probabilities
R (Computer program language)
R Programm (DE-588)4705956-4 gnd
Statistik (DE-588)4056995-0 gnd
topic_facet Afleiding (logica)
R (computerprogramma)
Statistische methoden
Mathematical statistics
Probabilities
R (Computer program language)
R Programm
Statistik
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017736465&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT trossetmichaelw anintroductiontostatisticalinferenceanditsapplicationswithr