Holomorphic operator functions of one variable and applications methods from complex analysis in several variables

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gohberg, Yiśrāʿēl Z. 1928-2009 (VerfasserIn), Leiterer, Jürgen (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Basel [u.a.] Birkhäuser 2009
Schriftenreihe:Operator theory 192
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV035672332
003 DE-604
005 20110606
007 t|
008 090811s2009 xx |||| 00||| eng d
015 |a 09,N21,0949  |2 dnb 
016 7 |a 993987869  |2 DE-101 
020 |a 9783034601252  |c GB. : EUR 105.93 (freier Pr.), sfr 159.00 (freier Pr.)  |9 978-3-03-460125-2 
024 3 |a 9783034601252 
028 5 2 |a 12679539 
035 |a (OCoLC)603560225 
035 |a (DE-599)DNB993987869 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-355  |a DE-11  |a DE-824  |a DE-19  |a DE-20 
050 0 |a QA331.7 
082 0 |a 515 
084 |a SK 780  |0 (DE-625)143255:  |2 rvk 
084 |a 510  |2 sdnb 
100 1 |a Gohberg, Yiśrāʿēl Z.  |d 1928-2009  |e Verfasser  |0 (DE-588)118915878  |4 aut 
245 1 0 |a Holomorphic operator functions of one variable and applications  |b methods from complex analysis in several variables  |c Israel Gohberg ; Jürgen Leiterer 
264 1 |a Basel [u.a.]  |b Birkhäuser  |c 2009 
300 |a XX, 422 S.  |c 235 mm x 165 mm 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Operator theory  |v 192 
650 4 |a Holomorphic functions 
650 4 |a Operator theory 
650 0 7 |a Holomorphe Funktion  |0 (DE-588)4025645-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Operatorfunktion  |0 (DE-588)4202830-9  |2 gnd  |9 rswk-swf 
689 0 0 |a Operatorfunktion  |0 (DE-588)4202830-9  |D s 
689 0 1 |a Holomorphe Funktion  |0 (DE-588)4025645-5  |D s 
689 0 |5 DE-604 
700 1 |a Leiterer, Jürgen  |e Verfasser  |4 aut 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-3-0346-0126-9 
830 0 |a Operator theory  |v 192  |w (DE-604)BV000000970  |9 192 
856 4 2 |m SWB Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017726587&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-017726587 

Datensatz im Suchindex

_version_ 1819650283540578304
adam_text CONTENTS PREFACE XI INTRODUCTION XIII NOTATION XIX 1 ELEMENTARY PROPERTIES OF HOLOMORPHIC FUNCTIONS 1 1.1 DEFINITION AND FIRST PROPERTIES . . . . . . . . . . . . . . . . . . . . . 1 1.2 THE MAXIMUM PRINCIPLE . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 CONTOUR INTEGRALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 THE CAUCHY INTEGRAL THEOREM . . . . . . . . . . . . . . . . . . . . . 11 1.5 THE CAUCHY FORMULA . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.6 THE HAHN-BANACH CRITERION . . . . . . . . . . . . . . . . . . . . . . 15 1.7 A CRITERION FOR THE HOLOMORPHY OF OPERATOR FUNCTIONS . . . . . . . . 18 1.8 POWER SERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.9 LAURENT SERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.10 ISOLATED SINGULARITIES . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.11 COMMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2 SOLUTION OF *U = F AND APPLICATIONS 29 2.1 THE POMPEIJU FORMULA FOR SOLUTIONS OF *U = F ON COMPACT SETS . . 29 2.2 RUNGE APPROXIMATION . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3 SOLUTION OF *U = F ON OPEN SETS . . . . . . . . . . . . . . . . . . . . 41 2.4 O E -COCYCLES AND THE MITTAG-LEFFLER THEOREM . . . . . . . . . . . . . 43 2.5 RUNGE APPROXIMATION FOR INVERTIBLE SCALAR FUNCTIONS AND THE WEIERSTRASS PRODUCT THEOREM . . . . . . . . . . . . . . . . . . . . . 44 2.6 O E -COCYCLES WITH PRESCRIBED ZEROS AND A STRONGER VERSION OF THE MITTAG-LEFFLER THEOREM . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.7 GENERALIZATION OF THE WEIERSTRASS PRODUCT THEOREM . . . . . . . . . 54 2.8 COMMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 VIII CONTENTS 3 SPLITTING AND FACTORIZATION WITH RESPECT TO A CONTOUR 59 3.1 SPLITTING WITH RESPECT TO A CONTOUR . . . . . . . . . . . . . . . . . . 59 3.2 SPLITTING AND THE CAUCHY INTEGRAL . . . . . . . . . . . . . . . . . . . 61 3.3 H¨OLDER CONTINUOUS FUNCTIONS SPLIT . . . . . . . . . . . . . . . . . . . 65 3.4 THE SPLITTING BEHAVIOR OF DIFFERENTIABLE FUNCTIONS . . . . . . . . . . 72 3.5 APPROXIMATION OF H¨OLDER CONTINUOUS FUNCTIONS . . . . . . . . . . . . 75 3.6 EXAMPLE: A NON-SPLITTING CONTINUOUS FUNCTION . . . . . . . . . . . . 77 3.7 THE ADDITIVE LOCAL PRINCIPLE . . . . . . . . . . . . . . . . . . . . . . 82 3.8 FACTORIZATION OF SCALAR FUNCTIONS WITH RESPECT TO A CONTOUR. FIRST REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.9 FACTORIZATION OF H¨OLDER FUNCTIONS . . . . . . . . . . . . . . . . . . . 89 3.10 FACTORIZATION OF WIENER FUNCTIONS . . . . . . . . . . . . . . . . . . . 91 3.11 THE MULTIPLICATIVE LOCAL PRINCIPLE . . . . . . . . . . . . . . . . . . . 93 3.12 COMMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4 THE ROUCH´E THEOREM FOR OPERATOR FUNCTIONS 97 4.1 FINITE MEROMORPHIC FREDHOLM FUNCTIONS . . . . . . . . . . . . . . . 97 4.2 INVERTIBLE FINITE MEROMORPHIC FREDHOLM FUNCTIONS . . . . . . . . . . 101 4.3 SMITH FACTORIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.4 THE ROUCH´E THEOREM . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.5 COMMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5 MULTIPLICATIVE COCYCLES ( O G -COCYCLES) 113 5.1 TOPOLOGICAL PROPERTIES OF GL ( E ) . . . . . . . . . . . . . . . . . . . 114 5.2 TWO FACTORIZATION LEMMAS . . . . . . . . . . . . . . . . . . . . . . . 120 5.3 O E -COCYCLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.4 RUNGE APPROXIMATION OF G -VALUED FUNCTIONS. FIRST STEPS . . . . . . 125 5.5 THE CARTAN LEMMA . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 5.6 O G -COCYCLES. DEFINITIONS AND STATEMENT OF THE MAIN RESULT . . . . . 131 5.7 REFINEMENT OF THE COVERING . . . . . . . . . . . . . . . . . . . . . . . 133 5.8 EXHAUSTING BY COMPACT SETS . . . . . . . . . . . . . . . . . . . . . . 137 5.9 PROOF OF THE MAIN THEOREM IN THE CASE OF SIMPLY CONNECTED OPEN SETS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.10 RUNGE APPROXIMATION OF G -VALUED FUNCTIONS. GENERAL CASE . . . . . 143 5.11 PROOF OF THE MAIN THEOREM IN THE GENERAL CASE . . . . . . . . . . . . 147 5.12 O G * ( E ) -COCYCLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 5.13 WEIERSTRASS THEOREMS . . . . . . . . . . . . . . . . . . . . . . . . . . 153 5.14 WEIERSTRASS THEOREMS FOR G * ( E ) AND G * ( E )-VALUED FUNCTIONS . . . 156 5.15 COMMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 6 FAMILIES OF SUBSPACES 159 6.1 THE GAP METRIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 6.2 KERNEL AND IMAGE OF OPERATOR FUNCTIONS . . . . . . . . . . . . . . . 172 6.3 HOLOMORPHIC SECTIONS OF CONTINUOUS FAMILIES OF SUBSPACES . . . . . . 184 CONTENTS IX 6.4 HOLOMORPHIC FAMILIES OF SUBSPACES . . . . . . . . . . . . . . . . . . 185 6.5 EXAMPLE: A HOLOMORPHIC FAMILY OF SUBSPACES WITH JUMPING ISOMORPHISM TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 6.6 INJECTIVE FAMILIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 6.7 SHUBIN FAMILIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 6.8 COMPLEMENTED FAMILIES . . . . . . . . . . . . . . . . . . . . . . . . . 206 6.9 FINITE DIMENSIONAL AND FINITE CODIMENSIONAL FAMILIES . . . . . . . . 209 6.10 ONE-SIDED AND GENERALIZED INVERTIBLE HOLOMORPHIC OPERATOR FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 6.11 EXAMPLE: A GLOBALLY NON-TRIVIAL COMPLEMENTED HOLOMORPHIC FAMILY OF SUBSPACES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 6.12 COMMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 7 PLEMELJ-MUSCHELISHVILI FACTORIZATION 219 7.1 DEFINITIONS AND FIRST REMARKS ABOUT FACTORIZATION . . . . . . . . . . 220 7.2 THE ALGEBRA OF WIENER FUNCTIONS AND OTHER SPLITTING R -ALGEBRAS . . 222 7.3 H¨OLDER CONTINUOUS AND DIFFERENTIABLE FUNCTIONS . . . . . . . . . . . . 230 7.4 REDUCTION OF THE FACTORIZATION PROBLEM TO FUNCTIONS, HOLOMORPHIC AND INVERTIBLE ON C * . . . . . . . . . . . . . . . . . . . . . . . . . . 237 7.5 FACTORIZATION OF HOLOMORPHIC FUNCTIONS CLOSE TO THE UNIT . . . . . . 240 7.6 REDUCTION OF THE FACTORIZATION PROBLEM TO POLYNOMIALS IN Z AND 1 /Z 240 7.7 THE FINITE DIMENSIONAL CASE . . . . . . . . . . . . . . . . . . . . . . 242 7.8 FACTORIZATION OF G * ( E )-VALUED FUNCTIONS . . . . . . . . . . . . . . . 245 7.9 THE FILTRATION OF AN OPEATOR FUNCTION WITH RESPECT TO A CONTOUR . . 251 7.10 A GENERAL CRITERION FOR THE EXISTENCE OF FACTORIZATIONS . . . . . . . . 259 7.11 COMMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 8 WIENER-HOPF OPERATORS, TOEPLITZ OPERATORS AND FACTORIZATION 269 8.1 HOLOMORPHIC OPERATOR FUNCTIONS . . . . . . . . . . . . . . . . . . . . 269 8.2 FACTORIZATION OF G * ( E )-VALUED FUNCTIONS . . . . . . . . . . . . . . . 273 8.3 THE SPACE L 2 (* , H ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 8.4 OPERATOR FUNCTIONS WITH VALUES ACTING IN A HILBERT SPACE . . . . . . 287 8.5 FUNCTIONS CLOSE TO THE UNIT OPERATOR OR WITH POSITIVE REAL PART . . . 291 8.6 BLOCK T¨OPLITZ OPERATORS . . . . . . . . . . . . . . . . . . . . . . . . 297 8.7 THE FOURIER TRANSFORM OF L 1 ( R , E ) . . . . . . . . . . . . . . . . . . 305 8.8 THE FOURIER ISOMETRY U OF L 2 * R , H * . . . . . . . . . . . . . . . . . 313 8.9 THE ISOMETRY V FROM L 2 ( T , H ) ONTO L 2 ( R , H ) . . . . . . . . . . . . 317 8.10 THE ALGEBRA OF OPERATOR FUNCTIONS L ( H ) * L 1 * R , L ( H ) * . . . . . . 320 8.11 FACTORIZATION WITH RESPECT TO THE REAL LINE . . . . . . . . . . . . . . 324 8.12 WIENER-HOPF INTEGRAL OPERATORS IN L 2 * [0 , * [ , H * . . . . . . . . . . . 325 8.13 AN EXAMPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 8.14 COMMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 X CONTENTS 9 MULTIPLICATIVE COCYCLES WITH RESTRICTIONS ( F -COCYCLES) 343 9.1 F -COCYCLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 9.2 THE MAIN RESULTS ON COCYCLES WITH RESTRICTIONS. FORMULATION AND REDUCTION TO O D,Z,M . . . . . . . . . . . . . . . . . . . . . . . . . . 346 9.3 THE CARTAN LEMMA WITH RESTRICTIONS . . . . . . . . . . . . . . . . . 347 9.4 SPLITTING OVER SIMPLY CONNECTED OPEN SETS AFTER SHRINKING . . . . . . 352 9.5 RUNGE APPROXIMATION ON SIMPLY CONNECTED OPEN SETS . . . . . . . . 354 9.6 SPLITTING OVER SIMPLY CONNECTED OPEN SETS WITHOUT SHRINKING . . . . 358 9.7 RUNGE APPROXIMATION. THE GENERAL CASE . . . . . . . . . . . . . . . 362 9.8 THE OKA-GRAUERT PRINCIPLE . . . . . . . . . . . . . . . . . . . . . . . 365 9.9 COMMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 10 GENERALIZED INTERPOLATION PROBLEMS 369 10.1 WEIERSTRASS THEOREMS . . . . . . . . . . . . . . . . . . . . . . . . . . 369 10.2 RIGHT- AND TWO-SIDED WEIERSTRASS THEOREMS . . . . . . . . . . . . . . 371 10.3 WEIERSTRASS THEOREMS FOR G * ( E )- AND G * ( E )-VALUED FUNCTIONS . . . 374 10.4 HOLOMORPHIC G * ( E )-VALUED FUNCTIONS WITH GIVEN PRINCIPAL PARTS OF THE INVERSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 10.5 COMMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 11 HOLOMORPHIC EQUIVALENCE, LINEARIZATION AND DIAGONALIZATION 379 11.1 INTRODUCTORY REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . 379 11.2 LINEARIZATION BY EXTENSION AND EQUIVALENCE . . . . . . . . . . . . . 380 11.3 LOCAL EQUIVALENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386 11.4 A THEOREM ON LOCAL AND GLOBAL EQUIVALENCE . . . . . . . . . . . . . . 392 11.5 THE FINITE DIMENSIONAL CASE . . . . . . . . . . . . . . . . . . . . . . 394 11.6 LOCAL AND GLOBAL EQUIVALENCE FOR FINITE MEROMORPHIC FREDHOLM FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399 11.7 GLOBAL DIAGONALIZATION OF FINITE MEROMORPHIC FREDHOLM FUNCTIONS . 406 11.8 COMMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411 BIBLIOGRAPHY 413 INDEX 419
any_adam_object 1
author Gohberg, Yiśrāʿēl Z. 1928-2009
Leiterer, Jürgen
author_GND (DE-588)118915878
author_facet Gohberg, Yiśrāʿēl Z. 1928-2009
Leiterer, Jürgen
author_role aut
aut
author_sort Gohberg, Yiśrāʿēl Z. 1928-2009
author_variant y z g yz yzg
j l jl
building Verbundindex
bvnumber BV035672332
callnumber-first Q - Science
callnumber-label QA331
callnumber-raw QA331.7
callnumber-search QA331.7
callnumber-sort QA 3331.7
callnumber-subject QA - Mathematics
classification_rvk SK 780
ctrlnum (OCoLC)603560225
(DE-599)DNB993987869
dewey-full 515
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515
dewey-search 515
dewey-sort 3515
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01984nam a2200493 cb4500</leader><controlfield tag="001">BV035672332</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20110606 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">090811s2009 xx |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">09,N21,0949</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">993987869</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034601252</subfield><subfield code="c">GB. : EUR 105.93 (freier Pr.), sfr 159.00 (freier Pr.)</subfield><subfield code="9">978-3-03-460125-2</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783034601252</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">12679539</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)603560225</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB993987869</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA331.7</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 780</subfield><subfield code="0">(DE-625)143255:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gohberg, Yiśrāʿēl Z.</subfield><subfield code="d">1928-2009</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)118915878</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Holomorphic operator functions of one variable and applications</subfield><subfield code="b">methods from complex analysis in several variables</subfield><subfield code="c">Israel Gohberg ; Jürgen Leiterer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 422 S.</subfield><subfield code="c">235 mm x 165 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Operator theory</subfield><subfield code="v">192</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Holomorphic functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Holomorphe Funktion</subfield><subfield code="0">(DE-588)4025645-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operatorfunktion</subfield><subfield code="0">(DE-588)4202830-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Operatorfunktion</subfield><subfield code="0">(DE-588)4202830-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Holomorphe Funktion</subfield><subfield code="0">(DE-588)4025645-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leiterer, Jürgen</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-0346-0126-9</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Operator theory</subfield><subfield code="v">192</subfield><subfield code="w">(DE-604)BV000000970</subfield><subfield code="9">192</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=017726587&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017726587</subfield></datafield></record></collection>
id DE-604.BV035672332
illustrated Not Illustrated
indexdate 2024-12-23T22:07:08Z
institution BVB
isbn 9783034601252
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-017726587
oclc_num 603560225
open_access_boolean
owner DE-355
DE-BY-UBR
DE-11
DE-824
DE-19
DE-BY-UBM
DE-20
owner_facet DE-355
DE-BY-UBR
DE-11
DE-824
DE-19
DE-BY-UBM
DE-20
physical XX, 422 S. 235 mm x 165 mm
publishDate 2009
publishDateSearch 2009
publishDateSort 2009
publisher Birkhäuser
record_format marc
series Operator theory
series2 Operator theory
spellingShingle Gohberg, Yiśrāʿēl Z. 1928-2009
Leiterer, Jürgen
Holomorphic operator functions of one variable and applications methods from complex analysis in several variables
Operator theory
Holomorphic functions
Operator theory
Holomorphe Funktion (DE-588)4025645-5 gnd
Operatorfunktion (DE-588)4202830-9 gnd
subject_GND (DE-588)4025645-5
(DE-588)4202830-9
title Holomorphic operator functions of one variable and applications methods from complex analysis in several variables
title_auth Holomorphic operator functions of one variable and applications methods from complex analysis in several variables
title_exact_search Holomorphic operator functions of one variable and applications methods from complex analysis in several variables
title_full Holomorphic operator functions of one variable and applications methods from complex analysis in several variables Israel Gohberg ; Jürgen Leiterer
title_fullStr Holomorphic operator functions of one variable and applications methods from complex analysis in several variables Israel Gohberg ; Jürgen Leiterer
title_full_unstemmed Holomorphic operator functions of one variable and applications methods from complex analysis in several variables Israel Gohberg ; Jürgen Leiterer
title_short Holomorphic operator functions of one variable and applications
title_sort holomorphic operator functions of one variable and applications methods from complex analysis in several variables
title_sub methods from complex analysis in several variables
topic Holomorphic functions
Operator theory
Holomorphe Funktion (DE-588)4025645-5 gnd
Operatorfunktion (DE-588)4202830-9 gnd
topic_facet Holomorphic functions
Operator theory
Holomorphe Funktion
Operatorfunktion
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017726587&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000000970
work_keys_str_mv AT gohbergyisraʿelz holomorphicoperatorfunctionsofonevariableandapplicationsmethodsfromcomplexanalysisinseveralvariables
AT leitererjurgen holomorphicoperatorfunctionsofonevariableandapplicationsmethodsfromcomplexanalysisinseveralvariables