Holomorphic operator functions of one variable and applications methods from complex analysis in several variables
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Basel [u.a.]
Birkhäuser
2009
|
Schriftenreihe: | Operator theory
192 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV035672332 | ||
003 | DE-604 | ||
005 | 20110606 | ||
007 | t| | ||
008 | 090811s2009 xx |||| 00||| eng d | ||
015 | |a 09,N21,0949 |2 dnb | ||
016 | 7 | |a 993987869 |2 DE-101 | |
020 | |a 9783034601252 |c GB. : EUR 105.93 (freier Pr.), sfr 159.00 (freier Pr.) |9 978-3-03-460125-2 | ||
024 | 3 | |a 9783034601252 | |
028 | 5 | 2 | |a 12679539 |
035 | |a (OCoLC)603560225 | ||
035 | |a (DE-599)DNB993987869 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-11 |a DE-824 |a DE-19 |a DE-20 | ||
050 | 0 | |a QA331.7 | |
082 | 0 | |a 515 | |
084 | |a SK 780 |0 (DE-625)143255: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Gohberg, Yiśrāʿēl Z. |d 1928-2009 |e Verfasser |0 (DE-588)118915878 |4 aut | |
245 | 1 | 0 | |a Holomorphic operator functions of one variable and applications |b methods from complex analysis in several variables |c Israel Gohberg ; Jürgen Leiterer |
264 | 1 | |a Basel [u.a.] |b Birkhäuser |c 2009 | |
300 | |a XX, 422 S. |c 235 mm x 165 mm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Operator theory |v 192 | |
650 | 4 | |a Holomorphic functions | |
650 | 4 | |a Operator theory | |
650 | 0 | 7 | |a Holomorphe Funktion |0 (DE-588)4025645-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Operatorfunktion |0 (DE-588)4202830-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Operatorfunktion |0 (DE-588)4202830-9 |D s |
689 | 0 | 1 | |a Holomorphe Funktion |0 (DE-588)4025645-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Leiterer, Jürgen |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-0346-0126-9 |
830 | 0 | |a Operator theory |v 192 |w (DE-604)BV000000970 |9 192 | |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017726587&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-017726587 |
Datensatz im Suchindex
_version_ | 1819650283540578304 |
---|---|
adam_text | CONTENTS PREFACE XI INTRODUCTION XIII NOTATION XIX 1 ELEMENTARY
PROPERTIES OF HOLOMORPHIC FUNCTIONS 1 1.1 DEFINITION AND FIRST
PROPERTIES . . . . . . . . . . . . . . . . . . . . . 1 1.2 THE MAXIMUM
PRINCIPLE . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 CONTOUR
INTEGRALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4
THE CAUCHY INTEGRAL THEOREM . . . . . . . . . . . . . . . . . . . . . 11
1.5 THE CAUCHY FORMULA . . . . . . . . . . . . . . . . . . . . . . . . .
. 12 1.6 THE HAHN-BANACH CRITERION . . . . . . . . . . . . . . . . . . .
. . . 15 1.7 A CRITERION FOR THE HOLOMORPHY OF OPERATOR FUNCTIONS . . .
. . . . . 18 1.8 POWER SERIES . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 19 1.9 LAURENT SERIES . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 23 1.10 ISOLATED SINGULARITIES . . . . . .
. . . . . . . . . . . . . . . . . . . . 25 1.11 COMMENTS . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 28 2 SOLUTION OF *U = F
AND APPLICATIONS 29 2.1 THE POMPEIJU FORMULA FOR SOLUTIONS OF *U = F ON
COMPACT SETS . . 29 2.2 RUNGE APPROXIMATION . . . . . . . . . . . . . .
. . . . . . . . . . . 37 2.3 SOLUTION OF *U = F ON OPEN SETS . . . . . .
. . . . . . . . . . . . . . 41 2.4 O E -COCYCLES AND THE MITTAG-LEFFLER
THEOREM . . . . . . . . . . . . . 43 2.5 RUNGE APPROXIMATION FOR
INVERTIBLE SCALAR FUNCTIONS AND THE WEIERSTRASS PRODUCT THEOREM . . . .
. . . . . . . . . . . . . . . . . 44 2.6 O E -COCYCLES WITH PRESCRIBED
ZEROS AND A STRONGER VERSION OF THE MITTAG-LEFFLER THEOREM . . . . . . .
. . . . . . . . . . . . . . . . . . 52 2.7 GENERALIZATION OF THE
WEIERSTRASS PRODUCT THEOREM . . . . . . . . . 54 2.8 COMMENTS . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 58 VIII CONTENTS 3
SPLITTING AND FACTORIZATION WITH RESPECT TO A CONTOUR 59 3.1 SPLITTING
WITH RESPECT TO A CONTOUR . . . . . . . . . . . . . . . . . . 59 3.2
SPLITTING AND THE CAUCHY INTEGRAL . . . . . . . . . . . . . . . . . . .
61 3.3 H¨OLDER CONTINUOUS FUNCTIONS SPLIT . . . . . . . . . . . . . . .
. . . . 65 3.4 THE SPLITTING BEHAVIOR OF DIFFERENTIABLE FUNCTIONS . . .
. . . . . . . 72 3.5 APPROXIMATION OF H¨OLDER CONTINUOUS FUNCTIONS . . .
. . . . . . . . . 75 3.6 EXAMPLE: A NON-SPLITTING CONTINUOUS FUNCTION .
. . . . . . . . . . . 77 3.7 THE ADDITIVE LOCAL PRINCIPLE . . . . . . .
. . . . . . . . . . . . . . . 82 3.8 FACTORIZATION OF SCALAR FUNCTIONS
WITH RESPECT TO A CONTOUR. FIRST REMARKS . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 84 3.9 FACTORIZATION OF H¨OLDER FUNCTIONS .
. . . . . . . . . . . . . . . . . . 89 3.10 FACTORIZATION OF WIENER
FUNCTIONS . . . . . . . . . . . . . . . . . . . 91 3.11 THE
MULTIPLICATIVE LOCAL PRINCIPLE . . . . . . . . . . . . . . . . . . . 93
3.12 COMMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 95 4 THE ROUCH´E THEOREM FOR OPERATOR FUNCTIONS 97 4.1 FINITE
MEROMORPHIC FREDHOLM FUNCTIONS . . . . . . . . . . . . . . . 97 4.2
INVERTIBLE FINITE MEROMORPHIC FREDHOLM FUNCTIONS . . . . . . . . . . 101
4.3 SMITH FACTORIZATION . . . . . . . . . . . . . . . . . . . . . . . .
. . . 106 4.4 THE ROUCH´E THEOREM . . . . . . . . . . . . . . . . . . .
. . . . . . . 111 4.5 COMMENTS . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 112 5 MULTIPLICATIVE COCYCLES ( O G -COCYCLES) 113
5.1 TOPOLOGICAL PROPERTIES OF GL ( E ) . . . . . . . . . . . . . . . . .
. . 114 5.2 TWO FACTORIZATION LEMMAS . . . . . . . . . . . . . . . . . .
. . . . . 120 5.3 O E -COCYCLES . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 123 5.4 RUNGE APPROXIMATION OF G -VALUED
FUNCTIONS. FIRST STEPS . . . . . . 125 5.5 THE CARTAN LEMMA . . . . . .
. . . . . . . . . . . . . . . . . . . . . 129 5.6 O G -COCYCLES.
DEFINITIONS AND STATEMENT OF THE MAIN RESULT . . . . . 131 5.7
REFINEMENT OF THE COVERING . . . . . . . . . . . . . . . . . . . . . . .
133 5.8 EXHAUSTING BY COMPACT SETS . . . . . . . . . . . . . . . . . . .
. . . 137 5.9 PROOF OF THE MAIN THEOREM IN THE CASE OF SIMPLY CONNECTED
OPEN SETS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 141 5.10 RUNGE APPROXIMATION OF G -VALUED FUNCTIONS. GENERAL
CASE . . . . . 143 5.11 PROOF OF THE MAIN THEOREM IN THE GENERAL CASE .
. . . . . . . . . . . 147 5.12 O G * ( E ) -COCYCLES . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 151 5.13 WEIERSTRASS THEOREMS . . .
. . . . . . . . . . . . . . . . . . . . . . . 153 5.14 WEIERSTRASS
THEOREMS FOR G * ( E ) AND G * ( E )-VALUED FUNCTIONS . . . 156 5.15
COMMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
157 6 FAMILIES OF SUBSPACES 159 6.1 THE GAP METRIC . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 159 6.2 KERNEL AND IMAGE OF OPERATOR
FUNCTIONS . . . . . . . . . . . . . . . 172 6.3 HOLOMORPHIC SECTIONS OF
CONTINUOUS FAMILIES OF SUBSPACES . . . . . . 184 CONTENTS IX 6.4
HOLOMORPHIC FAMILIES OF SUBSPACES . . . . . . . . . . . . . . . . . .
185 6.5 EXAMPLE: A HOLOMORPHIC FAMILY OF SUBSPACES WITH JUMPING
ISOMORPHISM TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . .
201 6.6 INJECTIVE FAMILIES . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 203 6.7 SHUBIN FAMILIES . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 204 6.8 COMPLEMENTED FAMILIES . . . . . . . . . . .
. . . . . . . . . . . . . . 206 6.9 FINITE DIMENSIONAL AND FINITE
CODIMENSIONAL FAMILIES . . . . . . . . 209 6.10 ONE-SIDED AND
GENERALIZED INVERTIBLE HOLOMORPHIC OPERATOR FUNCTIONS . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 211 6.11 EXAMPLE: A
GLOBALLY NON-TRIVIAL COMPLEMENTED HOLOMORPHIC FAMILY OF SUBSPACES . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 6.12
COMMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
216 7 PLEMELJ-MUSCHELISHVILI FACTORIZATION 219 7.1 DEFINITIONS AND FIRST
REMARKS ABOUT FACTORIZATION . . . . . . . . . . 220 7.2 THE ALGEBRA OF
WIENER FUNCTIONS AND OTHER SPLITTING R -ALGEBRAS . . 222 7.3 H¨OLDER
CONTINUOUS AND DIFFERENTIABLE FUNCTIONS . . . . . . . . . . . . 230 7.4
REDUCTION OF THE FACTORIZATION PROBLEM TO FUNCTIONS, HOLOMORPHIC AND
INVERTIBLE ON C * . . . . . . . . . . . . . . . . . . . . . . . . . .
237 7.5 FACTORIZATION OF HOLOMORPHIC FUNCTIONS CLOSE TO THE UNIT . . . .
. . 240 7.6 REDUCTION OF THE FACTORIZATION PROBLEM TO POLYNOMIALS IN Z
AND 1 /Z 240 7.7 THE FINITE DIMENSIONAL CASE . . . . . . . . . . . . . .
. . . . . . . . 242 7.8 FACTORIZATION OF G * ( E )-VALUED FUNCTIONS . .
. . . . . . . . . . . . . 245 7.9 THE FILTRATION OF AN OPEATOR FUNCTION
WITH RESPECT TO A CONTOUR . . 251 7.10 A GENERAL CRITERION FOR THE
EXISTENCE OF FACTORIZATIONS . . . . . . . . 259 7.11 COMMENTS . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 267 8 WIENER-HOPF
OPERATORS, TOEPLITZ OPERATORS AND FACTORIZATION 269 8.1 HOLOMORPHIC
OPERATOR FUNCTIONS . . . . . . . . . . . . . . . . . . . . 269 8.2
FACTORIZATION OF G * ( E )-VALUED FUNCTIONS . . . . . . . . . . . . . .
. 273 8.3 THE SPACE L 2 (* , H ) . . . . . . . . . . . . . . . . . . . .
. . . . . . . 276 8.4 OPERATOR FUNCTIONS WITH VALUES ACTING IN A HILBERT
SPACE . . . . . . 287 8.5 FUNCTIONS CLOSE TO THE UNIT OPERATOR OR WITH
POSITIVE REAL PART . . . 291 8.6 BLOCK T¨OPLITZ OPERATORS . . . . . . .
. . . . . . . . . . . . . . . . . 297 8.7 THE FOURIER TRANSFORM OF L 1 (
R , E ) . . . . . . . . . . . . . . . . . . 305 8.8 THE FOURIER ISOMETRY
U OF L 2 * R , H * . . . . . . . . . . . . . . . . . 313 8.9 THE
ISOMETRY V FROM L 2 ( T , H ) ONTO L 2 ( R , H ) . . . . . . . . . . . .
317 8.10 THE ALGEBRA OF OPERATOR FUNCTIONS L ( H ) * L 1 * R , L ( H ) *
. . . . . . 320 8.11 FACTORIZATION WITH RESPECT TO THE REAL LINE . . . .
. . . . . . . . . . 324 8.12 WIENER-HOPF INTEGRAL OPERATORS IN L 2 * [0
, * [ , H * . . . . . . . . . . . 325 8.13 AN EXAMPLE . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 338 8.14 COMMENTS . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . 340 X CONTENTS 9
MULTIPLICATIVE COCYCLES WITH RESTRICTIONS ( F -COCYCLES) 343 9.1 F
-COCYCLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 343 9.2 THE MAIN RESULTS ON COCYCLES WITH RESTRICTIONS. FORMULATION
AND REDUCTION TO O D,Z,M . . . . . . . . . . . . . . . . . . . . . . . .
. . 346 9.3 THE CARTAN LEMMA WITH RESTRICTIONS . . . . . . . . . . . . .
. . . . 347 9.4 SPLITTING OVER SIMPLY CONNECTED OPEN SETS AFTER
SHRINKING . . . . . . 352 9.5 RUNGE APPROXIMATION ON SIMPLY CONNECTED
OPEN SETS . . . . . . . . 354 9.6 SPLITTING OVER SIMPLY CONNECTED OPEN
SETS WITHOUT SHRINKING . . . . 358 9.7 RUNGE APPROXIMATION. THE GENERAL
CASE . . . . . . . . . . . . . . . 362 9.8 THE OKA-GRAUERT PRINCIPLE . .
. . . . . . . . . . . . . . . . . . . . . 365 9.9 COMMENTS . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 367 10 GENERALIZED
INTERPOLATION PROBLEMS 369 10.1 WEIERSTRASS THEOREMS . . . . . . . . . .
. . . . . . . . . . . . . . . . 369 10.2 RIGHT- AND TWO-SIDED
WEIERSTRASS THEOREMS . . . . . . . . . . . . . . 371 10.3 WEIERSTRASS
THEOREMS FOR G * ( E )- AND G * ( E )-VALUED FUNCTIONS . . . 374 10.4
HOLOMORPHIC G * ( E )-VALUED FUNCTIONS WITH GIVEN PRINCIPAL PARTS OF THE
INVERSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
377 10.5 COMMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 378 11 HOLOMORPHIC EQUIVALENCE, LINEARIZATION AND
DIAGONALIZATION 379 11.1 INTRODUCTORY REMARKS . . . . . . . . . . . . .
. . . . . . . . . . . . . 379 11.2 LINEARIZATION BY EXTENSION AND
EQUIVALENCE . . . . . . . . . . . . . 380 11.3 LOCAL EQUIVALENCE . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 386 11.4 A THEOREM ON
LOCAL AND GLOBAL EQUIVALENCE . . . . . . . . . . . . . . 392 11.5 THE
FINITE DIMENSIONAL CASE . . . . . . . . . . . . . . . . . . . . . . 394
11.6 LOCAL AND GLOBAL EQUIVALENCE FOR FINITE MEROMORPHIC FREDHOLM
FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 399 11.7 GLOBAL DIAGONALIZATION OF FINITE MEROMORPHIC FREDHOLM
FUNCTIONS . 406 11.8 COMMENTS . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 411 BIBLIOGRAPHY 413 INDEX 419
|
any_adam_object | 1 |
author | Gohberg, Yiśrāʿēl Z. 1928-2009 Leiterer, Jürgen |
author_GND | (DE-588)118915878 |
author_facet | Gohberg, Yiśrāʿēl Z. 1928-2009 Leiterer, Jürgen |
author_role | aut aut |
author_sort | Gohberg, Yiśrāʿēl Z. 1928-2009 |
author_variant | y z g yz yzg j l jl |
building | Verbundindex |
bvnumber | BV035672332 |
callnumber-first | Q - Science |
callnumber-label | QA331 |
callnumber-raw | QA331.7 |
callnumber-search | QA331.7 |
callnumber-sort | QA 3331.7 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 780 |
ctrlnum | (OCoLC)603560225 (DE-599)DNB993987869 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01984nam a2200493 cb4500</leader><controlfield tag="001">BV035672332</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20110606 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">090811s2009 xx |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">09,N21,0949</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">993987869</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034601252</subfield><subfield code="c">GB. : EUR 105.93 (freier Pr.), sfr 159.00 (freier Pr.)</subfield><subfield code="9">978-3-03-460125-2</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783034601252</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">12679539</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)603560225</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB993987869</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA331.7</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 780</subfield><subfield code="0">(DE-625)143255:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gohberg, Yiśrāʿēl Z.</subfield><subfield code="d">1928-2009</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)118915878</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Holomorphic operator functions of one variable and applications</subfield><subfield code="b">methods from complex analysis in several variables</subfield><subfield code="c">Israel Gohberg ; Jürgen Leiterer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 422 S.</subfield><subfield code="c">235 mm x 165 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Operator theory</subfield><subfield code="v">192</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Holomorphic functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Holomorphe Funktion</subfield><subfield code="0">(DE-588)4025645-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operatorfunktion</subfield><subfield code="0">(DE-588)4202830-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Operatorfunktion</subfield><subfield code="0">(DE-588)4202830-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Holomorphe Funktion</subfield><subfield code="0">(DE-588)4025645-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leiterer, Jürgen</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-0346-0126-9</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Operator theory</subfield><subfield code="v">192</subfield><subfield code="w">(DE-604)BV000000970</subfield><subfield code="9">192</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017726587&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017726587</subfield></datafield></record></collection> |
id | DE-604.BV035672332 |
illustrated | Not Illustrated |
indexdate | 2024-12-23T22:07:08Z |
institution | BVB |
isbn | 9783034601252 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017726587 |
oclc_num | 603560225 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-11 DE-824 DE-19 DE-BY-UBM DE-20 |
owner_facet | DE-355 DE-BY-UBR DE-11 DE-824 DE-19 DE-BY-UBM DE-20 |
physical | XX, 422 S. 235 mm x 165 mm |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Birkhäuser |
record_format | marc |
series | Operator theory |
series2 | Operator theory |
spellingShingle | Gohberg, Yiśrāʿēl Z. 1928-2009 Leiterer, Jürgen Holomorphic operator functions of one variable and applications methods from complex analysis in several variables Operator theory Holomorphic functions Operator theory Holomorphe Funktion (DE-588)4025645-5 gnd Operatorfunktion (DE-588)4202830-9 gnd |
subject_GND | (DE-588)4025645-5 (DE-588)4202830-9 |
title | Holomorphic operator functions of one variable and applications methods from complex analysis in several variables |
title_auth | Holomorphic operator functions of one variable and applications methods from complex analysis in several variables |
title_exact_search | Holomorphic operator functions of one variable and applications methods from complex analysis in several variables |
title_full | Holomorphic operator functions of one variable and applications methods from complex analysis in several variables Israel Gohberg ; Jürgen Leiterer |
title_fullStr | Holomorphic operator functions of one variable and applications methods from complex analysis in several variables Israel Gohberg ; Jürgen Leiterer |
title_full_unstemmed | Holomorphic operator functions of one variable and applications methods from complex analysis in several variables Israel Gohberg ; Jürgen Leiterer |
title_short | Holomorphic operator functions of one variable and applications |
title_sort | holomorphic operator functions of one variable and applications methods from complex analysis in several variables |
title_sub | methods from complex analysis in several variables |
topic | Holomorphic functions Operator theory Holomorphe Funktion (DE-588)4025645-5 gnd Operatorfunktion (DE-588)4202830-9 gnd |
topic_facet | Holomorphic functions Operator theory Holomorphe Funktion Operatorfunktion |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017726587&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000970 |
work_keys_str_mv | AT gohbergyisraʿelz holomorphicoperatorfunctionsofonevariableandapplicationsmethodsfromcomplexanalysisinseveralvariables AT leitererjurgen holomorphicoperatorfunctionsofonevariableandapplicationsmethodsfromcomplexanalysisinseveralvariables |