An introduction to financial option valuation mathematics, stochastics and computation

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Higham, Desmond J. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Cambridge [u.a.] Cambridge Univ. Press 2008
Ausgabe:1. publ., reprint. with corr.
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV035463264
003 DE-604
005 20090505
007 t|
008 090430s2008 xx d||| |||| 00||| eng d
020 |a 0521838843  |c (hbk) : £40.00  |9 0-521-83884-3 
020 |a 9780521838849  |c (Ausg. nach 2007)  |9 978-0-521-83884-9 
020 |a 0521547571  |c (pbk.) : £23.95  |9 0-521-54757-1 
020 |a 9780521547574  |c (Ausg. nach 2007)  |9 978-0-521-54757-4 
035 |a (OCoLC)634056457 
035 |a (DE-599)OBVAC06770836 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-703  |a DE-384 
084 |a SK 980  |0 (DE-625)143277:  |2 rvk 
100 1 |a Higham, Desmond J.  |e Verfasser  |4 aut 
245 1 0 |a An introduction to financial option valuation  |b mathematics, stochastics and computation  |c Desmond J. Higham 
250 |a 1. publ., reprint. with corr. 
264 1 |a Cambridge [u.a.]  |b Cambridge Univ. Press  |c 2008 
300 |a XXI, 273 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
500 |a Literaturverz. S. 267 - 270 
650 0 7 |a Monte-Carlo-Simulation  |0 (DE-588)4240945-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Black-Scholes-Modell  |0 (DE-588)4206283-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Capital-Asset-Pricing-Modell  |0 (DE-588)4121078-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Mathematische Methode  |0 (DE-588)4155620-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Bewertung  |0 (DE-588)4006340-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Optionspreistheorie  |0 (DE-588)4135346-8  |2 gnd  |9 rswk-swf 
650 0 7 |a MATLAB  |0 (DE-588)4329066-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Optionsgeschäft  |0 (DE-588)4043670-6  |2 gnd  |9 rswk-swf 
689 0 0 |a Optionsgeschäft  |0 (DE-588)4043670-6  |D s 
689 0 1 |a Bewertung  |0 (DE-588)4006340-9  |D s 
689 0 2 |a Mathematische Methode  |0 (DE-588)4155620-3  |D s 
689 0 |5 DE-604 
689 1 0 |a Optionspreistheorie  |0 (DE-588)4135346-8  |D s 
689 1 1 |a Capital-Asset-Pricing-Modell  |0 (DE-588)4121078-5  |D s 
689 1 2 |a Black-Scholes-Modell  |0 (DE-588)4206283-4  |D s 
689 1 3 |a Monte-Carlo-Simulation  |0 (DE-588)4240945-7  |D s 
689 1 4 |a MATLAB  |0 (DE-588)4329066-8  |D s 
689 1 |5 DE-604 
856 4 2 |m Digitalisierung UB Bayreuth  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017383062&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-017383062 

Datensatz im Suchindex

_version_ 1819636278809853952
adam_text Contents List of illustrations poge xiii Preface xvii 1 Options 1 1.1 What are options? 1 1.2 Why do we study options? 2 1.3 How are options traded? 4 1.4 Typical option prices 6 1.5 Other financial derivatives 7 1.6 Notes and references 7 1.7 Program of Chapter 1 and walkthrough 8 2 Option valuation preliminaries 11 2.1 Motivation 11 2.2 Interest rates 11 2.3 Short selling 12 2.4 Arbitrage 13 2.5 Put-call parity 13 2.6 Upper and lower bounds on option values 14 2.7 Notes and references 16 2.8 Program of Chapter 2 and walkthrough 17 3 Random variables 21 3.1 Motivation 21 3.2 Random variables, probability and mean 21 3.3 Independence 23 3.4 Variance 24 3.5 Normal distribution 25 3.6 Central Limit Theorem 27 3.7 Notes and references 28 3.8 Program of Chapter 3 and walkthrough 29 vu viii Contents 4 Computer Simulation 33 4.1 Motivation 33 4.2 Pseudo-random numbers 33 4.3 Statistical tests 34 4.4 Notes and references 40 4.5 Program of Chapter 4 and walkthrough 41 5 Asset price movement 45 5.1 Motivation 45 5.2 Efficient market hypothesis 45 5.3 Asset price data 46 5.4 Assumptions 48 5.5 Notes and references 49 5.6 Program of Chapter 5 and walkthrough 50 6 Asset price model: Part I 53 6.1 Motivation 53 6.2 Discrete asset model 53 6.3 Continuous asset model 55 6.4 Lognormal distribution 56 6.5 Features of the asset model 57 6.6 Notes and references 59 6.7 Program of Chapter 6 and walkthrough 60 7 Asset price model: Part II 63 7.1 Computing asset paths 63 7.2 Timescale invariance 66 7.3 Sum-of-square returns 68 7.4 Notes and references 69 7.5 Program of Chapter 7 and walkthrough 71 8 Black-Scholes PDE and formulas 73 8.1 Motivation 73 8.2 Sum-of-square increments for asset price 74 8.3 Hedging 76 8.4 Black-Scholes PDE 78 8.5 Black-Scholes formulas 80 8.6 Notes and references 82 8.7 Program of Chapter 8 and walkthrough 83 9 More : on hedging 9.1 Motivation 9.2 Discrete hedging 9.3 Delta at expiry 9.4 Large-scale test 9.5 Long-Term Capital Management 9.6 Notes 9.7 Program of Chapter 9 and walkthrough 10 The Greeks 10.1 Motivation 10.2 The Greeks 10.3 Interpreting the Greeks 10.4 Black-Scholes PDE solution 10.5 Notes and references 10.6 Program of Chapter 10 and walkthrough Contents ix 87 87 87 89 92 93 94 96 99 99 99 101 101 102 104 11 More on the Black-Scholes formulas 105 11.1 Motivation 105 105 106 106 108 111 111 115 115 115 116 118 120 123 123 123 123 124 127 11.2 Where is μ? 11.3 Time dependency 11.4 The big picture 11.5 Change of variables 11.6 Notes and references 11.7 Program of Chapter 11 and walkthrough 12 Risk neutrality 12.1 Motivation 12.2 Expected payoff 12.3 Risk neutrality 12.4 Notes and references 12.5 Program of Chapter 12 and walkthrough 13 Solving a nonlinear equation 13.1 Motivation 13.2 General problem 13.3 Bisection 13.4 Newton 13.5 Further practical issues x Contents 13.6 Notes and references 127 13.7 Program of Chapter 13 and walkthrough 128 14 Implied volatility 131 14.1 Motivation 131 14.2 Implied volatility 131 14.3 Option value as a function of volatility 131 14.4 Bisection and Newton 133 14.5 Implied volatility with real data 135 14.6 Notes and references 137 14.7 Program of Chapter 14 and walkthrough 137 15 Monte Carlo method 141 15.1 Motivation 141 15.2 Montecarlo 141 15.3 Monte Carlo for option valuation 144 15.4 Monte Carlo for Greeks 145 15.5 Notes and references 148 15.6 Program of Chapter 15 and walkthrough 149 16 Binomial method 151 16.1 Motivation 151 16.2 Method 151 16.3 Deriving the parameters 153 16.4 Binomial method in practice 154 16.5 Notes and references 156 16.6 Program of Chapter 16 and walkthrough 159 17 Cash-or-nothing options 163 17.1 Motivation 163 17.2 Cash-or-nothing options 163 17.3 Black-Scholes for cash-or-nothing options 164 17.4 Delta behaviour 166 17.5 Risk neutrality for cash-or-nothing options 167 17.6 Notes and references 168 17.7 Program of Chapter 17 and walkthrough 170 18 American options 173 18.1 Motivation 173 18.2 American call and put 173 Contents xi 18.3 Black-Scholes for American options 174 18.4 Binomial method for an American put 176 18.5 Optimal exercise boundary 177 18.6 Monte Carlo for an American put 180 18.7 Notes and references 182 18.8 Program of Chapter 18 and walkthrough 183 19 Exotic options 187 19.1 Motivation 187 19.2 Barrier options 187 19.3 Lookback options 191 19.4 Asian options 192 19.5 Bermudán and shout options 193 19.6 Monte Carlo and binomial for exotics 194 19.7 Notes and references 196 19.8 Program of Chapter 19 and walkthrough 199 20 Historical volatility 203 20.1 Motivation 203 20.2 Monte Carlo-type estimates 203 20.3 Accuracy of the sample variance estimate 204 20.4 Maximum likelihood estimate 206 20.5 Other volatility estimates 207 20.6 Example with real data 208 20.7 Notes and references 209 20.8 Program of Chapter 20 and walkthrough 210 21 Monte Carlo Part II: variance reduction by antithetic variâtes 215 21.1 Motivation 215 21.2 The big picture 215 21.3 Dependence 216 21.4 Antithetic variâtes: uniform example 217 21.5 Analysis of the uniform case 219 21.6 Normal case 221 21.7 Multivariate case 222 21.8 Antithetic variâtes in option valuation 222 21.9 Notes and references 225 21.10 Program of Chapter 21 and walkthrough 225 xii Contents 22 Monte Carlo Part III: variance reduction by control variâtes 229 22.1 Motivation 229 22.2 Control variâtes 229 22.3 Control variâtes in option valuation 231 22.4 Notes and references 232 22.5 Program of Chapter 22 and walkthrough 234 23 Finite difference methods 237 23.1 Motivation 237 23.2 Finite difference operators 237 23.3 Heat equation 238 23.4 Discretization 239 23.5 FTCS and BTCS 240 23.6 Local accuracy 246 23.7 Von Neumann stability and convergence 247 23.8 Crank-Nicolson 249 23.9 Notes and references 251 23.10 Program of Chapter 23 and walkthrough 252 24 Finite difference methods for the Black-Scholes PDE 257 24.1 Motivation 257 24.2 FTCS, BTCS and Crank-Nicolson for Black-Scholes 257 24.3 Down-and-out call example 260 24.4 Binomial method as finite differences 261 24.5 Notes and references 262 24.6 Program of Chapter 24 and walkthrough 265 References 267 Index 271
any_adam_object 1
author Higham, Desmond J.
author_facet Higham, Desmond J.
author_role aut
author_sort Higham, Desmond J.
author_variant d j h dj djh
building Verbundindex
bvnumber BV035463264
classification_rvk SK 980
ctrlnum (OCoLC)634056457
(DE-599)OBVAC06770836
discipline Mathematik
edition 1. publ., reprint. with corr.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02442nam a2200553 c 4500</leader><controlfield tag="001">BV035463264</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090505 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">090430s2008 xx d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521838843</subfield><subfield code="c">(hbk) : £40.00</subfield><subfield code="9">0-521-83884-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521838849</subfield><subfield code="c">(Ausg. nach 2007)</subfield><subfield code="9">978-0-521-83884-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521547571</subfield><subfield code="c">(pbk.) : £23.95</subfield><subfield code="9">0-521-54757-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521547574</subfield><subfield code="c">(Ausg. nach 2007)</subfield><subfield code="9">978-0-521-54757-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)634056457</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)OBVAC06770836</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-384</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 980</subfield><subfield code="0">(DE-625)143277:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Higham, Desmond J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to financial option valuation</subfield><subfield code="b">mathematics, stochastics and computation</subfield><subfield code="c">Desmond J. Higham</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ., reprint. with corr.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 273 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 267 - 270</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Monte-Carlo-Simulation</subfield><subfield code="0">(DE-588)4240945-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Black-Scholes-Modell</subfield><subfield code="0">(DE-588)4206283-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Capital-Asset-Pricing-Modell</subfield><subfield code="0">(DE-588)4121078-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bewertung</subfield><subfield code="0">(DE-588)4006340-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optionspreistheorie</subfield><subfield code="0">(DE-588)4135346-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">MATLAB</subfield><subfield code="0">(DE-588)4329066-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optionsgeschäft</subfield><subfield code="0">(DE-588)4043670-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Optionsgeschäft</subfield><subfield code="0">(DE-588)4043670-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Bewertung</subfield><subfield code="0">(DE-588)4006340-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Optionspreistheorie</subfield><subfield code="0">(DE-588)4135346-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Capital-Asset-Pricing-Modell</subfield><subfield code="0">(DE-588)4121078-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Black-Scholes-Modell</subfield><subfield code="0">(DE-588)4206283-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Monte-Carlo-Simulation</subfield><subfield code="0">(DE-588)4240945-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="4"><subfield code="a">MATLAB</subfield><subfield code="0">(DE-588)4329066-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=017383062&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017383062</subfield></datafield></record></collection>
id DE-604.BV035463264
illustrated Illustrated
indexdate 2024-12-23T21:34:26Z
institution BVB
isbn 0521838843
9780521838849
0521547571
9780521547574
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-017383062
oclc_num 634056457
open_access_boolean
owner DE-703
DE-384
owner_facet DE-703
DE-384
physical XXI, 273 S. graph. Darst.
publishDate 2008
publishDateSearch 2008
publishDateSort 2008
publisher Cambridge Univ. Press
record_format marc
spellingShingle Higham, Desmond J.
An introduction to financial option valuation mathematics, stochastics and computation
Monte-Carlo-Simulation (DE-588)4240945-7 gnd
Black-Scholes-Modell (DE-588)4206283-4 gnd
Capital-Asset-Pricing-Modell (DE-588)4121078-5 gnd
Mathematische Methode (DE-588)4155620-3 gnd
Bewertung (DE-588)4006340-9 gnd
Optionspreistheorie (DE-588)4135346-8 gnd
MATLAB (DE-588)4329066-8 gnd
Optionsgeschäft (DE-588)4043670-6 gnd
subject_GND (DE-588)4240945-7
(DE-588)4206283-4
(DE-588)4121078-5
(DE-588)4155620-3
(DE-588)4006340-9
(DE-588)4135346-8
(DE-588)4329066-8
(DE-588)4043670-6
title An introduction to financial option valuation mathematics, stochastics and computation
title_auth An introduction to financial option valuation mathematics, stochastics and computation
title_exact_search An introduction to financial option valuation mathematics, stochastics and computation
title_full An introduction to financial option valuation mathematics, stochastics and computation Desmond J. Higham
title_fullStr An introduction to financial option valuation mathematics, stochastics and computation Desmond J. Higham
title_full_unstemmed An introduction to financial option valuation mathematics, stochastics and computation Desmond J. Higham
title_short An introduction to financial option valuation
title_sort an introduction to financial option valuation mathematics stochastics and computation
title_sub mathematics, stochastics and computation
topic Monte-Carlo-Simulation (DE-588)4240945-7 gnd
Black-Scholes-Modell (DE-588)4206283-4 gnd
Capital-Asset-Pricing-Modell (DE-588)4121078-5 gnd
Mathematische Methode (DE-588)4155620-3 gnd
Bewertung (DE-588)4006340-9 gnd
Optionspreistheorie (DE-588)4135346-8 gnd
MATLAB (DE-588)4329066-8 gnd
Optionsgeschäft (DE-588)4043670-6 gnd
topic_facet Monte-Carlo-Simulation
Black-Scholes-Modell
Capital-Asset-Pricing-Modell
Mathematische Methode
Bewertung
Optionspreistheorie
MATLAB
Optionsgeschäft
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017383062&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT highamdesmondj anintroductiontofinancialoptionvaluationmathematicsstochasticsandcomputation