Scaling, fractals and wavelets

Gespeichert in:
Bibliographische Detailangaben
Format: Buch
Sprache:English
French
Veröffentlicht: London ISTE [u.a.] 2009
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV035448391
003 DE-604
005 20100113
007 t
008 090422s2009 ad|| |||| 00||| eng d
020 |a 9781848210721  |9 978-1-8482-1072-1 
035 |a (OCoLC)145379795 
035 |a (DE-599)GBV592743683 
040 |a DE-604  |b ger 
041 1 |a eng  |h fre 
049 |a DE-29T  |a DE-20  |a DE-91G 
050 0 |a TK5102.9 
082 0 |a 621.382/20151  |2 22 
084 |a SK 950  |0 (DE-625)143273:  |2 rvk 
084 |a MAT 428f  |2 stub 
084 |a ELT 517f  |2 stub 
130 0 |a Lois d'échelle, fractales et ondelettes 
245 1 0 |a Scaling, fractals and wavelets  |c ed. by Patrice Abry ... 
264 1 |a London  |b ISTE [u.a.]  |c 2009 
300 |a 504 S.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
500 |a Literaturangaben 
650 4 |a Mathematik 
650 4 |a Fractals 
650 4 |a Signal processing  |x Mathematics 
650 4 |a Wavelets (Mathematics) 
650 0 7 |a Signalverarbeitung  |0 (DE-588)4054947-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Fraktal  |0 (DE-588)4123220-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Mathematische Methode  |0 (DE-588)4155620-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Wavelet  |0 (DE-588)4215427-3  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)4143413-4  |a Aufsatzsammlung  |2 gnd-content 
689 0 0 |a Signalverarbeitung  |0 (DE-588)4054947-1  |D s 
689 0 1 |a Mathematische Methode  |0 (DE-588)4155620-3  |D s 
689 0 |5 DE-604 
689 1 0 |a Fraktal  |0 (DE-588)4123220-3  |D s 
689 1 1 |a Mathematische Methode  |0 (DE-588)4155620-3  |D s 
689 1 |5 DE-604 
689 2 0 |a Wavelet  |0 (DE-588)4215427-3  |D s 
689 2 1 |a Mathematische Methode  |0 (DE-588)4155620-3  |D s 
689 2 |5 DE-604 
700 1 |a Abry, Patrice  |e Sonstige  |4 oth 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017368502&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-017368502 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102/ELT 517f 2010 A 317
DE-BY-TUM_katkey 1715230
DE-BY-TUM_media_number 040010223359
_version_ 1816713024805797888
adam_text Titel: Scaling, fractals and wavelets Autor: Abry, Patrice Jahr: 2009 Table of Contents Preface......................................... 17 Chapter 1. Fractal and Multifractal Analysis in Signal Processing..... 19 Jacques Levy Vehel and Claude Tricot 1.1. Introduction.................................. 19 1.2. Dimensions of sets.............................. 20 1.2.1. Minkowski-Bouligand dimension .................. 21 1.2.2. Packing dimension........................... 25 1.2.3. Covering dimension.......................... 27 1.2.4. Methods for calculating dimensions................. 29 1.3. Holder exponents............................... 33 1.3.1. Holder exponents related to a measure................ 33 1.3.2. Theorems on set dimensions..................... 33 1.3.3. Holder exponent related to a function................ 36 1.3.4. Signal dimension theorem....................... 42 1.3.5. 2-microlocal analysis ......................... 45 1.3.6. An example: analysis of stock market price............. 46 1.4. Multifractal analysis............................. 48 1.4.1. What is the purpose of multifractal analysis?............ 48 1.4.2. First ingredient: local regularity measures.............. 49 1.4.3. Second ingredient: the size of point sets of the same regularity . . 50 1.4.4. Practical calculation of spectra.................... 52 1.4.5. Refinements: analysis of the sequence of capacities, mutual analysis and multisingularity..................... 60 1.4.6. The multifractal spectra of certain simple signals.......... 62 1.4.7. Two applications............................ 66 1.4.7.1. Image segmentation....................... 66 1.4.7.2. Analysis of TCP traffic..................... 67 1.5. Bibliography................................. 68 6 Scaling, Fractals and Wavelets Chapter 2. Scale Invariance and Wavelets.................... 71 Patrick Flandrin, Paulo Gonqalves and Patrice Abry 2.1. Introduction.................................. 71 2.2. Models for scale invariance......................... 72 2.2.1. Intuition................................. 72 2.2.2. Self-similarity ............................. 73 2.2.3. Long-range dependence........................ 75 2.2.4. Local regularity............................. 76 2.2.5. Fractional Brownian motion: paradigm of scale invariance .... 77 2.2.6. Beyond the paradigm of scale invariance.............. 79 2.3. Wavelet transform.............................. 81 2.3.1. Continuous wavelet transform .................... 81 2.3.2. Discrete wavelet transform...................... 82 2.4. Wavelet analysis of scale invariant processes............... 85 2.4.1. Self-similarity ............................. 86 2.4.2. Long-range dependence........................ 88 2.4.3. Local regularity............................. 90 2.4.4. Beyond second order.......................... 92 2.5. Implementation: analysis, detection and estimation............ 92 2.5.1. Estimation of the parameters of scale invariance.......... 93 2.5.2. Emphasis on scaling laws and determination of the scaling range. 96 2.5.3. Robustness of the wavelet approach................. 98 2.6. Conclusion .................................. 100 2.7. Bibliography ................................. 101 Chapter 3. Wavelet Methods for Multifractal Analysis of Functions .... 103 Stephane Jaffard 3.1. Introduction.................................. 103 3.2. General points regarding multifractal functions.............. 104 3.2.1. Important definitions.......................... 104 3.2.2. Wavelets and pointwise regularity.................. 107 3.2.3. Local oscillations............................ 112 3.2.4. Complements.............................. 116 3.3. Random multifractal processes....................... 117 3.3.1. Levy processes............................. 117 3.3.2. Burgers equation and Brownian motion............... 120 3.3.3. Random wavelet series......................... 122 3.4. Multifractal formalisms........................... 123 3.4.1. Besov spaces and lacunarity...................... 123 3.4.2. Construction of formalisms...................... 126 3.5. Bounds of the spectrum........................... 129 3.5.1. Bounds according to the Besov domain............... 129 Contents 7 3.5.2. Bounds deduced from histograms .................. 132 3.6. The grand-canonical multifractal formalism................ 132 3.7. Bibliography ................................. 134 Chapter 4. Multifractal Scaling: General Theory and Approach by Wavelets........................................ 139 Rudolf RlEDi 4.1. Introduction and summary.......................... 139 4.2. Singularity exponents............................ 140 4.2.1. Holder continuity............................ 140 4.2.2. Scaling of wavelet coefficients.................... 142 4.2.3. Other scaling exponents........................ 144 4.3. Multifractal analysis............................. 145 4.3.1. Dimension based spectra ....................... 145 4.3.2. Grain based spectra .......................... 146 4.3.3. Partition function and Legendre spectrum.............. 147 4.3.4. Deterministic envelopes........................ 149 4.4. Multifractal formalism............................ 151 4.5. Binomial multifractals............................ 154 4.5.1. Construction .............................. 154 4.5.2. Wavelet decomposition........................ 157 4.5.3. Multifractal analysis of the binomial measure............ 158 4.5.4. Examples................................ 160 4.5.5. Beyond dyadic structure........................ 162 4.6. Wavelet based analysis............................ 163 4.6.1. The binomial revisited with wavelets................. 163 4.6.2. Multifractal properties of the derivative............... 165 4.7. Self-similarity and LRD........................... 167 4.8. Multifractal processes............................ 168 4.8.1. Construction and simulation ..................... 169 4.8.2. Global analysis............................. 170 4.8.3. Local analysis of warped FBM.................... 170 4.8.4. LRD and estimation of warped FBM................. 173 4.9. Bibliography................................. 173 Chapter 5. Self-similar Processes......................... 179 Albert BENASSI and Jacques Istas 5.1. Introduction.................................. 179 5.1.1. Motivations............................... 179 5.1.2. Scalings................................. 182 5.1.2.1. Trees................................ 182 5.1.2.2. Coding of R........................... 183 5.1.2.3. Renormalizing Cantor set.................... 183 8 Scaling, Fractals and Wavelets 5.1.2.4. Random renormalized Cantor set................ 184 5.1.3. Distributions of scale invariant masses................ 184 5.1.3.1. Distribution of masses associated with Poisson measures . . 184 5.1.3.2. Complete coding......................... 185 5.1.4. Weierstrass functions ......................... 185 5.1.5. Renormalization of sums of random variables ........... 186 5.1.6. A common structure for a stochastic (semi-)self-similar process . 187 5.1.7. Identifying Weierstrass functions................... 188 5.1.7.1. Pseudo-correlation........................ 188 5.2. The Gaussian case.............................. 189 5.2.1. Self-similar Gaussian processes with r-stationary increments . . . 189 5.2.1.1. Notations............................. 189 5.2.1.2. Definitions............................ 189 5.2.1.3. Characterization......................... 190 5.2.2. Elliptic processes............................ 190 5.2.3. Hyperbolic processes ......................... 191 5.2.4. Parabolic processes........................... 192 5.2.5. Wavelet decomposition........................ 192 5.2.5.1. Gaussian elliptic processes................... 192 5.2.5.2. Gaussian hyperbolic process.................. 193 5.2.6. Renormalization of sums of correlated random variable...... 193 5.2.7. Convergence towards fractional Brownian motion......... 193 5.2.7.1. Quadratic variations....................... 193 5.2.7.2. Acceleration of convergence.................. 194 5.2.7.3. Self-similarity and regularity of trajectories.......... 195 5.3. Non-Gaussian case.............................. 195 5.3.1. Introduction............................... 195 5.3.2. Symmetric a-stable processes .................... 196 5.3.2.1. Stochastic measure........................ 196 5.3.2.2. Ellipticity............................. 196 5.3.3. Censov and Takenaka processes................... 198 5.3.4. Wavelet decomposition........................ 198 5.3.5. Process subordinated to Brownian measure............. 199 5.4. Regularity and long-range dependence................... 200 5.4.1. Introduction............................... 200 5.4.2. Two examples.............................. 201 5.4.2.1. A signal plus noise model.................... 201 5.4.2.2. Filtered white noise....................... 201 5.4.2.3. Long-range correlation..................... 202 5.5. Bibliography................................. 202 Contents 9 Chapter 6. Locally Self-similar Fields ...................... 205 Serge COHEN 6.1. Introduction.................................. 205 6.2. Recap of two representations of fractional Brownian motion...... 207 6.2.1. Reproducing kernel Hilbert space .................. 207 6.2.2. Harmonizable representation..................... 208 6.3. Two examples of locally self-similar fields ................ 213 6.3.1. Definition of the local asymptotic self-similarity (LASS)..... 213 6.3.2. Filtered white noise (FWN)...................... 214 6.3.3. Elliptic Gaussian random fields (EGRP)............... 215 6.4. Multifractional fields and trajectorial regularity.............. 218 6.4.1. Two representations of the MBM................... 219 6.4.2. Study of the regularity of the trajectories of the MBM....... 221 6.4.3. Towards more irregularities: generalized multifractional Brownian motion (GMBM) and step fractional Brownian motion (SFBM)............................. 222 6.4.3.1. Step fractional Brownian motion................ 223 6.4.3.2. Generalized multifractional Brownian motion ........ 224 6.5. Estimate of regularity............................ 226 6.5.1. General method: generalized quadratic variation.......... 226 6.5.2. Application to the examples...................... 228 6.5.2.1. Identification of filtered white noise.............. 228 6.5.2.2. Identification of elliptic Gaussian random processes..... 230 6.5.2.3. Identification of MBM...................... 231 6.5.2.4. Identification of SFBMs..................... 233 6.6. Bibliography................................. 235 Chapter 7. An Introduction to Fractional Calculus .............. 237 Denis Matignon 7.1. Introduction.................................. 237 7.1.1. Motivations............................... 237 7.1.1.1. Fields of application....................... 237 7.1.1.2. Theories.............................. 238 7.1.2. Problems ................................ 238 7.1.3. Outline ................................. 239 7.2. Definitions................................... 240 7.2.1. Fractional integration ......................... 240 7.2.2. Fractional derivatives within the framework of causal distributions 242 7.2.2.1. Motivation............................ 242 7.2.2.2. Fundamental solutions...................... 245 7.2.3. Mild fractional derivatives, in the Caputo sense........... 246 7.2.3.1. Motivation............................ 246 10 Scaling, Fractals and Wavelets 7.2.3.2. Definition............................. 247 7.2.3.3. Mittag-Leffler eigenfunctions.................. 248 7.2.3.4. Fractional power series expansions of order a (a-FPSE) .. 250 7.3. Fractional differential equations ...................... 251 7.3.1. Example................................. 251 7.3.1.1. Framework of causal distributions............... 251 7.3.1.2. Framework of fractional power series expansion of order one half.............................. 252 7.3.1.3. Notes............................... 253 7.3.2. Framework of causal distributions.................. 254 7.3.3. Framework of functions expandable into fractional power series (a-FPSE)................................ 255 7.3.4. Asymptotic behavior of fundamental solutions........... 257 7.3.4.1. Asymptotic behavior at the origin............... 257 7.3.4.2. Asymptotic behavior at infinity................. 257 7.3.5. Controlled-and-observed linear dynamic systems of fractional order 261 7.4. Diffusive structure of fractional differential systems........... 262 7.4.1. Introduction to diffusive representations of pseudo-differential operators................................. 263 7.4.2. General decomposition result..................... 264 7.4.3. Connection with the concept of long memory............ 265 7.4.4. Particular case of fractional differential systems of commensurate orders.................................. 265 7.5. Example of a fractional partial differential equation........... 266 7.5.1. Physical problem considered..................... 267 7.5.2. Spectral consequences......................... 268 7.5.3. Time-domain consequences...................... 268 7.5.3.1. Decomposition into wavetrains................. 269 7.5.3.2. Quasi-modal decomposition .................. 270 7.5.3.3. Fractional modal decomposition................ 271 7.5.4. Free problem.............................. 272 7.6. Conclusion .................................. 273 7.7. Bibliography................................. 273 Chapter 8. Fractional Synthesis, Fractional Filters .............. 279 Liliane Bel, Georges Oppenheim, Luc Robbiano and Marie-Claude Viano 8.1. Traditional and less traditional questions about fractionals........ 279 8.1.1. Notes on terminology......................... 279 8.1.2. Short and long memory........................ 279 8.1.3. From integer to non-integer powers: filter based sample path design 280 8.1.4. Local and global properties...................... 281 8.2. Fractional filters ............................... 282 8.2.1. Desired general properties: association............... 282 Contents 11 8.2.2. Construction and approximation techniques............. 282 8.3. Discrete time fractional processes ..................... 284 8.3.1. Filters: impulse responses and corresponding processes...... 284 8.3.2. Mixing and memory properties.................... 286 8.3.3. Parameter estimation.......................... 287 8.3.4. Simulated example........................... 289 8.4. Continuous time fractional processes.................... 291 8.4.1. A non-self-similar family: fractional processes designed from fractional filters............................. 291 8.4.2. Sample path properties: local and global regularity, memory . . . 293 8.5. Distribution processes............................ 294 8.5.1. Motivation and generalization of distribution processes...... 294 8.5.2. The family of linear distribution processes ............. 294 8.5.3. Fractional distribution processes................... 295 8.5.4. Mixing and memory properties.................... 296 8.6. Bibliography ................................. 297 Chapter 9. Iterated Function Systems and Some Generalizations: Local Regularity Analysis and Multifractal Modeling of Signals ...... 301 Khalid Daoudi 9.1. Introduction.................................. 301 9.2. Definition of the Holder exponent..................... 303 9.3. Iterated function systems (IFS)....................... 304 9.4. Generalization of iterated function systems................ 306 9.4.1. Semi-generalized iterated function systems............. 307 9.4.2. Generalized iterated function systems................ 308 9.5. Estimation of poinrwise Holder exponent by GIFS............ 311 9.5.1. Principles of the method........................ 312 9.5.2. Algorithm................................ 314 9.5.3. Application............................... 315 9.6. Weak self-similar functions and multifractal formalism......... 318 9.7. Signal representation by WSA functions.................. 320 9.8. Segmentation of signals by weak self-similar functions......... 324 9.9. Estimation of the multifractal spectrum.................. 326 9.10. Experiments................................. 327 9.11. Bibliography................................. 329 Chapter 10. Iterated Function Systems and Applications in Image Processing....................................... 333 Franck Davoine and Jean-Marc Chassery 10.1. Introduction................................. 333 10.2. Iterated transformation systems...................... 333 10.2.1. Contracting transformations and iterated transformation systems 334 10.2.1.1. Lipschitzian transformation.................. 334 12 Scaling, Fractals and Wavelets 10.2.1.2. Contracting transformation.................. 334 10.2.1.3. Fixed point ........................... 334 10.2.1.4. Hausdorff distance....................... 334 10.2.1.5. Contracting transformation on the space H(R?)...... 335 10.2.1.6. Iterated transformation system ................ 335 10.2.2. Attractor of an iterated transformation system........... 335 10.2.3. Collage theorem.........*.................. 336 10.2.4. Finally contracting transformation................. 338 10.2.5. Attractor and invariant measures.................. 339 10.2.6. Inverse problem............................ 340 10.3. Application to natural image processing: image coding......... 340 10.3.1. Introduction.............................. 340 10.3.2. Coding of natural images by fractals................ 342 10.3.2.1. Collage of a source block onto a destination block..... 342 10.3.2.2. Hierarchical partitioning.................... 344 10.3.2.3. Coding of the collage operation on a destination block . . . 345 10.3.2.4. Contraction control of the fractal transformation...... 345 10.3.3. Algebraic formulation of the fractal transformation........ 345 10.3.3.1. Formulation of the mass transformation........... 347 10.3.3.2. Contraction control of the fractal transformation...... 349 10.3.3.3. Fisher formulation....................... 350 10.3.4. Experimentation on triangular partitions.............. 351 10.3.5. Coding and decoding acceleration ................. 352 10.3.5.1. Coding simplification suppressing the research for similarities ............................ 352 10.3.5.2. Decoding simplification by collage space orthogonalization 358 10.3.5.3. Coding acceleration: search for the nearest neighbor .... 360 10.3.6. Other optimization diagrams: hybrid methods........... 360 10.4. Bibliography................................. 362 Chapter 11. Local Regularity and Multifractal Methods for Image and Signal Analysis.................................... 367 Pierrick Legrand 11.1. Introduction................................. 367 11.2. Basic tools ................................. 368 11.2.1. Holder regularity analysis...................... 368 11.2.2. Reminders on multifractal analysis................. 369 11.2.2.1. Hausdorff multifractal spectrum ............... 369 11.2.2.2. Large deviation multifractal spectrum............ 370 11.2.2.3. Legendre multifractal spectrum................ 371 11.3. Holderian regularity estimation...................... 371 11.3.1. Oscillations (OSC).......................... 371 11.3.2. Wavelet coefficient regression (WCR)............... 372 Contents 13 11.3.3. Wavelet leaders regression (WL).................. 372 11.3.4. Limit inf and limit sup regressions................. 373 11.3.5. Numerical experiments........................ 374 11.4. Denoising.................................. 376 11.4.1. Introduction.............................. 376 11.4.2. Minimax risk, optimal convergence rate and adaptivity...... 377 11.4.3. Wavelet based denoising....................... 378 11.4.4. Non-linear wavelet coefficients pumping.............. 380 11.4.4.1. Minimax properties....................... 380 11.4.4.2. Regularity control ....................... 381 11.4.4.3. Numerical experiments .................... 382 11.4.5. Denoising using exponent between scales............. 383 11.4.5.1. Introduction........................... 383 11.4.5.2. Estimating the local regularity of a signal from noisy observations............................ 384 11.4.5.3. Numerical experiments .................... 386 11.4.6. Bayesian multifractal denoising................... 386 11.4.6.1. Introduction........................... 386 11.4.6.2. The set of parameterized classes S(g,ip) .......... 387 11.4.6.3. Bayesian denoising in S(g,tp) ................ 388 11.4.6.4. Numerical experiments .................... 390 11.4.6.5. Denoising of road profiles................... 391 11.5. Holderian regularity based interpolation................. 393 11.5.1. Introduction.............................. 393 11.5.2. The method.............................. 393 11.5.3. Regularity and asymptotic properties................ 394 11.5.4. Numerical experiments........................ 394 11.6. Biomedical signal analysis......................... 394 11.7. Texture segmentation............................ 401 11.8. Edge detection................................ 403 11.8.1. Introduction.............................. 403 11.8.1.1. Edge detection ......................... 406 11.9. Change detection in image sequences using multifractal analysis . . . 407 11.10. Image reconstruction........................... 408 11.11. Bibliography................................ 409 Chapter 12. Scale Invariance in Computer Network Traffic......... 413 Darryl Veitch 12.1. Teletraffic- anew natural phenomenon ................. 413 12.1.1. A phenomenon of scales....................... 413 12.1.2. An experimental science of man-made atoms .......... 415 12.1.3. A random current........................... 416 12.1.4. Two fundamental approaches.................... 417 14 Scaling, Fractals and Wavelets 12.2. From a wealth of scales arise scaling laws................ 419 12.2.1. First discoveries............................ 419 12.2.2. Laws reign............................... 420 12.2.3. Beyond the revolution........................ 424 12.3. Sources as the source of the laws..................... 426 12.3.1. The sum or its parts.......................... 426 12.3.2. The on/off paradigm......................... 427 12.3.3. Chemistry............................... 428 12.3.4. Mechanisms.............................. 429 12.4. New models, new behaviors........................ 430 12.4.1. Character of a model......................... 430 12.4.2. The fractional Brownian motion family .............. 431 12.4.3. Greedy sources............................ 432 12.4.4. Never-ending calls.......................... 432 12.5. Perspectives................................. 433 12.6. Bibliography................................. 434 Chapter 13. Research of Scaling Law on Stock Market Variations..... 437 Christian WALTER 13.1. Introduction: fractals in finance...................... 437 13.2. Presence of scales in the study of stock market variations....... 439 13.2.1. Modeling of stock market variations................ 439 13.2.1.1. Statistical apprehension of stock market fluctuations .... 439 13.2.1.2. Profit and stock market return operations in different scales 442 13.2.1.3. Traditional financial modeling: Brownian motion...... 443 13.2.2. Time scales in financial modeling.................. 445 13.2.2.1. The existence of characteristic time.............. 445 13.2.2.2. Implicit scaling invariances of traditional financial modeling 446 13.3. Modeling postulating independence on stock market returns...... 446 13.3.1. 1960-1970: from Pareto s law to Levy s distributions....... 446 13.3.1.1. Leptokurtic problem and Mandelbrot s first model..... 446 13.3.1.2. First emphasis of Levy s a-stable distributions in finance . 448 13.3.2. 1970-1990: experimental difficulties of iid-a-stable model ... 448 13.3.2.1. Statistical problem of parameter estimation of stable laws . 448 13.3.2.2. Non-normality and controversies on scaling invariance . . 449 13.3.2.3. Scaling anomalies of parameters under iid hypothesis ... 451 13.3.3. Unstable iid models in partial scaling invariance ......... 452 13.3.3.1. Partial scaling invariances by regime switching models . . 452 13.3.3.2. Partial scaling invariances as compared with extremes . . . 453 13.4. Research of dependency and memory of markets............ 454 13.4.1. Linear dependence: testing of if-correlative models on returns . 454 13.4.1.1. Question of dependency of stock market returns...... 454 13.4.1.2. Problem of slow cycles and Mandelbrot s second model . . 455 Contents 15 13.4.1.3. Introduction of fractional differentiation in econometrics . 455 13.4.1.4. Experimental difficulties of //-correlative model on returns 456 13.4.2. Non-linear dependence: validating //-correlative model on volatilities................................ 456 13.4.2.1. The 1980s: ARCH modeling and its limits ......... 456 13.4.2.2. The 1990s: emphasis of long dependence on volatility . . . 457 13.5. Towards a rediscovery of scaling laws in finance............ 457 13.6. Bibliography................................. 458 Chapter 14. Scale Relativity, Non-differentiability and Fractal Space-time 465 Laurent NOTTALE 14.1. Introduction................................. 465 14.2. Abandonment of the hypothesis of space-time differentiability .... 466 14.3. Towards a fractal space-time........................ 466 14.3.1. Explicit dependence of coordinates on spatio-temporal resolutions 467 14.3.2. From continuity and non-differentiability to fractality...... 467 14.3.3. Description of non-differentiable process by differential equations 469 14.3.4. Differential dilation operator .................... 471 14.4. Relativity and scale covariance ...................... 472 14.5. Scale differential equations ........................ 472 14.5.1. Constant fractal dimension: Galilean scale relativity...... 473 14.5.2. Breaking scale invariance: transition scales............ 474 14.5.3. Non-linear scale laws: second order equations, discrete scale invariance, log-periodic laws..................... 475 14.5.4. Variable fractal dimension: Euler-Lagrange scale equations . . . 476 14.5.5. Scale dynamics and scale force................... 478 14.5.5.1. Constant scale force...................... 479 14.5.5.2. Scale harmonic oscillator................... 480 14.5.6. Special scale relativity - log-Lorentzian dilation laws, invariant scale limit under dilations....................... 481 14.5.7. Generalized scale relativity and scale-motion coupling...... 482 14.5.7.1. A reminder about gauge invariance.............. 483 14.5.7.2. Nature of gauge fields..................... 484 14.5.7.3. Nature of the charges...................... 486 14.5.7.4. Mass-charge relations..................... 488 14.6. Quantum-like induced dynamics ..................... 488 14.6.1. Generalized Schrodinger equation ................. 488 14.6.2. Application in gravitational structure formation.......... 492 14.7. Conclusion.................................. 493 14.8. Bibliography................................. 495 ListofAuthors.................................... 499 Index.......................................... 503
any_adam_object 1
building Verbundindex
bvnumber BV035448391
callnumber-first T - Technology
callnumber-label TK5102
callnumber-raw TK5102.9
callnumber-search TK5102.9
callnumber-sort TK 45102.9
callnumber-subject TK - Electrical and Nuclear Engineering
classification_rvk SK 950
classification_tum MAT 428f
ELT 517f
ctrlnum (OCoLC)145379795
(DE-599)GBV592743683
dewey-full 621.382/20151
dewey-hundreds 600 - Technology (Applied sciences)
dewey-ones 621 - Applied physics
dewey-raw 621.382/20151
dewey-search 621.382/20151
dewey-sort 3621.382 520151
dewey-tens 620 - Engineering and allied operations
discipline Elektrotechnik
Mathematik
Elektrotechnik / Elektronik / Nachrichtentechnik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02080nam a2200565 c 4500</leader><controlfield tag="001">BV035448391</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100113 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090422s2009 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781848210721</subfield><subfield code="9">978-1-8482-1072-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)145379795</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV592743683</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">fre</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK5102.9</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.382/20151</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 428f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ELT 517f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="130" ind1="0" ind2=" "><subfield code="a">Lois d'échelle, fractales et ondelettes</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Scaling, fractals and wavelets</subfield><subfield code="c">ed. by Patrice Abry ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">ISTE [u.a.]</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">504 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal processing</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wavelets (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Signalverarbeitung</subfield><subfield code="0">(DE-588)4054947-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fraktal</subfield><subfield code="0">(DE-588)4123220-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wavelet</subfield><subfield code="0">(DE-588)4215427-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Signalverarbeitung</subfield><subfield code="0">(DE-588)4054947-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Fraktal</subfield><subfield code="0">(DE-588)4123220-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Wavelet</subfield><subfield code="0">(DE-588)4215427-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abry, Patrice</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=017368502&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017368502</subfield></datafield></record></collection>
genre (DE-588)4143413-4 Aufsatzsammlung gnd-content
genre_facet Aufsatzsammlung
id DE-604.BV035448391
illustrated Illustrated
indexdate 2024-11-25T17:26:05Z
institution BVB
isbn 9781848210721
language English
French
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-017368502
oclc_num 145379795
open_access_boolean
owner DE-29T
DE-20
DE-91G
DE-BY-TUM
owner_facet DE-29T
DE-20
DE-91G
DE-BY-TUM
physical 504 S. Ill., graph. Darst.
publishDate 2009
publishDateSearch 2009
publishDateSort 2009
publisher ISTE [u.a.]
record_format marc
spellingShingle Scaling, fractals and wavelets
Mathematik
Fractals
Signal processing Mathematics
Wavelets (Mathematics)
Signalverarbeitung (DE-588)4054947-1 gnd
Fraktal (DE-588)4123220-3 gnd
Mathematische Methode (DE-588)4155620-3 gnd
Wavelet (DE-588)4215427-3 gnd
subject_GND (DE-588)4054947-1
(DE-588)4123220-3
(DE-588)4155620-3
(DE-588)4215427-3
(DE-588)4143413-4
title Scaling, fractals and wavelets
title_alt Lois d'échelle, fractales et ondelettes
title_auth Scaling, fractals and wavelets
title_exact_search Scaling, fractals and wavelets
title_full Scaling, fractals and wavelets ed. by Patrice Abry ...
title_fullStr Scaling, fractals and wavelets ed. by Patrice Abry ...
title_full_unstemmed Scaling, fractals and wavelets ed. by Patrice Abry ...
title_short Scaling, fractals and wavelets
title_sort scaling fractals and wavelets
topic Mathematik
Fractals
Signal processing Mathematics
Wavelets (Mathematics)
Signalverarbeitung (DE-588)4054947-1 gnd
Fraktal (DE-588)4123220-3 gnd
Mathematische Methode (DE-588)4155620-3 gnd
Wavelet (DE-588)4215427-3 gnd
topic_facet Mathematik
Fractals
Signal processing Mathematics
Wavelets (Mathematics)
Signalverarbeitung
Fraktal
Mathematische Methode
Wavelet
Aufsatzsammlung
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017368502&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv UT loisdechellefractalesetondelettes
AT abrypatrice scalingfractalsandwavelets