Chemical biophysics quantitative analysis of cellular systems

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Beard, Daniel A. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Cambridge Cambridge Univ. Press 2008
Ausgabe:1. publ.
Schriftenreihe:Cambridge texts in biomedical engineering
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV035386907
003 DE-604
005 20090429
007 t|
008 090323s2008 xx d||| |||| 00||| eng d
015 |a GBA825155  |2 dnb 
020 |a 9780521870702  |9 978-0-521-87070-2 
020 |a 0521870704  |c (hbk.) : £40.00  |9 0-521-87070-4 
035 |a (OCoLC)184963074 
035 |a (DE-599)OBVAC06792019 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-91G  |a DE-19  |a DE-11  |a DE-188 
050 0 |a QP517.P49 
082 0 |a 612/.01583  |2 22 
084 |a WC 2000  |0 (DE-625)148067:  |2 rvk 
084 |a CHE 802f  |2 stub 
084 |a PHY 820f  |2 stub 
100 1 |a Beard, Daniel A.  |e Verfasser  |4 aut 
245 1 0 |a Chemical biophysics  |b quantitative analysis of cellular systems  |c Daniel A. Beard ; Hong Qian 
250 |a 1. publ. 
264 1 |a Cambridge  |b Cambridge Univ. Press  |c 2008 
300 |a XVIII, 311 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Cambridge texts in biomedical engineering 
650 4 |a Mathematik 
650 4 |a Physical biochemistry 
650 4 |a Computational biology 
650 4 |a Biological systems  |x Mathematics 
650 0 7 |a Biophysikalische Chemie  |0 (DE-588)4291844-3  |2 gnd  |9 rswk-swf 
689 0 0 |a Biophysikalische Chemie  |0 (DE-588)4291844-3  |D s 
689 0 |5 DE-604 
700 1 |a Qian, Hong  |e Sonstige  |0 (DE-588)139719334  |4 oth 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017307763&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-017307763 

Datensatz im Suchindex

DE-BY-TUM_call_number 0202 CHE 802 2009 A 3008
0204 CHE 802 2009 A 3008
DE-BY-TUM_katkey 1681632
DE-BY-TUM_location 02
DE-BY-TUM_media_number 040020760985
040020760974
_version_ 1820896239190802432
adam_text Titel: Chemical biophysics Autor: Beard, Daniel A. Jahr: 2008 Contents Preface page xvii Introduction 1 Computational biology 1 Systems biology 2 Organization of this book 3 Part I Background material 5 1 Concepts from physical chemistry 7 1.1 Macroscopic thermodynamics 7 1.2 Isolated systems and the Boltzmann definition of entropy 9 1.3 Closed isothermal systems 10 1.3.1 Helmholtz free energy 10 1.3.2 Entropy in an NVT system 13 1.3.3 Interpretation of temperature in the NVT system 13 1.4 Isothermal isobaric systems 14 1.4.1 Gibbs free energy 14 1.4.2 Entropy in an NPT system 15 1.5 Thermodynamic driving forces in different systems 15 1.6 Applications and conventions in chemical thermodynamics 16 1.6.1 Systems of non-interacting molecules 16 1.6.2 Gibbs free energy of chemical reactions and chemical equilibrium 17 1.7 Applications of thermodynamics in biology 19 1.7.1 Enzyme reaction mechanisms 19 1.7.2 Electrostatic potential across a cell membrane 21 2 Conventions and calculations for biochemical systems 24 2.1 Conventional notation in biochemical thermodynamics 24 2.2 Reactants and reactions in biochemistry 26 XI xii Contents 2.2.1 An example of a biochemical reactant 26 2.2.2 An example of a biochemical reaction 28 2.3 Effects of pH and ion binding on biochemical reaction thermodynamics 32 2.4 Effects of temperature on biochemical reaction thermodynamics 34 2.5 Effects of ionic strength on biochemical reaction thermodynamics 35 2.6 Treatment of CO2 in biochemical reactions 36 2.7 pH variation in vivo 38 2.7.1 In vivo deviation from the standard state 38 2.7.2 The bicarbonate system in vivo 38 3 Chemical kinetics and transport processes 41 3.1 Well mixed systems 42 3.1.1 Differential equations from mass conservation 42 3.1.2 Reaction thermodynamics revisited 43 3.1.3 Reaction kinetics 45 3.1.4 Using computers to simulate chemical kinetics 53 3.2 Transport processes 58 3.2.1 Advection 59 3.2.2 Diffusion 60 3.2.3 Drift 60 3.2.4 Example: passive permeation across a membrane 61 3.2.5 Example: coupled diffusion and drift in a membrane 62 Part II Analysis and modeling of biochemical systems 67 4 Enzyme-catalyzed reactions: cycles, transients, and non-equilibrium steady states 69 4.1 Simple Michaelis-Menten reactions revisited 70 4.1.1 Steady state enzyme turnover kinetics 70 4.1.2 Reversible Michaelis-Menten kinetics 73 4.1.3 Non-equilibrium steady states and cycle kinetics 74 4.2 Transient enzyme kinetics 76 4.2.1 Rapid pre-equilibrium 76 4.2.2 A singular perturbation approach to Michaelis-Menten kinetics 78 4.3 Enzyme with multiple binding sites: cooperativity 81 4.3.1 Sigmoidal equilibrium binding 81 4.3.2 Cooperativity in enzyme kinetics 82 4.3.3 The Hill coefficient 83 4.3.4 Delays and hysteresis in transient kinetics 84 4.4 Enzymatic fluxes with more complex kinetics 86 4.4.1 Reciprocal of flux: the mean time of turnover 87 Contents xiii 4.4.2 The method of King and Altman 89 4.4.3 Enzyme-catalyzed bimolecular reactions 92 4.4.4 Example: enzyme kinetics of citrate synthase 96 5 Biochemical signaling modules 105 5.1 Kinetic theory of the biochemical switch 105 5.1.1 The phosphorylation-dephosphorylation cycle 108 5.1.2 Ultrasensitivity and the zeroth-order phosphorylation-dephosphorylation cycle 111 5.1.3 Substrate selectivity of the phosphorylation-dephosphorylation switch 113 5.1.4 The GTPase signaling module 115 5.1.5 Duration of switch activation and a biochemical timer 117 5.1.6 Synergistic action of kinases and phosphatases and the phosphorylation energy hypothesis 121 5.2 Biochemical regulatory oscillations 122 5.2.1 Gene regulatory networks and the repressilator 122 5.2.2 Biochemical oscillations in cell biology 125 6 Biochemical reaction networks 128 6.1 Formal approach to biochemical reaction kinetics 129 6.1.1 Establishing the components of the biochemical network model 129 6.1.2 Determining expressions for biochemical fluxes for the reactions 131 6.1.3 Determining the differential equations 132 6.1.4 Computational implementation and testing 137 6.2 Kinetic model of the TCA cycle 140 6.2.1 Overview 140 6.2.2 Components of the TCA cycle reaction network 140 6.2.3 Flux expressions for TCA cycle reaction network 143 6.2.4 Differential equations for TCA cycle reaction network 152 6.2.5 Simulation of TCA cycle kinetics 153 6.3 Control and stability in biochemical networks 155 6.3.1 Linear analysis near a steady state 156 6.3.2 Metabolic control analysis 157 7 Coupled biochemical systems and membrane transport 162 7.1 Transporters 162 7.1.1 Active versus passive transport 163 7.1.2 Examples: a uniporter and an antiporter 163 7.2 Transport of charged species across membranes 168 7.2.1 Thermodynamics of charged species transport 168 xiv Contents 7.2.2 Electrogenic transporters 170 7.3 Electrophysiology modeling 172 7.3.1 Ion channels 172 7.3.2 Differential equations for membrane potential 173 7.3.3 The Hodgkin-Huxley model 174 7.4 Large-scale example: model of oxidative ATP synthesis 178 7.4.1 Model of oxidative phosphorylation 180 7.4.2 Model behavior 187 7.4.3 Applications to in vivo systems 188 Part III Special topics 193 8 Spatially distributed systems and reaction-diffusion modeling 195 8.1 Diffusion-driven transport of solutes in cells and tissue 195 8.1.1 The diffusion equation: assumptions and applications 196 8.1.2 Oxygen transport to tissue and the Krogh-Erlang model 197 8.1.3 Facilitated diffusion 203 8.2 Advection-diffusion modeling of solute transport in tissues 209 8.2.1 Axially distributed models of blood-tissue exchange 211 8.2.2 Analysis of solute transport in organs 214 8.2.3 Whole-organ metabolic modeling 216 8.3 Three-dimensional modeling 216 9 Constraint-based analysis of biochemical systems 220 9.1 Motivation for constraint-based modeling and analysis 221 9.2 Mass-balance constraints 221 9.2.1 Mathematical representation for flux balance analysis 221 9.2.2 Energy metabolism in E. coli 223 9.3 Thermodynamic constraints 227 9.3.1 The basic idea 228 9.3.2 Mathematical details 230 9.3.3 Feasible sign patterns 232 9.4 Further concepts in constraint-based analysis 234 9.4.1 Feasible concentrations from potentials 234 9.4.2 Biochemical conductance and enzyme activity 235 9.4.3 Conserved metabolite pools 235 9.4.4 Biological objective functions and optimization 236 9.4.5 Metabolic engineering 238 9.4.6 Incorporating metabolic control analysis 238 10 Biomacromolecular structure and molecular association 240 10.1 Protein structures and a-helices 241 Contents xv 10.1.1 The theory of helix-coil transition 242 10.2 Protein filaments and actin polymerization 248 10.2.1 Nucleation and critical monomer concentration 249 10.2.2 Theory of nucleation-elongation of actin polymerization 250 10.3 Macromolecular association 252 10.3.1 A combinatorial theory of macromolecular association 252 10.3.2 Statistical thermodynamics of association 256 10.4 A dynamics theory of association 257 10.4.1 Transition-state theory and rate constants 259 11 Stochastic biochemical systems and the chemical master equation 261 11.1 A brief introduction to the chemical master equation 262 11.2 Essential materials from probability theory 265 11.2.1 The law of large numbers 265 11.2.2 Continuous time Markov chain 265 11.3 Single molecules and stochastic models for unimolecular reaction networks 267 11.3.1 Rate equations for two-state conformational change 267 11.3.2 Michaelis-Menten kinetics of single enzymes 270 11.4 The CME models for non-linear biochemical reactions with fluctuations 271 11.4.1 Chemical master equation for Michaelis-Menten kinetics 271 11.4.2 A non-linear biochemical reaction system with concentration fluctuations 273 11.4.3 Bistability and non-equilibrium steady state 276 11.4.4 Stochastic simulation of the CME 276 11.5 The CME model for protein synthesis in a single cell 278 12 Appendix: the statistical basis of thermodynamics 282 12.1 The NVE ensemble 282 12.2 The NVT ensemble 287 12.2.1 Boltzmann statistics and the canonical partition function: a derivation 287 12.2.2 Another derivation 288 12.2.3 One more derivation 289 12.2.4 Equipartition 291 12.3 The NPT ensemble 293 Bibliography 296 Index 307
any_adam_object 1
author Beard, Daniel A.
author_GND (DE-588)139719334
author_facet Beard, Daniel A.
author_role aut
author_sort Beard, Daniel A.
author_variant d a b da dab
building Verbundindex
bvnumber BV035386907
callnumber-first Q - Science
callnumber-label QP517
callnumber-raw QP517.P49
callnumber-search QP517.P49
callnumber-sort QP 3517 P49
callnumber-subject QP - Physiology
classification_rvk WC 2000
classification_tum CHE 802f
PHY 820f
ctrlnum (OCoLC)184963074
(DE-599)OBVAC06792019
dewey-full 612/.01583
dewey-hundreds 600 - Technology (Applied sciences)
dewey-ones 612 - Human physiology
dewey-raw 612/.01583
dewey-search 612/.01583
dewey-sort 3612 41583
dewey-tens 610 - Medicine and health
discipline Chemie / Pharmazie
Physik
Biologie
Medizin
edition 1. publ.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01741nam a2200469 c 4500</leader><controlfield tag="001">BV035386907</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090429 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">090323s2008 xx d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA825155</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521870702</subfield><subfield code="9">978-0-521-87070-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521870704</subfield><subfield code="c">(hbk.) : £40.00</subfield><subfield code="9">0-521-87070-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)184963074</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)OBVAC06792019</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QP517.P49</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">612/.01583</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WC 2000</subfield><subfield code="0">(DE-625)148067:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 802f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 820f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Beard, Daniel A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Chemical biophysics</subfield><subfield code="b">quantitative analysis of cellular systems</subfield><subfield code="c">Daniel A. Beard ; Hong Qian</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 311 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge texts in biomedical engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physical biochemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational biology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biological systems</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biophysikalische Chemie</subfield><subfield code="0">(DE-588)4291844-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Biophysikalische Chemie</subfield><subfield code="0">(DE-588)4291844-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qian, Hong</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)139719334</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=017307763&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017307763</subfield></datafield></record></collection>
id DE-604.BV035386907
illustrated Illustrated
indexdate 2024-12-23T21:30:49Z
institution BVB
isbn 9780521870702
0521870704
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-017307763
oclc_num 184963074
open_access_boolean
owner DE-91G
DE-BY-TUM
DE-19
DE-BY-UBM
DE-11
DE-188
owner_facet DE-91G
DE-BY-TUM
DE-19
DE-BY-UBM
DE-11
DE-188
physical XVIII, 311 S. graph. Darst.
publishDate 2008
publishDateSearch 2008
publishDateSort 2008
publisher Cambridge Univ. Press
record_format marc
series2 Cambridge texts in biomedical engineering
spellingShingle Beard, Daniel A.
Chemical biophysics quantitative analysis of cellular systems
Mathematik
Physical biochemistry
Computational biology
Biological systems Mathematics
Biophysikalische Chemie (DE-588)4291844-3 gnd
subject_GND (DE-588)4291844-3
title Chemical biophysics quantitative analysis of cellular systems
title_auth Chemical biophysics quantitative analysis of cellular systems
title_exact_search Chemical biophysics quantitative analysis of cellular systems
title_full Chemical biophysics quantitative analysis of cellular systems Daniel A. Beard ; Hong Qian
title_fullStr Chemical biophysics quantitative analysis of cellular systems Daniel A. Beard ; Hong Qian
title_full_unstemmed Chemical biophysics quantitative analysis of cellular systems Daniel A. Beard ; Hong Qian
title_short Chemical biophysics
title_sort chemical biophysics quantitative analysis of cellular systems
title_sub quantitative analysis of cellular systems
topic Mathematik
Physical biochemistry
Computational biology
Biological systems Mathematics
Biophysikalische Chemie (DE-588)4291844-3 gnd
topic_facet Mathematik
Physical biochemistry
Computational biology
Biological systems Mathematics
Biophysikalische Chemie
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017307763&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT bearddaniela chemicalbiophysicsquantitativeanalysisofcellularsystems
AT qianhong chemicalbiophysicsquantitativeanalysisofcellularsystems