Real-variable methods in harmonic analysis

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Torchinsky, Alberto (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Mineola, N.Y. Dover Publication 2004
Ausgabe:1. Dover ed.; unabridged republ.
Schlagworte:
Online-Zugang:http://www.loc.gov/catdir/enhancements/fy0615/2003070050-d.html
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV035319892
003 DE-604
005 20090403
007 t
008 090218s2004 |||| 00||| eng d
020 |a 0486435083  |9 0-486-43508-3 
035 |a (OCoLC)53940540 
035 |a (DE-599)BVBBV035319892 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-355  |a DE-11 
050 0 |a QA403 
082 0 |a 515/.2433  |2 22 
084 |a SK 450  |0 (DE-625)143240:  |2 rvk 
084 |a MAT 420f  |2 stub 
100 1 |a Torchinsky, Alberto  |e Verfasser  |0 (DE-588)1046391348  |4 aut 
245 1 0 |a Real-variable methods in harmonic analysis  |c Alberto Torchinsky 
250 |a 1. Dover ed.; unabridged republ. 
264 1 |a Mineola, N.Y.  |b Dover Publication  |c 2004 
300 |a XII, 462 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
500 |a Originally published: Orlando : Academic Press, 1986, in series: Pure and applied mathematics. 
650 4 |a Harmonic analysis 
650 0 7 |a Harmonische Analyse  |0 (DE-588)4023453-8  |2 gnd  |9 rswk-swf 
689 0 0 |a Harmonische Analyse  |0 (DE-588)4023453-8  |D s 
689 0 |5 DE-604 
856 4 |a Publisher description  |u http://www.loc.gov/catdir/enhancements/fy0615/2003070050-d.html 
856 4 2 |m Digitalisierung UB Regensburg  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017124484&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-017124484 

Datensatz im Suchindex

_version_ 1804138627963289600
adam_text Contents Preface Chapter I Fourier Series 1. Fourier Series of Functions 1 2. Fourier Series of Continuous Functions 8 3. Elementary Properties of Fourier Series 13 4. Fourier Series of Functional 16 5. Notes; Further Results and Problems 22 Chapter II Cesàro Summability 1. (C, 1) Summability 28 2. Fejer s Kernel 29 3. Characterization of Fourier Series of Functions and Measures 34 4. A.E. Convergence of (C, 1) Means of Summable Functions 41 5. Notes; Further Results and Problems 43 Chapter III Norm Convergence of Fourier Series 1. The Case L T) Hubert Space 48 2. Norm Convergence in ¿ (7), 1 < ρ < oo 51 3. The Conjugate Mapping 52 4. More on Integrable Functions 54 5. Integral Representation of the Conjugate Operator 59 6. The Truncated Hüben Transform 65 7. Notes; Further Results and Problems 68 Contents Chapter IV The Basic Principles 1. The Calderón-Zygimmd Interval Decomposition 74 2. The Hardy-Littlewood Maximal Function 76 3. The Calderón-Zygmund Decomposition 84 4. The Marcinkiewicz Interpolation Theorem 86 5. Extrapolation and the Zygmund L In L Class 91 6. The Banach Continuity Principle and a.e. Convergence 94 7. Notes; Further Results and Problems 100 Chapter V The Hubert Transform and Multipliers 1. Existence of the Hilbert Transform of Integrable Functions 110 2. The Hilbert Transform in L (T), 1 «S p < o° 115 3. Limiting Results 121 4. Multipliers 126 5. Notes; Further Results and Problems 132 Chapter VI Paley s Theorem and Fractional Integration 1. Paley s Theorem 142 2. Fractional Integration 150 3. Multipliers 156 4. Notes; Further Results and Problems 158 Chapter VII Harmonic and Subharmonic Functions 1. Abel Summabfflty, Nontangential Convergence 167 2. The Poisson and Conjugate Poisson Kernels 171 3. Harmonic Functions 176 4. Further Properties of Harmonic Functions and Subharmonic Functions 181 5. Harnack s and Mean Value Inequalities 187 6. Notes; Further Results and Problems 191 Chapter VIII Oscillation of Functions 1. Mean Oscillation of Functions 199 2. The Maximal Operator and BMO 204 3. The Conjugate of Bounded and BMO Functions 206 4. Wk-L and K,. Interpolation 209 5. Lipschitz and Morrey Spaces 213 6. Notes; Further Results and Problems 216 Contents ix Chapter IX Ap Weights 1. The Hardy-Littlewood Maximal Theorem for Regular Measures 223 2. Ap Weights and the Hardy-Littlewood Maximal Function 225 3. At Weights 228 4. Ap Weights, ρ > 1 233 5. Factorization of Ap Weights 237 6. Ap and BMO 240 7. An Extrapolation Result 242 8. Notes; Further Results and Problems 247 Chapter X More about R 1. Distributions. Fourier Transforms 259 2. Translation Invariant Operators. Multipliers 263 3. The Hubert and Riesz Transforms 266 4. Sobolev and Poincaré Inequalities 270 Chapter XI Calderón-Zygmund Singular Integral Operators 1. The Benedek-Calderón-Panzone Principle 280 2. A Theorem of Zó 282 3. Convolution Operators 284 4. Cotlar s Lemma 285 5. Calderón-Zygmund Singular Integral Operators 286 6. Maximal Calderón-Zygmund Singular Integral Operators 291 7. Singular Integral Operators in L°°(R-) 294 8. Notes; Further Results and Problems 295 Chapter XII The Littlewood-Paley Theory 1. Vector-Valued Inequalities 303 2. Vector-Valued Singular Integral Operators 307 3. The Littlewood-Paley g Function 309 4. The Lusin Area Function and the Littlewood-Paley g* Function 314 5. Hörmander s Multiplier Theorem 318 6. Notes; Further Results and Problems 321 Chapter XIII The Good λ Principle 1. Good λ Inequalities 328 Contents 2. Weighted Norm Inequalities for Maximal CZ Singular Integral Operators 330 3. Weighted Weak-Type (1,1) Estimates for CZ Singular Integral Operators 334 4. Notes; Further Results and Problems 337 Chapter XIV Hardy Spaces of Several Real Variables 1. Atomic Decomposition 340 2. Maximal Function Characterization of Hardy Spaces 350 3. Systems of Conjugate Functions 356 4. Multipliers 359 5. Interpolation 363 6. Notes; Further Results and Problems 366 Chapter XV Carleson Measures 1. Carleson Measures 372 2. Duals of Hardy Spaces 374 3. Tent Spaces 378 4. Notes; Further Results and Problems 383 Chapter XVI Cauchy Integrals on Lipschitz Carves 1. Cauchy Integrals on Lipschitz Curves 392 2. Related Operators 408 3. The T Theorem 412 4. Notes; Further Results and Problems 416 Chapter XVII Boundary Value Problems on C1-Domains 1. The Double and Single Layer Potentials on a C -Domain 424 2. The Dirichlet and Neumann Problems 438 3. Notes 444 Bibliography 446 Index 457
any_adam_object 1
author Torchinsky, Alberto
author_GND (DE-588)1046391348
author_facet Torchinsky, Alberto
author_role aut
author_sort Torchinsky, Alberto
author_variant a t at
building Verbundindex
bvnumber BV035319892
callnumber-first Q - Science
callnumber-label QA403
callnumber-raw QA403
callnumber-search QA403
callnumber-sort QA 3403
callnumber-subject QA - Mathematics
classification_rvk SK 450
classification_tum MAT 420f
ctrlnum (OCoLC)53940540
(DE-599)BVBBV035319892
dewey-full 515/.2433
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515/.2433
dewey-search 515/.2433
dewey-sort 3515 42433
dewey-tens 510 - Mathematics
discipline Mathematik
edition 1. Dover ed.; unabridged republ.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01574nam a2200397 c 4500</leader><controlfield tag="001">BV035319892</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090403 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090218s2004 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0486435083</subfield><subfield code="9">0-486-43508-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)53940540</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035319892</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA403</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.2433</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 450</subfield><subfield code="0">(DE-625)143240:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 420f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Torchinsky, Alberto</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1046391348</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Real-variable methods in harmonic analysis</subfield><subfield code="c">Alberto Torchinsky</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. Dover ed.; unabridged republ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Mineola, N.Y.</subfield><subfield code="b">Dover Publication</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 462 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Originally published: Orlando : Academic Press, 1986, in series: Pure and applied mathematics.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="a">Publisher description</subfield><subfield code="u">http://www.loc.gov/catdir/enhancements/fy0615/2003070050-d.html</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=017124484&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017124484</subfield></datafield></record></collection>
id DE-604.BV035319892
illustrated Not Illustrated
indexdate 2024-07-09T21:31:12Z
institution BVB
isbn 0486435083
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-017124484
oclc_num 53940540
open_access_boolean
owner DE-355
DE-BY-UBR
DE-11
owner_facet DE-355
DE-BY-UBR
DE-11
physical XII, 462 S.
publishDate 2004
publishDateSearch 2004
publishDateSort 2004
publisher Dover Publication
record_format marc
spelling Torchinsky, Alberto Verfasser (DE-588)1046391348 aut
Real-variable methods in harmonic analysis Alberto Torchinsky
1. Dover ed.; unabridged republ.
Mineola, N.Y. Dover Publication 2004
XII, 462 S.
txt rdacontent
n rdamedia
nc rdacarrier
Originally published: Orlando : Academic Press, 1986, in series: Pure and applied mathematics.
Harmonic analysis
Harmonische Analyse (DE-588)4023453-8 gnd rswk-swf
Harmonische Analyse (DE-588)4023453-8 s
DE-604
Publisher description http://www.loc.gov/catdir/enhancements/fy0615/2003070050-d.html
Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017124484&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
spellingShingle Torchinsky, Alberto
Real-variable methods in harmonic analysis
Harmonic analysis
Harmonische Analyse (DE-588)4023453-8 gnd
subject_GND (DE-588)4023453-8
title Real-variable methods in harmonic analysis
title_auth Real-variable methods in harmonic analysis
title_exact_search Real-variable methods in harmonic analysis
title_full Real-variable methods in harmonic analysis Alberto Torchinsky
title_fullStr Real-variable methods in harmonic analysis Alberto Torchinsky
title_full_unstemmed Real-variable methods in harmonic analysis Alberto Torchinsky
title_short Real-variable methods in harmonic analysis
title_sort real variable methods in harmonic analysis
topic Harmonic analysis
Harmonische Analyse (DE-588)4023453-8 gnd
topic_facet Harmonic analysis
Harmonische Analyse
url http://www.loc.gov/catdir/enhancements/fy0615/2003070050-d.html
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017124484&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT torchinskyalberto realvariablemethodsinharmonicanalysis