Mathematical finance deterministic and stochastic models

Gespeichert in:
Bibliographische Detailangaben
Format: Buch
Sprache:English
Veröffentlicht: London ISTE [u.a.] 2009
Ausgabe:1. publ.
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV035297885
003 DE-604
005 20090707
007 t|
008 090209s2009 xx d||| b||| 00||| eng d
015 |a GBA899375  |2 dnb 
020 |a 9781848210813  |9 978-1-84821-081-3 
020 |a 1848210817  |c (hbk.) : £118.00  |9 1-84821-081-7 
035 |a (OCoLC)226357246 
035 |a (DE-599)HBZHT015684078 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-824  |a DE-355  |a DE-29  |a DE-M382  |a DE-20 
050 0 |a HG106 
082 0 |a 332.01/51922  |2 22 
084 |a QP 890  |0 (DE-625)141965:  |2 rvk 
084 |a SK 980  |0 (DE-625)143277:  |2 rvk 
245 1 0 |a Mathematical finance  |b deterministic and stochastic models  |c Jacques Janssen ; Raimondo Manca ; Ernesto Volpe di Prignano 
250 |a 1. publ. 
264 1 |a London  |b ISTE [u.a.]  |c 2009 
300 |a XX, 852 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
500 |a Literaturverz. S. 831 - 837 
650 4 |a Finances - Modèles mathématiques 
650 7 |a Finances - Modèles mathématiques  |2 ram 
650 7 |a Finanzmathematik  |2 stw 
650 4 |a Investissements - Mathématiques 
650 7 |a Investissements - Mathématiques  |2 ram 
650 4 |a Processus stochastiques 
650 7 |a Processus stochastiques  |2 ram 
650 4 |a Mathematik 
650 4 |a Mathematisches Modell 
650 4 |a Finance  |x Mathematical models 
650 4 |a Stochastic processes 
650 4 |a Investments  |x Mathematics 
650 0 7 |a Finanzmathematik  |0 (DE-588)4017195-4  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)4006432-3  |a Bibliografie  |2 gnd-content 
655 7 |0 (DE-588)4123623-3  |a Lehrbuch  |2 gnd-content 
689 0 0 |a Finanzmathematik  |0 (DE-588)4017195-4  |D s 
689 0 |5 DE-604 
700 1 |a Janssen, Jacques  |d 1939-  |e Sonstige  |0 (DE-588)136691331  |4 oth 
700 1 |a Manca, Raimondo  |e Sonstige  |0 (DE-588)136691420  |4 oth 
700 1 |a Volpe di Prignano, Ernesto  |e Sonstige  |4 oth 
856 4 2 |m Digitalisierung UB Regensburg  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017102809&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-017102809 

Datensatz im Suchindex

DE-BY-UBR_call_number 40/QP 890 J35
DE-BY-UBR_katkey 4473193
DE-BY-UBR_location 40
DE-BY-UBR_media_number 069037183779
_version_ 1822757625410879488
adam_text Table of Contents Preface ............................................xvii Part I. Deterministic Models ............................... 1 Chapter 1. Introductory Elements to Financial Mathematics ........... 3 1.1. The object of traditional financial mathematics ................ 3 1.2. Financial supplies. Preference and indifference relations ........... 4 1.2.1. The subjective aspect of preferences .................... 4 1.2.2. Objective aspects of financial laws. The equivalence principle ... 10 1.3. The dimensional viewpoint of financial quantities .............. 11 Chapter 2. Theory of Financial Laws ......................... 13 2.1. Indifference relations and exchange laws for simple financial operations 13 2.2. Two variable laws and exchange factors .................... 17 2.3. Derived quantities in the accumulation and discount laws ......... 19 2.3.1. Accumulation ................................. 19 2.3.2. Discounting .................................. 22 2.4. Decomposable financial lawas ......................... 24 2.4.1. Weak and strong decomposability properties: equivalence relations ................................ 24 2.4.2. Equivalence classes: characteristic properties of decomposable laws ................................. 27 2.5. Uniform financial laws: mean evaluations ................... 32 2.5.1. Theory of uniform exchange laws ..................... 32 2.5.2. An outline of associative averages .................... 35 2.5.3. Average duration and average maturity ................. 37 2.5.4. Average index of return: average rate .................. 38 2.6. Uniform decomposable financial laws: exponential regime ........ 39 vi Mathematical Finance Chapter 3. Uniform Regimes in Financial Practice ................ 41 3.1. Preliminary comments .............................. 41 3.1.1. Equivalent rates and intensities ...................... 42 3.2. The regime of simple delayed interest (SDI) ................. 42 3.3. The regime of rational discount (RD) ..................... 45 3.4. The regime of simple discount (SD) ...................... 48 3.5. The regime of simple advance interest (SAI) ................ 50 3.6. Comments on the SDI, RD, SD and SAI uniform regimes ......... 52 3.6.1. Exchange factors (EF) ............................ 52 3.6.2. Corrective operations ............................ 53 3.6.3. Initial averaged intensities and instantaneous intensity ........ 53 3.6.4. Average length in the linear law and their conjugates ......... 54 3.6.5. Average rates in linear law and their conjugated laws ......... 54 3.7. The compound interest regime ......................... 55 3.7.1. Conversion of interests ........................... 55 3.7.2. The regime of discretely compound interest (DCI) ........... 56 3.7.3. The regime of continuously compound interest (CCI) ......... 63 3.8. The regime of continuously comound discount (CCD) ........... 69 3.9. Complements and exercises on compound regimes ............. 74 3.10. Comparison of laws of different regimes ................... 83 Chapter 4. Financial Operations and their Evaluation: Decisional Criteria ..................................... 91 4.1. Calculation of capital values: fairness ..................... 91 4.2. Retrospective and prospective reserve ..................... 97 4.3. Usufruct and bare ownership in discrete and continuous cases .... 104 4.4. Methods and models for financial decisions and choices .......... 107 4.4.1. Internal rate as return index ........................ 107 4.4.2. Outline on GDCF and internal financial law ............. 109 4.4.3. Classifications and propert of financial projects ............ Ill 4.4.4. Decisional criteria for financial projects ................. 114 4.4.5. Choice criteria for mutually exclusive financial projects ....... 124 4.4.6. Mixed projects: the TRM method ..................... 127 4.4.7. Dicisional criteria on mixed projects ................... 133 4.5. Appendix: outline on numberical methods for the solution of equations. 138 4.5.1. General aspects ................................ 138 4.5.2. The linear interpolation method ...................... 139 4.5.3. Dichotomic method (or for successive divisions) ........... 141 4.5.4. Secants and tangents method ........................ 142 4.5.5. Classical alteration method ......................... 143 Table of Contents vii Chapter 5. Annuities-Certain and their Value at Fixed Rate ..........147 5.1. General aspects ...................................147 5.2. Evaluation of constant installment annuities in the compound regime . . 150 5.2.1. Temporary annual annuity ......................... 150 5.2.2. Annual perpetuity .............................. 155 5.2.3. Fractional and pluriannual annuities ................... 156 5.2.4. Inequalities between annuity values with different frequency: correction factors .................................. 166 5.3. Evaluation of constant installment annuities according to linear laws . . 172 5.3.1. The direct problem .............................. 172 5.3.2. Use of correction factors .......................... 174 5.3.3. Inverse problem ............................... 175 5.4. Evaluation of varying installment annuities in the compound regime . . 176 5.4.1. General case .................................176 5.4.2. Specific cases: annual annuities in arithmetic progression ......179 5.4.3. Specific cases: fractional and pluriannual annuities in arithmetic progression ...............................183 5.4.4. Specific cases: annual annuity in geometric progression .......190 5.4.5. Specific cases: fractional and pluriannual annuity in geometric progression ...............................196 5.5. Evaluation of varying installment annuities according to linear laws. . . 204 5.5.1. General case .................................204 5.5.2. Specific cases: annuities in arithmetic progression ...........205 5.5.3. Specific cases: annuities in geometric progression ...........207 Chapter 6. Loan Amortization and Funding Methods ..............211 6.1. General features of loan amortization .....................211 6.2. General loan amortization at fixed rate ....................213 6.2.1. Gradual amortizatul with varying installments .............213 6.2.2. Particular case: delayed constant installment amortization ......221 6.2.3. Particular case: amortization with constant principal repayments . . 225 6.2.4. Particular case: amortization with advance interests ..........226 6.2.5. Particular case: American amortization ................228 6.2.6. Amortization in the continuous scheme .................232 6.3. Life amortization .................................234 6.3.1. Periodic advance payments ......................... 234 6.3.2. Periodic payments with delayed principal amounts .......... 241 6.3.3. Continuous payment flow ......................... 242 6.4. Periodic funcing at fixed rate .......................... 244 6.4.1. Delayed payments ..............................244 6.4.2. Advance payments ..............................248 6.4.3. Continuours payments ...........................251 viii Mathematical Finance 6.5. Amortizations with adjustment of rates and values .............253 6.5.1. Amortizations with adjustable rate ....................253 6.5.2. Amortizations with adjustment of the outstanding loan balance . . . 256 6.6. Valuation of reserves in unshared loans ....................258 6.6.1. General aspects ................................258 6.6.2. Makeham s formula .............................259 6.6.3. Usufructs and bare ownership valuation for some amortization forms .................................262 6.7. Leasing operation .................................265 6.7.1. Ordinary leasing ...............................265 6.7.2. The monetary adjustment in leasing ...................268 6.8. Amortizations of loans shared in securities ..................268 6.8.1. An introduction on the securities ..................... 268 6.8.2. Amortization from the viewpoint of the debtor ............. 270 6.8.3. Amortization from the point of view of the bondholder ........ 271 6.8.4. Drawing probabiity and mean life ..................... 272 6.8.5. Adjustable rate bonds, indexed bonds and convertible bonds .... 274 6.8.6. Rule variations in bond loans ....................... 275 6.9. Valuation in shared loans ............................. 276 6.9.1. Introduction ................................. 276 6.9.2. Valuation of bonds with given maturity ................. 277 6.9.3. Valuation of drawing bonds ........................ 280 6.9.4. Bond loan with varying rate or values adjusted in time ........ 286 Chapter 7. Exchanges and Prices on the Financial Market ...........289 7.1. A reinterpretation of the financial quantities in a market and price logic: the perfect market ....................................289 7.1.1. The perfect market ..............................289 7.1.2. Bonds .....................................291 7.2. Spot contracts, price and rates. Yield rate ...................294 7.3. Forward contracts, prices and rates .......................302 7.4. The implicit structure of prices, rates and intensities ............304 7.5. Term structures ...................................310 7.5.1. Structures with discrete payments ...................310 7.5.2. Structures with fractional periods .....................324 7.5.3. Structures with flows in continuum ..................327 Chapter 8. Annuities, Amortizations and Funding in the Case of Term Structures ......................................331 8.1. Capital value of annuities in the case of term structures ..........331 8.2. Amortizations in the case of term structures .................336 8.2.1. Amortization with varying installments .................337 Table of Coatents ix 8.2.2. Amortization with constant installments .................343 8.2.3. Amortization with constant principal repayments ...........348 8.2.4. Life amortization ...............................349 8.3. Updating of valuations during amortization ..................352 8.4. Funding in term structure environments ....................355 8.5. Valuations referred to shared loans in term structure environments. . . . 358 8.5.1. Financial flows by the issuer s and investors point of view .....359 8.5.2. Valuations of price and yield ........................360 Chapter 9. Time and Variability Indicators, Classical Immunization .....363 9.1. Main time indicators ...............................363 9.1.1. Maturity and time to maturity .......................364 9.1.2. Arithmetic mean maturity .........................364 9.1.3. Average maturity ...............................364 9.1.4. Mean financial time length or duration ................366 9.2. Variability and dispersion indicators ......................374 9.2.1. 2nd order duration ..............................374 9.2.2. Relative variation ..............................376 9.2.3. Elasticity ...................................377 9.2.4. Convexity and volatility convexity ....................377 9.2.5. Approximated estimations of price fluctuation .............380 9.3. Rate risk and classicalimmunization ......................386 9.3.1. An introductin to financial risk ...................... 386 9.3.2. Preliminaries to classic immunization .................. 392 9.3.3. The optimal time of realization ...................... 393 9.3.4. The meaning of classical immunization ................. 395 9.3.5. Single liability cover ............................ 396 9.3.6. Multiple liability cover ........................... 400 Part II. Stochastic Models ................................409 Chapter 10. Basic Probabilistic Tools for Finance .................411 10.1. The sample space .................................411 10.2. Probability space .................................412 10.3. Random variables ................................417 10.4. Expectation and independence .........................421 10.5. Main distribution probabilities .........................425 10.5.1. The binominal distribution ........................425 10.5.2. The Poisson distribution ..........................426 10.5.3. The normal (or Laplace Gauss) distribution ..............427 10.5.4. The log-normal distribution ........................430 10.5.5. The negative exponential distribution ..................432 χ Mathematical Finance 10.5.6. The multidimensional normal distribution ...............433 10.6. Conditioning ...................................435 10.7. Stochastic processes ...............................446 10.8. Martingales ....................................450 10.9. Brownian motion .................................453 Chapter 11. Markov Chains ...............................457 11.1. Definitions ....................................457 11.2. State classification ................................462 11.3. Occupation times .................................467 11.4. Absorption probabilities ............................468 11.5 Asymptotic behavior ...............................469 11.6 Examples ......................................474 11.6.1. A management problem in an insurance company ..........474 11.6.2. A case study in social insurance .....................476 Chapter 12. Semi-Markov Processes .........................481 12.1. Positive (J -Х) processes .............................481 12.2. Semi-Markov and extended semi-Markov chains .............482 12.3. Primary properties ................................484 12.4. Examples .....................................488 12.5. Markov renewal processes, semi-Markov and associated counting processes ...................................491 12.6. Particular cases of MRP .............................493 12.6.1. Renewal processes and Markov chains .................493 12.6.2. MRP of zero order .............................494 12.6.3. Continuous Markov processes ......................495 12.7. Markov renewal functions ...........................496 12.8. The Markov renewal equation .........................500 12.9. Asymptotic behavior of an MRP .......................502 12.10. Asymptotic behavior of SMP .........................503 12.10.1. Irreducible case .............................. 503 12.10.2. Non-irreducible case ........................... 506 12.11. Non-homogenous Markov and semi-Markov processes ......... 508 12.11.1. General definitions ............................ 508 Chapter 13. Stochastic or M Calculus ........................517 13.1. Problem of stochastic integration ....................... 517 13.2. Stochastic integration of simple predictable processes and semi-martingales .................................... 519 13.3. General definition of the stochastic integral ................. 523 Table of Contents xi 13.4. Itô s formula ...................................529 13.4.1. Quadratic variation of a semi-martingale ................529 13.4.2. Itô s formula ................................531 13.5. Stochastic integral with standard Brownian motion as integrator process .................................... 532 13.5.1. Case of predictable simple processes .................. 533 13.5.2. Extension to general integrand processes ................ 535 13.6. Stochastic differentiation ............................ 536 13.6.1. Definition ..................................536 13.6.2. Examples ..................................536 13.7. Backte Itô s formula ..............................537 13.7.1. Stochastic differential of a product ................... 537 13.7.2. Itô s formula with time dependence ................... 538 13.7.3. Interpretation of Itô s formula ...................... 540 13.7.4. Other extensions of Itô s formula .................... 540 13.8. Stochastic differential equations ........................ 545 13.8.1. Existence and unicity general thorem ..................545 13.8.2. Solution of stochastic differntial equations ...............549 13.9. Diffusion processes ...............................550 Chapter 14. Option Theory ...............................553 14.1. Introduction ....................................553 14.2. The Cox, Ross, Rubinstein (CRR) or binomial model ...........557 14.2.1. One-period model .............................557 14.2.2. Multi-period model ............................561 14.3. The Black-Scholes formula as the limit of the binomial model .....564 14.3.1. The lognormality of the underlying asset ................564 14.3.2. The Black-Scholes formula ........................567 14.4. The Black-Scholes continuous time model .................568 14.4.1. The model .................................. 568 14.4.2. The Solution of the Black-Scholes-Samuelson model ........ 569 14.4.3. Pricing the call with the Black-Scholes-Samuelson model ..... 570 14.5. Exercises on option pricing ........................... 576 14.6. The Greek parameters .............................. 577 14.6.1. Introduction ................................. 577 14.6.2. Values of the Greek parameters ..................... 579 14.6.3. Excercises .................................. 581 14.7. The impact of dividend repartition ...................... 583 14.8. Estimation of the volatility ........................... 584 14.8.1. Historic method ...............................584 14.8.2. Implicit volatility method .........................586 14.9. Black-Scholes on the market ..........................587 xii Mathematical Finance 14.9.1. Empirical studies ..............................587 14.9.2. Smile effect .................................587 14.10. Exotic options ..................................588 14.10.1. Introduction ................................ 588 14.10.2. Garman-Kohlhagen formula ...................... 589 14.10.3. Greek parameters ............................. 590 14.10.4. Theoretical models ............................ 590 14.10.5. Binary or digital options ......................... 592 14.10.6. Asset or nothing options ....................... 595 14.10.7. The barrier options ............................ 599 14.10.8. Lockback options ............................. 601 14.10.9. Asiatic (or average) options ....................... 601 14.10.10. Rainbow options .............................602 14.11. The formula of Barone-Adesi and Whaley (1987): formula for American options ..................................603 Chapter 15. Markov and Semi-Markov Option Models .............607 15.1. The Janssen-Manca model ...........................607 15.1.1. The Markov extension of the one-period CRR model ........608 15.1.2. The multi-period discrete Markov chain model ............616 15.1.3. The multi-period discrete Markov chain limit model .........619 15.1.4. The extension of the Black-Scholes pricing formula with Markov environment: the Janssen-Manca formula ...............621 15.2. The extension of the Black-Scholes pricing formula with a semi-Markov environment: the Janssen-Manca-Volpe formula .........624 15.2.1. Introduction .................................624 15.2.2. The Janssen-Manca-Çinlar model ....................625 15.2.3. Call option pricing .............................628 15.2.4. Stationary option pricing formula ....................630 15.3. Markov and semi-Markov option pricing models with arbitrage possibility ........................................631 15.3.1. Introduction .................................631 15.3.2. The homogenous Markov model for the underlying asset ......633 15.3.3. Particular cases ...............................634 15.3.4. Numerical example for the Markov model ...............635 15.3.5. The continuous time homogenous semi-Markov model for the underlying asset .................................637 15.3.6. Numerical example for the semi-Markov model ...........639 15.3.7. Conclusion ..................................640 Table of Contents xiii Chapter 16. Interest Rate Stochastic Models - Application to the Bond Pricing Problem ..................................641 16.1. The bond investments ..............................641 16.1.1. Introduction .................................641 16.1.2. Yield curve .................................642 16.1.3. Yield to maturity for a financial investment and for a bond .....643 16.2. Dynamic deterministic continuous time model for instantaneous interesirate ........................................644 16.2.1. Instantaneous interesirate .........................644 16.2.2. Particular cases ...............................645 16.2.3. Yield curve associated with instantaneous interest rate .......645 16.2.4. Example of theoretical models ......................646 16.3. Stochastic continuous time dynamic model for instantaneous interesirate ........................................648 16.3.1. The OUV stochastic model ........................ 649 16.3.2. The CIR model (1985)........................... 655 16.3.3. The HJM model (1992).......................... 658 16.4. Zero-coupon pricing under the assumption of no arbitrage ........ 666 16.4.1. Stochastic dynamics of zero-coupons ..................667 16.4.2. Application of the no arbitrage principle and risk premium .....668 16.4.3. Partial differential equatin for the structure of zero coupons .... 670 16.4.4. Values of zero coupons without arbitrage opportunity for particular cases ................................. 672 16.4.5. Values of a call on zero-coupon ..................... 681 16.4.6. Option on bond with coupons ...................... 682 16.4.7. A numerical example ........................... 683 16.5. Appendix (solution of the OUV equation) ................. 684 Chapter 17. Portfolio Theory ..............................687 17.1. Quantitative portfolio management ...................... 687 17.2. Notion of efficiency ............................... 688 17.3. Exercises ...................................... 693 17.4. Markowitz theory for two assets ........................ 694 17.5. Case of one risky asset and one non-risky asset ............... 698 Chapter 18. Value at Risk (VaR) Methods and Simulation ...........703 18.1. VaR of one asset ................................. 703 18.1.1. Introduction ................................. 703 18.1.2. Definition ofVaR for one asset ..................... 704 18.1.3. Case of the normal distribution ..................... 705 xiv Mathematical Finance 18.1.4. Example II: an internal model in case of the lognormal distribution ......................................707 18.1.5. Trajectory simulation ...........................712 18.2. Coherence and VaR extensions ........................712 18.2.1. Risk measures ................................712 18.2.2. General form of the VaR .........................713 18.2.3. VaR extensions: TVaR and conditional VaR .............716 18.3. VaR of an asset portfolio ............................721 18.3.1. VaR methodology .............................722 18.3.2. General methods for VaR calculation ..................724 18.3.3. VaR implementation ............................725 18.3.4. VaR for a bond portfolio .........................732 18.4. VaR for one plain vanilla option ........................734 18.5. VaR and Monte Carlo simulation methods .................737 18.5.1. Introduction .................................737 18.5.2. Case of one risk factor ...........................737 18.5.3. Case of several risk factors ........................738 18.5.4. Monte Carlo simulation scheme for the VaR calculation of an asset portfolio ...................................741 Chapter 19. Credit Risk or Default Risk .......................743 19.1. Introduction ....................................743 19.2. The Merton model ................................744 19.2.1. Evaluation model of a risky debt .....................744 19.2.2. Interpretation of Merton s result .....................746 19.2.3. Spreads ....................................747 19.3. The Longstaffand Schwartz model (1995).................750 19.4. Construction of a rating with Merton s model for the firm ........752 19.4.1. Rating construction ............................752 19.4.2. Time dynamic evolution of a rating ...................756 19.5. Discrete time semi-Markov processes ....................763 19.5.1. Purpose ....................................763 19.5.2. DTSMP definition .............................765 19.6. Semi-Markov credit risk models ........................768 19.7. NHSMP with backward conditioning time .................770 19.8. Examples .....................................772 19.8.1. Homogenous SMP application ......................772 19.8.2. Non-homogenous downward example .................776 19.8.3. Non-homogenous downward backward example ...........784 Table of Contents xv Chapter 20. Markov and Semi-Markov Reward Processes and Stochastic Annuities .................................... 791 20.1. Reward processes ................................ 791 20.2. Homogenous and non-homogenous DTMRWP ............... 795 20.3. Homogenous and non-homogenous DTSMRWP .............. 799 20.3.1. The immediate cases ............................ 799 20.3.2. The due cases ................................ 807 20.4. MRWP and stochastic annuities ........................ 811 20.4.1. Stochastic annuities ............................ 811 20.4.2. Motorcar insurance application ..................... 814 20.5. DTSMRWP and generalized stochastic annuities (GSA) ......... 822 20.5.1. Generalized stochastic annuities (GSA) ................ 822 20.5.2. GSA examples ............................... 824 References ..........................................831 Index .............................................839
any_adam_object 1
author_GND (DE-588)136691331
(DE-588)136691420
building Verbundindex
bvnumber BV035297885
callnumber-first H - Social Science
callnumber-label HG106
callnumber-raw HG106
callnumber-search HG106
callnumber-sort HG 3106
callnumber-subject HG - Finance
classification_rvk QP 890
SK 980
ctrlnum (OCoLC)226357246
(DE-599)HBZHT015684078
dewey-full 332.01/51922
dewey-hundreds 300 - Social sciences
dewey-ones 332 - Financial economics
dewey-raw 332.01/51922
dewey-search 332.01/51922
dewey-sort 3332.01 551922
dewey-tens 330 - Economics
discipline Mathematik
Wirtschaftswissenschaften
edition 1. publ.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02303nam a2200589 c 4500</leader><controlfield tag="001">BV035297885</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090707 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">090209s2009 xx d||| b||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA899375</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781848210813</subfield><subfield code="9">978-1-84821-081-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1848210817</subfield><subfield code="c">(hbk.) : £118.00</subfield><subfield code="9">1-84821-081-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)226357246</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT015684078</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-M382</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HG106</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">332.01/51922</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QP 890</subfield><subfield code="0">(DE-625)141965:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 980</subfield><subfield code="0">(DE-625)143277:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical finance</subfield><subfield code="b">deterministic and stochastic models</subfield><subfield code="c">Jacques Janssen ; Raimondo Manca ; Ernesto Volpe di Prignano</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">ISTE [u.a.]</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 852 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 831 - 837</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finances - Modèles mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Finances - Modèles mathématiques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Finanzmathematik</subfield><subfield code="2">stw</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Investissements - Mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Investissements - Mathématiques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Processus stochastiques</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Processus stochastiques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finance</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Investments</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finanzmathematik</subfield><subfield code="0">(DE-588)4017195-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4006432-3</subfield><subfield code="a">Bibliografie</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Finanzmathematik</subfield><subfield code="0">(DE-588)4017195-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Janssen, Jacques</subfield><subfield code="d">1939-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)136691331</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Manca, Raimondo</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)136691420</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Volpe di Prignano, Ernesto</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=017102809&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017102809</subfield></datafield></record></collection>
genre (DE-588)4006432-3 Bibliografie gnd-content
(DE-588)4123623-3 Lehrbuch gnd-content
genre_facet Bibliografie
Lehrbuch
id DE-604.BV035297885
illustrated Illustrated
indexdate 2024-12-23T21:25:29Z
institution BVB
isbn 9781848210813
1848210817
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-017102809
oclc_num 226357246
open_access_boolean
owner DE-824
DE-355
DE-BY-UBR
DE-29
DE-M382
DE-20
owner_facet DE-824
DE-355
DE-BY-UBR
DE-29
DE-M382
DE-20
physical XX, 852 S. graph. Darst.
publishDate 2009
publishDateSearch 2009
publishDateSort 2009
publisher ISTE [u.a.]
record_format marc
spellingShingle Mathematical finance deterministic and stochastic models
Finances - Modèles mathématiques
Finances - Modèles mathématiques ram
Finanzmathematik stw
Investissements - Mathématiques
Investissements - Mathématiques ram
Processus stochastiques
Processus stochastiques ram
Mathematik
Mathematisches Modell
Finance Mathematical models
Stochastic processes
Investments Mathematics
Finanzmathematik (DE-588)4017195-4 gnd
subject_GND (DE-588)4017195-4
(DE-588)4006432-3
(DE-588)4123623-3
title Mathematical finance deterministic and stochastic models
title_auth Mathematical finance deterministic and stochastic models
title_exact_search Mathematical finance deterministic and stochastic models
title_full Mathematical finance deterministic and stochastic models Jacques Janssen ; Raimondo Manca ; Ernesto Volpe di Prignano
title_fullStr Mathematical finance deterministic and stochastic models Jacques Janssen ; Raimondo Manca ; Ernesto Volpe di Prignano
title_full_unstemmed Mathematical finance deterministic and stochastic models Jacques Janssen ; Raimondo Manca ; Ernesto Volpe di Prignano
title_short Mathematical finance
title_sort mathematical finance deterministic and stochastic models
title_sub deterministic and stochastic models
topic Finances - Modèles mathématiques
Finances - Modèles mathématiques ram
Finanzmathematik stw
Investissements - Mathématiques
Investissements - Mathématiques ram
Processus stochastiques
Processus stochastiques ram
Mathematik
Mathematisches Modell
Finance Mathematical models
Stochastic processes
Investments Mathematics
Finanzmathematik (DE-588)4017195-4 gnd
topic_facet Finances - Modèles mathématiques
Finanzmathematik
Investissements - Mathématiques
Processus stochastiques
Mathematik
Mathematisches Modell
Finance Mathematical models
Stochastic processes
Investments Mathematics
Bibliografie
Lehrbuch
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017102809&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT janssenjacques mathematicalfinancedeterministicandstochasticmodels
AT mancaraimondo mathematicalfinancedeterministicandstochasticmodels
AT volpediprignanoernesto mathematicalfinancedeterministicandstochasticmodels