Modelling computing systems mathematics for computer science

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Moller, Faron 1962- (VerfasserIn), Struth, Georg ca. 20. / 21. Jh (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: London Springer [2013]
Schriftenreihe:Undergraduate topics in computer science
Schlagworte:
Online-Zugang:Klappentext
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV035279238
003 DE-604
005 20230306
007 t|
008 090129s2013 xx a||| |||| 00||| eng d
015 |a 08,N18,0044  |2 dnb 
016 7 |a 988251744  |2 DE-101 
020 |a 9781848003217  |c Pb. : ca. EUR 28.84 (freier Pr.), ca. sfr 47.00 (freier Pr.)  |9 978-1-84800-321-7 
020 |a 1848003218  |c Pb. : ca. EUR 28.84 (freier Pr.), ca. sfr 47.00 (freier Pr.)  |9 1-8480-0321-8 
024 3 |a 9781848003217 
028 5 2 |a 12070947 
035 |a (OCoLC)255002850 
035 |a (DE-599)DNB988251744 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-703  |a DE-824  |a DE-91G  |a DE-384  |a DE-83  |a DE-11  |a DE-355 
084 |a ST 130  |0 (DE-625)143588:  |2 rvk 
084 |a MAT 023f  |2 stub 
084 |a 004  |2 sdnb 
100 1 |a Moller, Faron  |d 1962-  |e Verfasser  |0 (DE-588)1282400983  |4 aut 
245 1 0 |a Modelling computing systems  |b mathematics for computer science  |c Faron Moller, Georg Struth 
264 1 |a London  |b Springer  |c [2013] 
300 |a xvi, 500 Seiten  |b Illustrationen, Diagramme 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Undergraduate topics in computer science 
500 |a angekündigt unter dem Titel: Modelling computer systems : the mathematics of computer science 
650 0 7 |a Theoretische Informatik  |0 (DE-588)4196735-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Modellgetriebene Entwicklung  |0 (DE-588)4832365-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Mathematik  |0 (DE-588)4037944-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Komplexitätstheorie  |0 (DE-588)4120591-1  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)4123623-3  |a Lehrbuch  |2 gnd-content 
689 0 0 |a Mathematik  |0 (DE-588)4037944-9  |D s 
689 0 1 |a Komplexitätstheorie  |0 (DE-588)4120591-1  |D s 
689 0 2 |a Modellgetriebene Entwicklung  |0 (DE-588)4832365-2  |D s 
689 0 3 |a Theoretische Informatik  |0 (DE-588)4196735-5  |D s 
689 0 |5 DE-604 
700 1 |a Struth, Georg  |d ca. 20. / 21. Jh.  |e Verfasser  |0 (DE-588)1211571491  |4 aut 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-1-84800-322-4 
856 4 2 |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017084475&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Klappentext 
856 4 2 |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017084475&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-017084475 

Datensatz im Suchindex

DE-BY-TUM_call_number 0102 MAT 023f 2013 A 5352
DE-BY-TUM_katkey 1940283
DE-BY-TUM_location 01
DE-BY-TUM_media_number 040080297558
_version_ 1820852982142468096
adam_text Undergraduate Topics in Computer Science Faron Moiler - Georg Strutti Modelling Computing Systems Mathematics for Computer Science UTiCS We have all experienced delays and frustrations as a result of the notorious computer glitch. However, the more dependent we become on computational systems in our daily lives, the more we must ensure that they are safe, reliable and user-friendly. Ihis engaging textbook presents the fundamental mathematics and modelling techniques for computing systems in a novel and light-hearted way, which can be easily followed by students at the very beginning of their university education. Кел concepts aie taught through a large collection of challenging yet fun mathematical games and logical puzzles that require no prior knowledge about computers, lhe text begins with intuition and examples as a basis from which precise concepts are then developed; demonstrating how, by working within the confines of a precise structured method, the occurrence of errors in the system can be drastically reduced. Topics and features: • Introduces important concepts from discrete mathematics as the basis ot computational thinking, presented in a stimulating and motivating style • Demonstrates how game theory provides a paradigm for an intuitive understanding of the nature of computation • Contains more than 400 exercises throughout the text, with detailed solutions to half of these presented at the end of the book, together with numerous theorems, definitions and examples • Describes ЛП approach to the modelling of computing systems based on state transition systems, exploring the languages and techniques for expressing and reasoning about systems specifications and concurrent implementations This clearly written and classroom-tested textbook/reference is essential reading for first-year undergraduate modules on discrete mathematics and systems modelling. Prof. Faron Moller is a Professor of Computer Science at Swansea University, L K. Dr. Georg Struth is a Reader in Computer Science at the University of Sheffield, I K. Computer Science 1-1-84800-: ► springer.com CONTENTS v Contents Starred sections are optional and often represent advanced material. xiii Preface 0 Introduction Examples of System Failures ................................................... 0.1.1 Clayton Tunnel Accident ............................................. 0.1.2 USS Scorpion................................................................. 0.1.3 Therac 25 Radiotherapy Machine ................................ 0.1.4 London Ambulance Service . . .’.................................. 0.1.5 Intel Pentium........................................................ 0.1.6 Ariane 5........................................................................... 0.1.7 Needham-Schroeder Protocol....................................... 0.2 System, Model, Abstraction andNotation................................ 0.3 Specification, Implementation andVerification ...................... 0.1 * 1 2 2 4 4 5 6 7 7 9 13 Part I: Mathematics for Computer Science 15 1 Propositional Logic 17 1.1 Propositions and Deductions..................................................... 1.2 The Language of Propositional Logic....................................... 1.2.1 Propositional Variables ................................................. 1.2.2 Negation ......................................................................... 1.2.3 Disjunction...................................................................... 1.2.4 Conjunction...................................................................... 1.2.5 Implication................................................... . 1.2.6 Equivalence..................................................................... 1.2.7 The Syntax of Propositional Logic.............................. 1.2.8 Parentheses and Precedences....................................... 1.2.9 Syntax Trees.................................................................. 1.3 Modelling with Propositional Logic.......................................... 1.4 Ambiguities of Natural Languages ................................ 1.5 Truth Tables............................................................................. 1.6 Equivalences and Valid Arguments................................ 1.7 Algebraic Laws for Logical Equivalences................................. 1.8 Additional Exercises.................................................................. 2 Sets 2.1 2.2 2.3 18 21 22 22 23 25 25 27 27 28 30 32 35 40 45 47 50 57 Set Notation .............................................................................. Membership, Equality and Inclusion....................................... Sets and Properties..................................................................... 2.3.1 Russell’s Paradox............................................................ 57 59 63 64 vi CONTENTS 2.4 * 2.5 2.6 2-7 2.8 2.9 ★ Ά՜ Operations on Sets . . . .......................................................... 2.4.1 Union............................................................................... 2.4.2 Intersection...................................................................... 2.4.3 Difference......................................................................... 2.4.4 Complement.................................................................... 2.4.5 Powerset.................................................... 2.4.6 Generalised Union and Intersection.............................. Ordered Pairs and Cartesian Products.................................... Modelling with Sets................................................................... Algebraic Laws for Set Identities.............................................. Logical Equivalences versus Set Identities.............................. Additional Exercises................................................................... 4r 3 Boolean Algebras and Circuits 65 65 66 67 68 69 72 73 76 79 81 83 87 1 Boolean Algebras.................................................................... 87 Deriving Identities in Boolean Algebras................................. 90 The Duality Principle................................................................ 93 Logic Gates and Digital Circuits.............................................. 95 Making Computers Add............................................................... 100 3.5.1 Binary Numbers................................................................ 100 3.5.2 Adding Binary Numbers.................................................... 102 3.5.3 Building Half Adders.......................................................... 103 3.5.4 Building Full Adders.......................................................... 104 3.5.5 Putting It All Together.................................................... 105 3.6 Additional Exercises...................................................................... 106 3. 3.2 3.3 3.4 3.5 4 Predicate Logic 109 4.1 Predicates and Free Variables....................................................... 109 4.2 Quantifiers and Bound Variables.................................. Ill 4.2.1 Universal Quantification................ ................................... 113 4.2.2 Existential Quantification.......................... 115 4.2.3 Bounded Quantifications.................................................... 118 4.3 Rules for Quantification................................................................ 120 4.4 Modelling in Predicate Logic ....................................................... 124 4.5 Additional Exercises...................................................................... 127 Ά- 5 Proof Strategies 5.1 5.2 5.3 5.4 5.5 5.6 131 A First Example............................................................................ 132 Proof Strategies for Implication.................................................... 134 Proof Strategies for Negation....................................................... 138 Proof Strategies for Conjunction and Equivalence......................142 Proof Strategies for Disjunction.................................................... 144 Proof Strategies for Quantifiers.................................................... 147 5.6.1 Universal Quantification................................................... 147 CONTENTS vii 5.7 5.6.2 Existential Quantification.................. 149 5.6.3 Uniqueness........................................................................152 Additional Exercises.................................................................... 153 6 Functions 155 6.1 Basic Definitions.............................................. 155 6.2 One-To-One and Onto Functions............................................... 160 6.3 Composing Functions ............................... 163 6.4 Comparing the Sizes of Sets.......................................................... 166 6.5 The Knaster-Tarski Theorem...................................................... 173 6.6 Additional Exercises..................................................................... 176 •A· Ar 7 Relations 179 7.1 Basic Definitions........................................................................... 179 7.2 Binary Relations ........................ 181 7.2.1 Functions as Binary Relations........................................... 185 7.3 Operations on Binary Relations..................................................... 186 7.3.1 Boolean Operations.......................................................... 186 7.3.2 Inverting Relations ........................................................... 187 7.3.3 Composing Relations.......................................................... 188 7.3.4 The Domain and Range of a Relation............................ 189 7.4 Properties of BinaryRelations ..................................................... 190 7.4.1 Reflexive and Irreflexive Relations.................................. 190 7.4.2 Symmetric and Antisymmetric Relations ...................... 191 7.4.3 Transitive Relations .......................................................... 191 7.4.4 Orderings Relations.......................................................... 192 7.4.5 Equivalence Relations ....................................................... 193 7.4.6 Equivalence Classes and Partitions............................... 195 7.5 Additional Exercises..................................................................... 197 8 Inductive and Recursive Definitions 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 9 201 Inductively-Defined Sets............................................................... 201 Inductively-Defined Syntactic Sets..............................................205 Backus-Naur Form.........................................................................207 Inductively-Defined Data Types....................................................210 Inductively-Defined Functions.......................................................212 Recursive Functions......................................................................216 Recursive Procedures..................................................................... 218 Additional Exercises..................................................................... 220 Proofs by Induction 223 9.1 Convincing but Inconclusive Evidence........................................ 223 9.2 A Primary School Induction Argument........................................ 227 9.3 The Induction Argument .............................................................228 viii CONTENTS ~k ★ 9.4 Strong Induction............ .............................................................. 234 9.5 Induction Proofs from Inductive Definitions.............................. 235 9.6 Fun with Fibonacci Numbers...................................................... 237 9.6.1 A Fibonacci Number Test ................................................ 237 9.6.2 A Carrollean Paradox...................................................... 239 9.6.3 Fibonacci Decompositions............ ;................................ 240 9.7 When Inductions Go Wrong......................................................... 241 9.8 Examples of Induction in Computer Science.............................. 244 9.9 Additional Exercises..................................................................... 246 10 Games and Strategies 251 10.1 Strategies for Games-of-No-Chance............................................. 252 10.2 Nim....................... 260 10.3 Fibonacci Nim.................... 262 10.4 Chomp............................................................................................. 264 10.5 Hex................................................................................................ 266 10.6 Bridg-It.......................................................................................... 269 10.7 Additional Exercises................................................ 271 P art II: Modelling Computing Systems 277 11 Modelling Processes 279 11.1 Labelled Transition Systems......................................................... 281 11.2 Computations and Processes ...................................................... 287 11.3 A Language for Describing Processes.......................................... 292 11.3.1 The Nil Process 0............................................................ 292 11.3.2 Action Prefix..................................................................... 293 11.3.3 Process Definitions.............................. 294 11.3.4 Choice................................................................................. 295 11.4 Distinguishing Between Behaviours............................................. 299 11.5 Equality Between Processes......................................................... 302 11.6 Additional Exercises..................................................................... 303 ֊k 12 Distinguishing Between Processes 309 12.1 The Bisimulation Game.............................................................. 309 12.2 Properties of Game Equivalence.................................................. 313 12.3 Bisimulation Relations................................................................. 315 12.4 Bisimulation Colourings.............................................................. 319 12.5 The Bisimulation Game Revisited: To Infinity and Beyond1. . 322 12.5.1 Ordinal Numbers............................................................... 323 12.5.2 Ordinal BisimulationGames ........................................... 324 12.6 Additional Exercises.................................................................... 328 CONTENTS 13 Logical Properties of Processes * 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 ¡X 333 The Mays and Musts of Processes................................................334 A Modal Logic for Properties..................... 336 Negation Is Definable.....................................................................341 The Vending Machines Revisited................................................344 Modal Properties and Bisimulation............................................. 346 Characteristic Formulæ ...............................................................350 Global Semantics.......................................................................... 352 Additional Exercises.....................................................................353 14 Concurrent Processes 357 Synchronisation Merge.............................. 1................................ 357 Counters.................................................................................... . 360 Railway Level Crossing................................................................. 362 Mutual Exclusion...........................................................................365 14.4.1 Dining Philosophers......................................................... 365 14.4.2 Peterson’s Algorithm......................................................... 368 14.5 A Message Delivery System................................. 371 14.6 Alternating Bit Protocol............................................................... 373 14.7 Additional Exercises..................................................................... 377 14.1 14.2 14.3 14.4 A՜ 15 Temporal Properties 381 15.1 Three Standard Temporal Operators.......................................... 382 15.1.1 Always: DP.................................................................... 382 15.1.2 Possibly: OP.................................................................... 383 15.1.3 Until: PU Q.................................................................... 384 15.2 Recursive Properties..................................................................... 385 15.2.1 Solving Recursive Equations .......................................... 387 15.2.2 Fixed Point Solutions...................................................... 388 15.3 The Modal Mu-Calculus............................................................... 390 15.4 Least versus Greatest Fixed Points............................................. 392 15.4.1 Approximating Fixed Points .......................................... 393 15.5 Expressing Standard Temporal Operators................................. 397 15.5.1 Always: DP..................................................................... 398 15.5.2 Possibly: OP............................................................ · · 398 15.5.3 Until: PU Q..................................................................... 398 15.6 Further Fixed Point Properties................................................... 399 15.7 Additional Exercises..................................................................... 401 Solutions to Exercises 405 Index 493
any_adam_object 1
author Moller, Faron 1962-
Struth, Georg ca. 20. / 21. Jh
author_GND (DE-588)1282400983
(DE-588)1211571491
author_facet Moller, Faron 1962-
Struth, Georg ca. 20. / 21. Jh
author_role aut
aut
author_sort Moller, Faron 1962-
author_variant f m fm
g s gs
building Verbundindex
bvnumber BV035279238
classification_rvk ST 130
classification_tum MAT 023f
ctrlnum (OCoLC)255002850
(DE-599)DNB988251744
discipline Informatik
Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02704nam a2200541 c 4500</leader><controlfield tag="001">BV035279238</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230306 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">090129s2013 xx a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">08,N18,0044</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">988251744</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781848003217</subfield><subfield code="c">Pb. : ca. EUR 28.84 (freier Pr.), ca. sfr 47.00 (freier Pr.)</subfield><subfield code="9">978-1-84800-321-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1848003218</subfield><subfield code="c">Pb. : ca. EUR 28.84 (freier Pr.), ca. sfr 47.00 (freier Pr.)</subfield><subfield code="9">1-8480-0321-8</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781848003217</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">12070947</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)255002850</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB988251744</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 130</subfield><subfield code="0">(DE-625)143588:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 023f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">004</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Moller, Faron</subfield><subfield code="d">1962-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1282400983</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modelling computing systems</subfield><subfield code="b">mathematics for computer science</subfield><subfield code="c">Faron Moller, Georg Struth</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Springer</subfield><subfield code="c">[2013]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvi, 500 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Undergraduate topics in computer science</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">angekündigt unter dem Titel: Modelling computer systems : the mathematics of computer science</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Theoretische Informatik</subfield><subfield code="0">(DE-588)4196735-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modellgetriebene Entwicklung</subfield><subfield code="0">(DE-588)4832365-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexitätstheorie</subfield><subfield code="0">(DE-588)4120591-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Komplexitätstheorie</subfield><subfield code="0">(DE-588)4120591-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Modellgetriebene Entwicklung</subfield><subfield code="0">(DE-588)4832365-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Theoretische Informatik</subfield><subfield code="0">(DE-588)4196735-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Struth, Georg</subfield><subfield code="d">ca. 20. / 21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1211571491</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-84800-322-4</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=017084475&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=017084475&amp;sequence=000003&amp;line_number=0002&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017084475</subfield></datafield></record></collection>
genre (DE-588)4123623-3 Lehrbuch gnd-content
genre_facet Lehrbuch
id DE-604.BV035279238
illustrated Illustrated
indexdate 2024-12-23T21:24:53Z
institution BVB
isbn 9781848003217
1848003218
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-017084475
oclc_num 255002850
open_access_boolean
owner DE-703
DE-824
DE-91G
DE-BY-TUM
DE-384
DE-83
DE-11
DE-355
DE-BY-UBR
owner_facet DE-703
DE-824
DE-91G
DE-BY-TUM
DE-384
DE-83
DE-11
DE-355
DE-BY-UBR
physical xvi, 500 Seiten Illustrationen, Diagramme
publishDate 2013
publishDateSearch 2013
publishDateSort 2013
publisher Springer
record_format marc
series2 Undergraduate topics in computer science
spellingShingle Moller, Faron 1962-
Struth, Georg ca. 20. / 21. Jh
Modelling computing systems mathematics for computer science
Theoretische Informatik (DE-588)4196735-5 gnd
Modellgetriebene Entwicklung (DE-588)4832365-2 gnd
Mathematik (DE-588)4037944-9 gnd
Komplexitätstheorie (DE-588)4120591-1 gnd
subject_GND (DE-588)4196735-5
(DE-588)4832365-2
(DE-588)4037944-9
(DE-588)4120591-1
(DE-588)4123623-3
title Modelling computing systems mathematics for computer science
title_auth Modelling computing systems mathematics for computer science
title_exact_search Modelling computing systems mathematics for computer science
title_full Modelling computing systems mathematics for computer science Faron Moller, Georg Struth
title_fullStr Modelling computing systems mathematics for computer science Faron Moller, Georg Struth
title_full_unstemmed Modelling computing systems mathematics for computer science Faron Moller, Georg Struth
title_short Modelling computing systems
title_sort modelling computing systems mathematics for computer science
title_sub mathematics for computer science
topic Theoretische Informatik (DE-588)4196735-5 gnd
Modellgetriebene Entwicklung (DE-588)4832365-2 gnd
Mathematik (DE-588)4037944-9 gnd
Komplexitätstheorie (DE-588)4120591-1 gnd
topic_facet Theoretische Informatik
Modellgetriebene Entwicklung
Mathematik
Komplexitätstheorie
Lehrbuch
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017084475&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017084475&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT mollerfaron modellingcomputingsystemsmathematicsforcomputerscience
AT struthgeorg modellingcomputingsystemsmathematicsforcomputerscience