Organic chemistry

Gespeichert in:
Bibliographische Detailangaben
Format: Buch
Sprache:English
Veröffentlicht: Oxford [u.a.] Oxford Univ. Press 2008
Ausgabe:1. publ., reprint. (with corr.)
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV035234204
003 DE-604
005 00000000000000.0
007 t|
008 090108s2008 xx ad|| |||| 00||| eng d
020 |a 9780198503460  |9 978-0-19-850346-0 
035 |a (OCoLC)263452201 
035 |a (DE-599)BVBBV035234204 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-355  |a DE-83  |a DE-29T 
050 0 |a QD251.3 
082 0 |a 150.3'21 
084 |a VK 5010  |0 (DE-625)147391:  |2 rvk 
245 1 0 |a Organic chemistry  |c Jonathan Clayden ... 
250 |a 1. publ., reprint. (with corr.) 
264 1 |a Oxford [u.a.]  |b Oxford Univ. Press  |c 2008 
300 |a [9] Bl., 1512 S., [2] Bl.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
650 4 |a Chemistry, Organic  |v Textboooks 
650 0 7 |a Organische Chemie  |0 (DE-588)4043793-0  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)4123623-3  |a Lehrbuch  |2 gnd-content 
689 0 0 |a Organische Chemie  |0 (DE-588)4043793-0  |D s 
689 0 |5 DE-604 
700 1 |a Clayden, Jonathan  |d 1968-  |e Sonstige  |0 (DE-588)131877593  |4 oth 
856 4 2 |m Digitalisierung UB Regensburg  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017040095&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-017040095 

Datensatz im Suchindex

_version_ 1819620706235711488
adam_text Contents 1 What is organic chemistry? 1 Looping forward to unapters 11 and 14 78 Organic chemistry and you 1 Problems 78 Organic compounds 1 Organic chemistry and industry 6 4 Structure of molecules 81 Organic chemistry and the periodic table 11 Introduction 81 Atomic structure 83 Organic chemistry and this book 13 Summary of the importance of the Connections 14 quantum numbers 86 Boxes and margin notes 15 Atomic orbitais 87 Molecular orbitais — homonuclear End-of-chapter problems 15 diatomice 95 Colour 16 Heteronuclear diatomics 100 Hybridization of atomic orbitais 105 2 Organic structures 19 Conclusion 110 Hydrocarbon frameworks and functional Problems 110 groups 20 Drawing molecules Hydrocarbon frameworks 21 26 5 Organic reactions Chemical reactions 113 113 Functional groups 31 Carbon atoms carrying functional groups can be classified by oxidation level 35 Organic chemists use curly arrows to represent reaction mechanisms 123 Naming compounds 37 Drawing your own mechanisms with curly arrows 127 Systematic nomenclature 37 Problems 133 What do chemists really call compounds? 40 How should you name compounds? Th I *f 43 6 Nudeophilic addition to the Problems 45 carbonyl group 135 3 Determining organic structures 47 Introduction 47 Mass spectrometry 50 Nuclear magnetic resonance 56 Infrared spectra 65 Mass spectra, NMR, and IR combined make quick identification possible 72 я. ------ ----/ of the carbonyl group Cyanohydrins from the attack of cyanide on aldehydes and ketones The angle of nucleophilic attack on aldehydes and ketones Nucleophilic attack by hydride on aldehydes and ketones 135 137 139 139 Addition of organometallic reagents to 9 Using organometallic reagents aldehydes and ketones 142 to make C -С bonds 209 Addition of water to aldehydes and Introduction 209 ketones Hemiacetals from reaction of alcohols 143 Organometallic compounds contain a carbon-metal bond 209 with aldehydes and ketones Acid and base catalysis of hemiacetal and hydrate formation 145 146 Making organometallics Using organometallics to make organic molecules 211 218 Bisulfite addition compounds 148 A closer look at some mechanisms 223 Problems 150 Problems 224 7 Delocalizationand conjugation 151 10 Conjugate addition 227 Introduction 151 Conjugation changes the reactivity of carbonyl groups 227 The structure of ethene (ethylene, CH2=CH2) 151 Alkenes conjugated with carbonyl groups are polarized 229 Molecules with more than one C-C double bond 153 Polarization is detectable spectroscopically 229 Conjugation 156 Molecular orbitais control conjugate The allyl system 158 additions 230 Other aUyl-like systems 163 Ammonia and amines undergo conjugate The conjugation of two π bonds 166 addition 231 UV and visible spectra 169 Conjugate addition of alcohols can be Aromaticity 171 catalysed by acid or base Conjugate addition or direct addition to 233 Problems 179 the carbonyl group? 234 Cctnnpri TÌ «чЯІЇч bavť* я rptnarirahlí» pffprt 8 Acidity, basicity, and pKa 181 on organometallic reagents 239 Introduction 181 Conclusion 240 Acidity 182 Problems 241 The definition of όΚ~ 4f)E Basicity 197 11 Proton nuclear magnetic Neutral nitrogen bases 199 resonance 243 Neutral oxygen bases 203 The differences between carbon and piCain action — the development of the proton NMR 243 drugcimetidine 204 Integration tells us the number of Problems 207 hydrogen atoms in each peak 244 Regions of the proton NMR spectrum 245 Protons on saturated carbon atoms 246 The alicene region and the benzene region 251 The aldehyde region: unsaturated carbon bonded tO Oxygen 255 Coupling in the proton NMR spectrum 258 To conclude 274 Problems 275 12 Nudeophilic substitution at the carbonyl (C=O) group 279 The product of nudeophilic addition to a carbonyl group is not always a stable compound 279 Carboxylic acid derivatives 280 Not all carboxylic acid derivatives are equally reactive 286 Making other compounds by substitution reactions of acid derivatives 297 Making ketones from esters: the problem 297 Making ketones from esters: the solution 299 To summarize... зоі And to conclude... Problems 301 302 13 Equilibria, rates, and mechanisms: summary of mechanistic principles зоб How far and how fast? 305 How the equilibrium constant varies with the difference in energy between reactants and products 307 How to make the equilibrium favour the product you want зю Entropy is important in determining equilibrium constants 312 Equilibrium constants vary with temperature 314 Making reactions go faster: the real reason reactions are heated 315 Catalysis in carbonyl substitution reactions 323 The hydrolysis of amides can have termolecular kinetics 325 The cis-rrans isomerization of alkenes 326 Kinetic versus thermodynamic products 328 Low temperatures prevent unwanted reactions from occurring ззі Solvents 332 Summary of mechanisms from Chapters 6-12 Problems Introduction Aldehydes can react with alcohols to form hemiacetals 15 Review of spectroscopie methods There are three reasons for this chapter Does spectroscopy help with the chemistry of the carbonyl group? 334 336 14 Nudeophilic substitution at 0=0 with loss of carbonyl 339 339 340 Acetáis are formed from aldehydes or ketones plus alcohols in the presence of acid 342 Amines react with carbonyl compounds 348 Amines from imines: reductive animation 354 Substitution of C=O for C=C: a brief look at the Wittig reaction 357 Summary 358 Problems 358 Зеї зеі збі Kinetics 319 Acid derivatives are best distinguished by infrared 364 Small rings introduce strain inside the ring and higher s character outside it звѕ Simple calculations of C=O stretching frequencies in IR spectra Interactions between different nuclei can give enormous coupling constants 368 Identifying products spectroscopically 371 Tables 374 Problems 379 16 Stereochemistry Some compounds can exist as a pair of mirror-image forms The rotation of plane-polarized light is known as optical activity Diastereoisomers are stereoisomers that arenotenantiomers Investigating the stereochemistry of a compound Separating enantiomers is called resolution Problems 381 388 зэо 397 399 404 17 Nudeophilic substitution at saturated carbon 407 Nucleophilicsubstititution 407 Structure and stability of carbocations 407 The SnI and Ѕ^2 mechanisms for nucleophilic substitution 411 How can we decide which mechanism (S^l or Sn2) will apply to a given organic compound? 414 The Sn2 reaction 420 The leaving group 429 Nudeophiles 436 Nucleophiles in the Sjsf2 reaction 437 Nucleophiles and leaving groups compared 441 Looking forward: elimination and rearrangement reactions 443 Problems 444 18 Conformational analysis 447 Bond rotation allows chains of atoms to adopt a number of conformations 447 Conformation and configuration 448 Barriers to rotation 449 Conformations of ethane 450 Conformations of propane 450 Conformations of butane 450 Ring strain 452 A closer look at cydohexane 455 Substituted cyclohexanes 460 Locking groups — ŕ-butyl groups, decalins, and steroids 463 Axially and equatorially substituted rings react differently 464 Rings containing sp2 hybridized carbon atoms: cyclohexanone and cydohexene 471 Multiple rings 473 To conclude... 473 Problems 474 19 Elimination reactions 477 Substitution and elimination 477 Elimination happens when the nucleophile attacks hydrogen instead of Carbon 478 How the nucleophile affects elimination VerSUS Substitution 479 El and E2 mechanisms 480 Substrate structure may allow El 482 The role of the leaving group 484 El reactions can be stereoselective 487 El reactions can be regioselective 489 E2 eliminations have anti-periplanar transition states 490 E2 eliminations can be stereospecific 491 E2 eliminations from cyclohexanes 492 E2 elimination from vinyl halides: how to make alkynes 493 The regioselectivity of E2 eliminations 494 Anion-stabilizing groups allow another mechanism — ElcB 495 To conclude... soo Problems 501 20 Electrophilic addition to alkenes 503 Alkenes react with bromine 503 Oxidation of alkenes to form epoxides 505 Electrophilic addition to unsymnietrical alkenes is regioselective 509 Electrophilic addition to dienes 510 Unsymmetrical bromonium ions open regioselectively 512 Electrophilic additions to alkenes can be StereOSeleCtive 514 Electrophilic addition to alkenes can produce stereoisomers 515 Bromonium ions as intermediates in stereoselective synthesis 516 Iodolactonization and bromolactonization make new rings 517 How to add water across a double bond 518 To conclude... 520 Problems 520 21 Formation and reactions of enols and enolates 523 Would you accept a mixture of compounds as a pure substance? 523 Tautomerism: formation of enols by proton transfer 524 Why don t simple aldehydes and ketones exist as enols? Evidence for equilibration of carbonyl compounds with enols Enolization is catalysed by acids and bases The intermediate in the base-catalysed 526 reaction is the enolate ion 527 Summary of types of enol and enolate 528 Stable enols 531 Consequences of enolization 534 Reaction with enols or enolates as intermediates 535 Stable enolate equivalents 540 Enol and enolate reactions at oxygen: preparation of enol ethers 541 Reactions of enol ethers 542 To conclude... 544 Problems 544 525 22 Electrophilic aromatic Substitution 547 Introduction: enols and phenols 547 Benzene and its reaction with electrophiles Electrophilic substitution on phenols A nitrogen lone pair activates even more Strongly Alkyl benzenes react at the ortho and para positions: σ donor substituents Electronegative substituents give meta products Halogens (F, Cl, Br, and I) both withdraw and donate electrons Why do some reactions stop cleanly at monosubstitution? Review of important reactions including Selectivity Electrophilic substitution is the usual route to substituted aromatic compounds Problems 549 555 558 56i 564 566 571 576 577 ¡3 Electrophihc alkenes 581 Saccharin 644 Introduction — electrophUic alkenes 581 Salbutamol 645 Nudeophilic conjugate addition to Thyroxine 646 alkenes 582 Muscalure: the sexpheromone of the Conjugate substitution reactions 585 house-fly 648 Nudeophilic epoxidation 588 Grandisol: the sexpheromone of the Nudeophilic aromatic substitution 589 male cotton boll weevil 649 The addition-elimination mechanism 590 Peptide synthesis: carbonyl chemistry in action 651 Some medicinal chemistry — preparation of an antibiotic 595 The synthesis of dofetilide, a drug to combat erratic heartbeat 658 The Sn 1 mechanism for nudeophilic aromatic substitution — diazonium Looking forward 661 compounds 597 Problems 661 The benzynę mechanism 600 Nudeophilic attack on allylic 26 Alleviation of enolates 663 compounds τ» 1 J 604 Carbonyl groups show diverse reactivity 663 To conclude... 611 Some important considerations that Problems 612 affect all alkylations 664 Nitriles and nitroalkanes can be 24 Chemoselectivity: selective alkylated 664 reactions and protection 615 Choice of electrophile for alkylation 667 Selectivity 615 Lithium enolates of carbonyl compounds 667 Reducing agents 616 Alkylations of lithium enolates 668 Reduction of carbonyl groups 617 Using specific enol equivalents to alkylate aldehydes and ketones 671 Catalytic hydrogénation 623 Alkylation of ß-dicarbonyl compounds 676 Getting rid of functional groups 627 Ketone alkylation poses a problem in Dissolving metal reductions 628 regioselectivity 680 One functional group maybe more Enones provide a solution to reactive than another for kinetic or regioselectivity problems 683 for thermodynamicreasons 630 To conclude... 687 Oxidizing agents 637 Problems 688 To conclude... 640 Problems 640 27 Reactions of enolates with 25 Synthesis in action 643 aldehydes and ketones: the aldol reaction 689 Introduction 643 Introduction: the aldol reaction 689 Benzocaine 644 Cross-condensations 694 Compounds that can enolize but that arenotelectrophilic 696 Controlling aldol reactions with specific enol equivalents 697 Specific enol equivalents for carboxylic acid derivatives 704 Specific enol equivalents for aldehydes Specific enol equivalents for ketones The Mannich reaction Intramolecular aldol reactions To conclude: a summary of equilibrium and directed aldol methods Problems 707 709 712 715 718 721 28 Acylation at carbon 723 Introduction: the Claisen ester condensation compared to the aldol reaction 723 Problems with acylation at carbon 725 Acylation of enolates by esters 726 Crossed ester condensations 728 Summary of preparation of keto-esters by the Claisen reaction 733 Intramolecular crossed Claisen ester condensations 734 Directed C-acylation of enols and enolates 736 The acylation of enamines 739 Acylation of enols under acidic conditions 740 Acylation at nudeophilic carbon (other than enols and enolates) 742 How Nature makes fatty acids 743 To conclude... 746 Problems 746 29 Conjugate addition of enolates 749 Introduction: conjugate addition of enolates is a powerful synthetic transformation 749 Conjugate addition of enolates is the result of thermodynamic control 749 A variety of electrophilic alkenes will accept enol(ate) nudeophiles 757 Conjugate addition followed by cydization makes six-membered rings 760 Nitroalkanes are superb at conjugate addition 766 Problems 768 30 Retrosynthetic analysis 771 Creative chemistry 771 Retrosynthetic analysis: synthesis backwards 772 Disconnections must correspond to Known, reliable reactions 773 Synthons are idealized reagents 773 Choosing a disconnection 775 Multiple step syntheses: avoid chemoselectivity problems 776 Functional group interconversion 777 Two-group disconnections are better than one 780 C -С disconnections 784 Donor and acceptor synthons 791 Two-group C -С disconnections 791 1,5 Related functional groups 798 Natural reactivity and umpolung 798 Problems 801 31 Controlling the geometry of double bonds 803 The properties of alkenes depend on their geometry 803 Elimination reactions are often Unselective 805 The Julia olefination is regiospecific and connective 810 Stereospecific eliminations can give pure single isomers of alkenes 812 The Peterson reaction is a stereospecific elimination 812 Perhaps the most important way of making alkenes — the Wittig reaction 814 E- and Z-alkenes can be made by stereoselective addition to alkynes 818 Problems 821 32 Determination of stereochemistry by spectroscopie methods Introduction Rvalues vary with H-C-C-H dihedral angle Stereochemistry of fused rings The dihedral angle is not the only angle worth measuring Vicinal (3J ) coupling constants in other ring sizes Geminai (2J) coupling Diastereotopic CH2 groups Geminai coupling in six-membered rings A surprising reaction product The π contribution to geminai coupling The nuclear Overhauser effect To conclude... Problems 841 842 844 844 848 848 33 Stereoselective reactions of cyclic compounds Introduction Reactions on small rings Stereochemical control in six-membered rings 856 851 852 Conformational control in the formation of six-membered rings 861 Stereochemistry of bicyclic compounds 862 Fused bicyclic compounds 863 Spirocyclic compounds 870 Reactions with cyclic intermediates or cyclic transition states 871 To conclude... 879 Problems 879 34 Diastereoselectivity 881 Looking back 881 823 Making single diastereoisomers using stereospecific reactions of alkenes 882 823 Stereoselective reactions 884 Prochirality 884 824 828 Additions to carbonyl groups can be diastereoselective even without rings 887 Chelation can reverse stereoselectivity 892 830 Stereoselective reactions of acyclic alkenes 895 831 Aldol reactions can be stereoselective 898 834 835 Problems 903 35 Pericydic reactions 1: cycloadditions 905 A new sort of reaction 905 General description of the Diels-Alder reaction 907 The frontier orbital description of cycloadditions 914 The Diels-Alder reaction in more detail 9i6 Regioselectivity in Diels-Alder reactions 919 The Woodward-Hoffmann description of the Diels-Alder reaction 922 Trapping reactive intermediates by Diels-Alder reactions 923 Other thermal cycloadditions 924 Photochemical [2 + 2] cycloadditions 927 Thermal [2 + 2] cycloadditions 929 Making five-membered rings — 1,3 -dipolar cycloadditions 932 Two very important synthetic reactions: cycloaddition of alkenes with osmium tetroxide and with ozone 936 Summary of cyclo addition reactions 940 Problems 940 36 Pericyclic reactions 2: sigmatropic and electrocyclic reactions 943 Sigmatropic rearrangements 943 Orbital descriptions of [3,3] -sigmatropic rearrangements 946 The direction of [3,3] -sigmatropic rearrangements 947 [2,3] -Sigmatropic rearrangements 951 [1,5] -Sigmatropic hydrogen shifts 953 Electrocyclic reactions 956 Problems 966 37 Rearrangements Neighbouring groups can accelerate substitution reactions 969 Rearrangements occur when a participating group ends up bonded to a different atom 975 982 Ring expansion means rearrangement Carbocation rearrangements: blessing or curse? The pinacol rearrangement 984 The dienone-phenol rearrangement 988 The benzilic acid rearrangement The Favorskii rearrangement Migration to oxygen: the Baeyer-Villiger reaction The Beckmann rearrangement Problems 983 989 990 992 997 38 Fragmentation Polarization of C -С bonds helps fragmentation Fragmentations are controlled by stereochemistry A second synthesis of longifolene The synthesis of nootkatone A revision example: rearrangements and fragmentation Problems 1003 1003 1005 1010 1011 1014 1017 39 Radical reactions 1021 Radicals contain unpaired electrons 1022 Most radicals are extremely reactive... 1024 How to analyse the structure of radicals: electron spin resonance 1024 Radicals have singly occupied molecular orbitais 1025 Radical stability 1026 How do radicals react? 1029 Titanium promotes the pinacol coupling then deoxygenates the products: the McMurry reaction юзі Radical chain reactions юзз Selectivity in radical chain reactions 1035 Selective radical bromination: allylic substitution of H by Br 1039 Controlling radical chains 1041 The reactivity pattern of radicals is quite different from that of polar reagents 1047 An alternative way of making alkyl radicals: the mercury method Ю48 Intramolecular radical reactions are more efficient that intermolecular ones 1049 Problems looo 40 Synthesis and reactions of carbenes 1053 Diazomethane makes methyl esters from carboxylic acids Ю53 Photolysis of diazomethane produces a Carbene 1055 How are carbenes formed? Ю56 Carbenes can be divided into two types 1060 How do carbenes react? 106З Alkene (olefin) metathesis 1074 Summary Ю76 Problems 1076 41 Determining reaction mechanisms 1079 There are mechanisms and there are mechanisms Ю79 Determining reaction mechanisms — the Cannizzaro reaction 108I Be sure of the structure of the product 1084 Systematic structural variation 1089 The Hammett relationship юэо Other kinetic evidence 1100 Acid and base catalysis 1102 The detection of intermediates 1109 Stereochemistry and mechanism шз Summary of methods for the investigation ofmechanism 1117 Problems ins 42 Saturated heterocycles and stereoelectronics 1121 Introduction 1121 Reactions of heterocycles 1122 Conformation of saturated heterocycles: the anomeric effect 1128 43 Aromatic heterocycles 1 : structures and reactions Making heterocycles: ring-closing reactions Problems 1134 1144 1147 1147 Introduction Aromaticity survives when parts of benzene s ring are replaced by nitrogen atoms 1148 Pyridine is a very unreactive aromatic imine 1149 Six-membered aromatic heterocycles can have oxygen in the ring 1156 Five-membered heterocycles are good nucleophiles 1157 Furan and thiophene are oxygen and sulfur analogues of pyrrole 1159 More reactions of five-membered heterocycles 1162 Five-membered rings with two or more nitrogen atoms 1165 Benzo-fused heterocycles 1169 Putting more nitrogen atoms in a six-membered ring 1172 Fusing rings to pyridines : quinolines andisoquinolines 1174 Heterocycles can have many nitrogens but only One Sulfur ОГ OXygen ІП any ring 1176 There are thousands more heterocycles OUt there 1176 Which heterocyclic structures should you learn? Problems 1180 1182 44 Aromatic heterocycles 2: synthesis Thermodynamics is on our side Disconnect the carbon-heteroatom bonds first 1185 1185 1186 Pyrroles, thiophenes, and furans from 1 ,4-dicarbonyl compounds use How to make pyridines: the Hantzsch pyridine synthesis 1191 Pyrazoles and pyridazines from hydrazine and dicarbonyl compounds 1195 selenium 1270 Pyrimidines can be made from To conclude: the sulfur chemistry of l^-dicarbonyl compounds and amidines 1198 onions and garlic 1272 Unsymmetrical nudeophiles lead to Problems 1273 selectivity questions 1199 Isoxazoles are made from hydroxylamine orby 1,3-dipolar cycloadditions 1200 47 Organo-main-group Tetrazoles are also made by 1,3-dipolar chemistry 2: boron, silicon, cycloadditions 1202 and tin 1277 The Fischer indole synthesis 1204 Organic chemists make extensive use of Quinolines and isoquinolines 1209 the periodic table 1277 More heteroatoms in fused rings mean Boron 1278 more choice in synthesis 1212 Silicon and carbon compared 1287 Summary: the three major approaches to Organotin compounds 1304 the synthesis of aromatic heterocydes 1214 Problems 1308 Problems 1217 48 Organometallic chemistry 1311 45 Asymmetric synthesis 1219 Transition metals extend the range of Nature is asymmetrical — Nature in the organic reactions 1311 looking-glass 1219 Transition metal complexes exhibit Resolution can be used to separate special bonding 1315 enantiomers 1221 Palladium (0) is most widely used in The chiral pool — Nature s ready-made homogeneous catalysis 1319 chiral centres 1222 Alkenes are attacked by nudeophiles Asymmetric synthesis 1225 when coordinated to palladium (II) 1336 Chiral reagents and chiral catalysts 1233 Palladium catalysis in the total synthesis Problems 1244 of a natural alkaloid 1338 Other transition metals: cobalt 1339 46 Organo-main-group Problems 1341 chemistry 1 : sulfur 1247 Sulfur: an element of contradictions 1247 49 The chemistry of life 1345 Sulfur-stabilized anions 1251 Primarymetabolism 1345 Sulfonium salts 1255 Life begins with nucleic acids 1347 Sulfonium ylids 1258 Proteins are made of amino acids 1353 Sulfur-stabilized cations 1261 Sugars — just energy sources? 1359 Thiocarbonyl compounds 1264 Glycosides are everywhere in nature 1367 Sulfoxides 1265 Compounds derived from sugars 1368 Other oxidations with sulfur and Most sugars are embedded in carbohydrates 1372 Lipids 1374 Bacteria and people have slightly different chemistry 1377 Problems 1379 Steroids are metabolites of terpene origin I44i Biomimetic synthesis: learning from Nature Problems Aromatic polyketides come in great variety 1433 Terpenes are volatile constituents of plant resins and essential oils 1437 Index 1446 1447 50 Mechanisms in biological 52 Polymerization 1451 chemistry 1381 Monomers, dimers, and oligomers 1451 Nature s NaBH4 is a nucleotide: NADH Polymerization by carbonyl substitution orNADPH 1381 reactions 1453 Reductive amination in nature 1384 Polymerization by electrophilic aromatic Nature s enols — lysine enamines and substitution 1455 coenzymeA 1388 Polymerization by the Ѕ^2 reaction 1456 Nature s acyl anion equivalent (d1 Polymerization by nudeophilic attack reagent) is thiamine pyrophosphate 1392 onisocyanates 1458 Rearrangements in the biosynthesis of Polymerization of alkenes 1459 valine and isoleucine 1397 Co-polymerization 1464 Carbon dioxide is carried by biotin 1399 Cross-linked polymers 1466 The shikimic acid pathway 1400 Reactions of polymers 1468 Haemoglobin carries oxygen as an iron(II) complex 1406 Biodegradable polymers and plastics 1472 Problems 1411 Chemical reagents can be bonded to polymers 1473 Pro Vii ρ τη ç ■1Л7О 51 Natural products 1413 ХЧ- /O Introduction 1413 53 Organic chemistry today 1481 Natural products come from secondary metabolism 1414 Modern science is based on interaction between disciplines 1481 Alkaloids are basic compounds from amino acid metabolism 1414 The synthesis of Crixivan 1483 Fatty acids and other polyketides are made The future of organic chemistry 1487 from acetyl Co A 1425 1491
any_adam_object 1
author_GND (DE-588)131877593
building Verbundindex
bvnumber BV035234204
callnumber-first Q - Science
callnumber-label QD251
callnumber-raw QD251.3
callnumber-search QD251.3
callnumber-sort QD 3251.3
callnumber-subject QD - Chemistry
classification_rvk VK 5010
ctrlnum (OCoLC)263452201
(DE-599)BVBBV035234204
dewey-full 150.3'21
dewey-hundreds 100 - Philosophy & psychology
dewey-ones 150 - Psychology
dewey-raw 150.3'21
dewey-search 150.3'21
dewey-sort 3150.3 221
dewey-tens 150 - Psychology
discipline Chemie / Pharmazie
Psychologie
edition 1. publ., reprint. (with corr.)
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01424nam a2200373 c 4500</leader><controlfield tag="001">BV035234204</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">090108s2008 xx ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780198503460</subfield><subfield code="9">978-0-19-850346-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)263452201</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035234204</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD251.3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">150.3'21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VK 5010</subfield><subfield code="0">(DE-625)147391:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Organic chemistry</subfield><subfield code="c">Jonathan Clayden ...</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ., reprint. (with corr.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford [u.a.]</subfield><subfield code="b">Oxford Univ. Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">[9] Bl., 1512 S., [2] Bl.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemistry, Organic</subfield><subfield code="v">Textboooks</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Organische Chemie</subfield><subfield code="0">(DE-588)4043793-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Organische Chemie</subfield><subfield code="0">(DE-588)4043793-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Clayden, Jonathan</subfield><subfield code="d">1968-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)131877593</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=017040095&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017040095</subfield></datafield></record></collection>
genre (DE-588)4123623-3 Lehrbuch gnd-content
genre_facet Lehrbuch
id DE-604.BV035234204
illustrated Illustrated
indexdate 2024-12-23T21:23:48Z
institution BVB
isbn 9780198503460
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-017040095
oclc_num 263452201
open_access_boolean
owner DE-355
DE-BY-UBR
DE-83
DE-29T
owner_facet DE-355
DE-BY-UBR
DE-83
DE-29T
physical [9] Bl., 1512 S., [2] Bl. Ill., graph. Darst.
publishDate 2008
publishDateSearch 2008
publishDateSort 2008
publisher Oxford Univ. Press
record_format marc
spellingShingle Organic chemistry
Chemistry, Organic Textboooks
Organische Chemie (DE-588)4043793-0 gnd
subject_GND (DE-588)4043793-0
(DE-588)4123623-3
title Organic chemistry
title_auth Organic chemistry
title_exact_search Organic chemistry
title_full Organic chemistry Jonathan Clayden ...
title_fullStr Organic chemistry Jonathan Clayden ...
title_full_unstemmed Organic chemistry Jonathan Clayden ...
title_short Organic chemistry
title_sort organic chemistry
topic Chemistry, Organic Textboooks
Organische Chemie (DE-588)4043793-0 gnd
topic_facet Chemistry, Organic Textboooks
Organische Chemie
Lehrbuch
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017040095&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT claydenjonathan organicchemistry