Microeconometrics using Stata

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cameron, Adrian Colin 1956- (VerfasserIn), Trivedi, Pravin K. 1943- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: College Station, Texas Stata Press 2009
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV035206543
003 DE-604
005 20220831
007 t|
008 081210s2009 xx a||| |||| 00||| eng d
020 |a 9781597180481  |9 978-1-59718-048-1 
020 |a 1597180483  |9 1-59718-048-3 
035 |a (OCoLC)456523433 
035 |a (DE-599)BVBBV035206543 
040 |a DE-604  |b ger 
041 0 |a eng 
049 |a DE-20  |a DE-473  |a DE-703  |a DE-N2  |a DE-19  |a DE-384  |a DE-1047  |a DE-1028  |a DE-355  |a DE-M382  |a DE-91  |a DE-522  |a DE-83  |a DE-11  |a DE-188  |a DE-Re13 
080 |a 330.4 
084 |a QH 320  |0 (DE-625)141568:  |2 rvk 
084 |a ST 253  |0 (DE-625)143628:  |2 rvk 
084 |a ST 601  |0 (DE-625)143682:  |2 rvk 
084 |a DAT 307f  |2 stub 
084 |a WIR 017f  |2 stub 
100 1 |a Cameron, Adrian Colin  |d 1956-  |e Verfasser  |0 (DE-588)12870022X  |4 aut 
245 1 0 |a Microeconometrics using Stata  |c A. Colin Cameron ; Pravin K. Trivedi 
264 1 |a College Station, Texas  |b Stata Press  |c 2009 
300 |a xl, 692 Seiten  |b Illustrationen 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
500 |a Literaturverzeichnis Seite [665] - 672 ; Personen- u. Sachindex 
650 0 7 |a Mikroökonomisches Modell  |0 (DE-588)4125908-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Stata  |0 (DE-588)4617285-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Mikroökonomie  |0 (DE-588)4039225-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Ökonometrisches Modell  |0 (DE-588)4043212-9  |2 gnd  |9 rswk-swf 
689 0 0 |a Ökonometrisches Modell  |0 (DE-588)4043212-9  |D s 
689 0 1 |a Mikroökonomie  |0 (DE-588)4039225-9  |D s 
689 0 2 |a Stata  |0 (DE-588)4617285-3  |D s 
689 0 |5 DE-604 
689 1 0 |a Mikroökonomie  |0 (DE-588)4039225-9  |D s 
689 1 1 |a Ökonometrisches Modell  |0 (DE-588)4043212-9  |D s 
689 1 2 |a Stata  |0 (DE-588)4617285-3  |D s 
689 1 |5 DE-188 
689 2 0 |a Mikroökonomisches Modell  |0 (DE-588)4125908-7  |D s 
689 2 1 |a Stata  |0 (DE-588)4617285-3  |D s 
689 2 |5 DE-188 
700 1 |a Trivedi, Pravin K.  |d 1943-  |e Verfasser  |0 (DE-588)118054791  |4 aut 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017012872&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-017012872 

Datensatz im Suchindex

DE-19_call_number 0500/QH 320 C182
1100/MR 2000 2009 CMU
DE-19_location 65
70
DE-BY-UBM_katkey 4033354
DE-BY-UBM_media_number 41621542250018
99994964491
99994881076
41614547480017
DE-BY-UBR_call_number 426/QH 320 C182
DE-BY-UBR_katkey 4492922
DE-BY-UBR_media_number TEMP12178025
_version_ 1823054209631649792
adam_text Contents List of tables xxxv List of figures xxxvii Preface xxxix Stata basics 1 1.1 Interactive use.............................. 1 1.2 Documentation.............................. 2 1.2.1 Stata manuals.......................... 2 1.2.2 Additional Stata resources................... 3 1.2.3 The help command....................... 3 1.2.4 The search, findit, and hsearch commands.......... 4 1.3 Command syntax and operators..................... 5 1.3.1 Basic command syntax..................... 5 1.3.2 Example: The summarize command ............. 6 1.3.3 Example: The regress command................ 7 1.3.4 Abbreviations, case sensitivity, and wildcards........ 9 1.3.5 Arithmetic, relational, and logical operators......... 9 1.3.6 Error messages......................... 10 1.4 Do-files and log files........................... 10 1.4.1 Writing a do-file......................... 10 1.4.2 Running do-files......................... 11 1.4.3 Log files............................. 12 1.4.4 A three-step process...................... 13 1.4.5 Comments and long lines.................... 13 1.4.6 Different implementations of Stata.............. 14 vi Contents 1.5 Scalars and matrices........................... 15 1.5.1 Scalars.............................. 15 1.5.2 Matrices............................. 15 1.6 Using results from Stata commands................... 16 1.6.1 Using results from the r-class command summarize..... 16 1.6.2 Using results from the e-class command regress....... 17 1.7 Global and local macros......................... 19 1.7.1 Global macros.......................... 19 1.7.2 Local macros .......................... 20 1.7.3 Scalar or macro? ........................ 21 1.8 Looping commands............................ 22 1.8.1 The foreach loop ........................ 23 1.8.2 The forvalues loop ....................... 23 1.8.3 The while loop ......................... 24 1.8.4 The continue command..................... 24 1.9 Some useful commands.......................... 24 1.10 Template do-file.............................. 25 1.11 User-written commands......................... 25 1.12 Stata resources.............................. 26 1.13 Exercises.................................. 26 2 Data management and graphics 29 2.1 Introduction................................ 29 2.2 Types of data............................... 29 2.2.1 Text or ASCII data....................... 30 2.2.2 Internal numeric data...................... 30 2.2.3 String data ........................... 31 2.2.4 Formats for displaying numeric data............. 31 2.3 Inputting data .............................. 32 2.3.1 General principles........................ 32 2.3.2 Inputting data already in Stata format............ 33 Contents vii 2.3.3 Inputting data from the keyboard............... 34 2.3.4 Inputting nontext data..................... 34 2.3.5 Inputting text data from a spreadsheet............ 35 2.3.6 Inputting text data in free format............... 36 2.3.7 Inputting text data in fixed format.............. 36 2.3.8 Dictionary files......................... 37 2.3.9 Common pitfalls ........................ 37 2.4 Data management ............................ 38 2.4.1 PSID example.......................... 38 2.4.2 Naming and labeling variables................. 41 2.4.3 Viewing data.......................... 42 2.4.4 Using original documentation................. 43 2.4.5 Missing values.......................... 43 2.4.6 Imputing missing data..................... 45 2.4.7 Transforming data (generate, replace, egen, recode)..... 45 The generate and replace commands............. 46 The egen command....................... 46 The recode command...................... 47 The by prefix.......................... 47 Indicator variables ....................... 47 Set of indicator variables.................... 48 Interactions........................... 49 Demeaning............................ 50 2.4.8 Saving data........................... 51 2.4.9 Selecting the sample...................... 51 2.5 Manipulating datasets.......................... 53 2.5.1 Ordering observations and variables.............. 53 2.5.2 Preserving and restoring a dataset .............. 53 2.5.3 Wide and long forms for a dataset .............. 54 viii Contents 2.5.4 Merging datasets........................ 54 2.5.5 Appending datasets....................... 56 2.6 Graphical display of data ........................ 57 2.6.1 Stata graph commands..................... 57 Example graph commands................... 57 Saving and exporting graphs.................. 58 Learning how to use graph commands ............ 59 2.6.2 Box-and-whisker plot...................... 60 2.6.3 Histogram............................ 61 2.6.4 Kernel density plot....................... 62 2.6.5 Twoway scatterplots and fitted lines ............. 64 2.6.6 Lowess, kernel, local linear, and nearest-neighbor regression 65 2.6.7 Multiple scatterplots...................... 67 2.7 Stata resources.............................. 68 2.8 Exercises.................................. 68 3 Linear regression basics 71 3.1 Introduction................................ 71 3.2 Data and data summary......................... 71 3.2.1 Data description ........................ 71 3.2.2 Variable description....................... 72 3.2.3 Summary statistics....................... 73 3.2.4 More-detailed summary statistics............... 74 3.2.5 Tables for data......................... 75 3.2.6 Statistical tests......................... 78 3.2.7 Data plots............................ 78 3.3 Regression in levels and logs....................... 79 3.3.1 Basic regression theory..................... 79 3.3.2 OLS regression and matrix algebra.............. 80 3.3.3 Properties of the OLS estimator................ 81 3.3.4 Heteroskedasticity-robust standard errors .......... 82 Contents ix 3.3.5 Cluster-robust standard errors................ 82 3.3.6 Regression in logs........................ 83 3.4 Basic regression analysis......................... 84 3.4.1 Correlations........................... 84 3.4.2 The regress command ..................... 85 3.4.3 Hypothesis tests......................... 86 3.4.4 Tables of output from several regressions........... 87 3.4.5 Even better tables of regression output............ 88 3.5 Specification analysis........................... 90 3.5.1 Specification tests and model diagnostics........... 90 3.5.2 Residual diagnostic plots.................... 91 3.5.3 Influential observations..................... 92 3.5.4 Specification tests........................ 93 Test of omitted variables.................... 93 Test of the Box-Cox model.................. 94 Test of the functional form of the conditional mean..... 95 Heteroskedasticity test..................... 96 Omnibus test.......................... 97 3.5.5 Tests have power in more than one direction......... 98 3.6 Prediction................................. 100 3.6.1 In-sample prediction...................... 100 3.6.2 Marginal effects......................... 102 3.6.3 Prediction in logs: The retransformation problem...... 103 3.6.4 Prediction exercise....................... 104 3.7 Sampling weights............................. 105 3.7.1 Weights............................. 106 3.7.2 Weighted mean......................... 106 3.7.3 Weighted regression....................... 107 3.7.4 Weighted prediction and MEs................. 109 3.8 OLS using Mata............................. 109 Contents 3.9 Stata resources.............................. Hl 3.10 Exercises.................................. ÝH Simulation H3 4.1 Introduction................................ 113 4.2 Pseudorandom-number generators: Introduction ........... 114 4.2.1 Uniform random-number generation ............. 114 4.2.2 Draws from normal....................... 116 4.2.3 Draws from t, chi-squared, F, gamma, and beta....... 117 4.2.4 Draws from binomial, Poisson, and negative binomial .... 118 Independent (but not identically distributed) draws from binomial........................ 118 Independent (but not identically distributed) draws from Poisson........................ 119 Histograms and density plots ................. 120 4.3 Distribution of the sample mean .................... 121 4.3.1 Stata program.......................... 122 4.3.2 The simulate command..................... 123 4.3.3 Central limit theorem simulation............... 123 4.3.4 The postfile command..................... 124 4.3.5 Alternative central limit theorem simulation......... 125 4.4 Pseudorandom-number generators: Further details.......... 125 4.4.1 Inverse-probability transformation............... 126 4.4.2 Direct transformation...................... 127 4.4.3 Other methods......................... 127 4.4.4 Draws from truncated normal................. 128 4.4.5 Draws from multivariate normal................ 129 Direct draws from multivariate normal............. 129 Transformation using Cholesky decomposition........ 130 4.4.6 Draws using Markov chain Monte Carlo method....... 130 4.5 Computing integrals........................... 132 4.5.1 Quadrature........................... 133 Contents xi 4.5.2 Monte Carlo integration.................... 133 4.5.3 Monte Carlo integration using different S........... 134 4.6 Simulation for regression: Introduction................. 135 4.6.1 Simulation example: OLS with x2 errors........... 135 4.6.2 Interpreting simulation output................. 138 Unbiasedness of estimator................... 138 Standard errors......................... 138 t statistic ............................ 138 Test size............................. 139 Number of simulations..................... 140 4.6.3 Variations............................ 140 Different sample size and number of simulations....... 140 Test power............................ 140 Different error distributions.................. 141 4.6.4 Estimator inconsistency .................... 141 4.6.5 Simulation with endogenous regressors............ 142 4.7 Stata resources.............................. 144 4.8 Exercises.................................. 144 5 GLS regression 147 5.1 Introduction................................ 147 5.2 GLS and FGLS regression........................ 147 5.2.1 GLS for heteroskedastic errors................. 147 5.2.2 GLS and FGLS......................... 148 5.2.3 Weighted least squares and robust standard errors ..... 149 5.2.4 Leading examples........................ 149 5.3 Modeling heteroskedastic data...................... 150 5.3.1 Simulated dataset........................ 150 5.3.2 OLS estimation......................... 151 5.3.3 Detecting heteroskedasticity.................. 152 5.3.4 FGLS estimation........................ 154 xji Contents 5.3.5 WLS estimation......................... 156 5.4 System of linear regressions....................... 156 5.4.1 SUR model ........................... 156 5.4.2 The sureg command ...................... 157 5.4.3 Application to two categories of expenditures........ 158 5.4.4 Robust standard errors..................... 160 5.4.5 Testing cross-equation constraints............... 161 5.4.6 Imposing cross-equation constraints.............. 162 5.5 Survey data: Weighting, clustering, and stratification......... 163 5.5.1 Survey design.......................... 164 5.5.2 Survey mean estimation.................... 167 5.5.3 Survey linear regression .................... 167 5.6 Stata resources.............................. 169 5.7 Exercises.................................. 169 6 Linear instrumental-variables regression 171 6.1 Introduction................................ 171 6.2 IV estimation............................... 171 6.2.1 Basic IV theory......................... 171 6.2.2 Model setup........................... 173 6.2.3 IV estimators: IV, 2SLS, and GMM ............. 174 6.2.4 Instrument validity and relevance............... 175 6.2.5 Robust standard-error estimates................ 176 6.3 IV example................................ 177 6.3.1 The ivregress command .................... 177 6.3.2 Medical expenditures with one endogenous regressor .... 178 6.3.3 Available instruments...................... 179 6.3.4 IV estimation of an exactly identified model......... 180 6.3.5 IV estimation of an overidentified model........... 181 6.3.6 Testing for regressor endogeneity............... 182 6.3.7 Tests of overidentifying restrictions.............. 185 Contents xiii 6.3.8 IV estimation with a binary endogenous regressor...... 186 6.4 Weak instruments............................. 188 6.4.1 Finite-sample properties of IV estimators........... 188 6.4.2 Weak instruments........................ 189 Diagnostics for weak instruments............... 189 Formal tests for weak instruments............... 190 6.4.3 The estât firststage command................. 191 6.4.4 Just-identified model...................... 191 6.4.5 Overidentified model...................... 193 6.4.6 More than one endogenous regressor............. 195 6.4.7 Sensitivity to choice of instruments.............. 195 6.5 Better inference with weak instruments................. 197 6.5.1 Conditional tests and confidence intervals.......... 197 6.5.2 LIML estimator......................... 199 6.5.3 Jackknife IV estimator..................... 199 6.5.4 Comparison of 2SLS, LIML, JIVE, and GMM........ 200 6.6 3SLS systems estimation......................... 201 6.7 Stata resources.............................. 203 6.8 Exercises.................................. 203 7 Quantile regression 205 7.1 Introduction................................ 205 7.2 QR..................................... 205 7.2.1 Conditional quantiles...................... 206 7.2.2 Computation of QR estimates and standard errors..... 207 7.2.3 The qreg, bsqreg, and sqreg commands............ 207 7.3 QR for medical expenditures data.................... 208 7.3.1 Data summary ......................... 208 7.3.2 QR estimates.......................... 209 7.3.3 Interpretation of conditional quantile coefficients...... 210 7.3.4 Retransformation........................ 211 xjv Contents 7.3.5 Comparison of estimates at different quantiles........ 212 7.3.6 Heteroskedasticity test..................... 213 7.3.7 Hypothesis tests......................... 214 7.3.8 Graphical display of coefficients over quantiles........ 215 7.4 QR for generated heteroskedastic data................. 216 7.4.1 Simulated dataset........................ 216 7.4.2 QR estimates.......................... 219 7.5 QR for count data............................ 220 7.5.1 Quantile count regression ................... 221 7.5.2 The qcount command...................... 222 7.5.3 Summary of doctor visits data................. 222 7.5.4 Results from QCR....................... 224 7.6 Stata resources.............................. 226 7.7 Exercises.................................. 226 8 Linear panel-data models: Basics 229 8.1 Introduction................................ 229 8.2 Panel-data methods overview...................... 229 8.2.1 Some basic considerations................... 230 8.2.2 Some basic panel models.................... 231 Individual-effects model .................... 231 Fixed-effects model....................... 231 Random-effects model..................... 232 Pooled model or population-averaged model......... 232 Two-way-effects model..................... 232 Mixed linear models ...................... 233 8.2.3 Cluster-robust inference.................... 233 8.2.4 The xtreg command ...................... 233 8.2.5 Stata linear panel-data commands............... 234 8.3 Panel-data summary........................... 234 8.3.1 Data description and summary statistics........... 234 Contents xv 8.3.2 Panel-data organization .................... 236 8.3.3 Panel-data description..................... 237 8.3.4 Within and between variation................. 238 8.3.5 Time-series plots for each individual ............. 241 8.3.6 Overall scatterplot....................... 242 8.3.7 Within scatterplot ....................... 243 8.3.8 Pooled OLS regression with cluster-robust standard errors . 244 8.3.9 Time-series autocorrelations for panel data.......... 245 8.3.10 Error correlation in the RE model............... 247 8.4 Pooled or population-averaged estimators............... 248 8.4.1 Pooled OLS estimator..................... 248 8.4.2 Pooled FGLS estimator or population-averaged estimator . 248 8.4.3 The xtreg, pa command.................... 249 8.4.4 Application of the xtreg, pa command............ 250 8.5 Within estimator............................. 251 8.5.1 Within estimator........................ 251 8.5.2 The xtreg, fe command..................... 251 8.5.3 Application of the xtreg, fe command............. 252 8.5.4 Least-squares dummy-variables regression.......... 253 8.6 Between estimator............................ 254 8.6.1 Between estimator ....................... 254 8.6.2 Application of the xtreg, be command............ 255 8.7 RE estimator............................... 255 8.7.1 RE estimator.......................... 255 8.7.2 The xtreg, re command..................... 256 8.7.3 Application of the xtreg, re command............. 256 8.8 Comparison of estimators........................ 257 8.8.1 Estimates of variance components............... 257 8.8.2 Within and between R-squared................ 258 8.8.3 Estimator comparison ..................... 258 xvj Contents 8.8.4 Fixed effects versus random effects.............. 259 8.8.5 Hausman test for fixed effects................. 26° The hausman command.................... 260 Robust Hausman test...................... 261 8.8.6 Prediction............................ 262 8.9 First-difference estimator ........................263 8.9.1 First-difference estimator....................263 8.9.2 Strict and weak exogeneity...................264 8.10 Long panels................................265 8.10.1 Long-panel dataset....................... 265 8.10.2 Pooled OLS and PFGLS.................... 266 8.10.3 The xtpcse and xtgls commands................ 267 8.10.4 Application of the xtgls, xtpcse, and xtscc commands .... 268 8.10.5 Separate regressions ...................... 270 8.10.6 FE and RE models....................... 271 8.10.7 Unit roots and cointegration.................. 272 8.11 Panel-data management.........................274 8.11.1 Wide-form data......................... 274 8.11.2 Convert wide form to long form................ 274 8.11.3 Convert long form to wide form................ 275 8.11.4 An alternative wide-form data................. 276 8.12 Stata resources.............................. 278 8.13 Exercises.................................. 278 9 Linear panel-data models: Extensions 281 9.1 Introduction................................ 281 9.2 Panel IV estimation ........................... 281 9.2.1 Panel IV............................. 281 9.2.2 The xtivreg command ..................... 282 9.2.3 Application of the xtivreg command ............. 282 9.2.4 Panel IV extensions....................... 284 Contents xvii 9.3 Hausman-Taylor estimator....................... 284 9.3.1 Hausman-Taylor estimator .................. 284 9.3.2 The xthtaylor command.................... 285 9.3.3 Application of the xthtaylor command............ 285 9.4 Arellano-Bond estimator ........................ 287 9.4.1 Dynamic model......................... 287 9.4.2 IV estimation in the FD model................ 288 9.4.3 The xtabond command..................... 289 9.4.4 Arellano-Bond estimator: Pure time series.......... 290 9.4.5 Arellano-Bond estimator: Additional regressors....... 292 9.4.6 Specification tests........................ 294 9.4.7 The xtdpdsys command.................... 295 9.4.8 The xtdpd command...................... 297 9.5 Mixed linear models........................... 298 9.5.1 Mixed linear model....................... 298 9.5.2 The xtmixed command..................... 299 9.5.3 Random-intercept model.................... 300 9.5.4 Cluster-robust standard errors................ 301 9.5.5 Random-slopes model ..................... 302 9.5.6 Random-coefficients model................... 303 9.5.7 Two-way random-effects model................ 304 9.6 Clustered data.............................. 306 9.6.1 Clustered dataset........................ 306 9.6.2 Clustered data using nonpanel commands.......... 306 9.6.3 Clustered data using panel commands............ 307 9.6.4 Hierarchical linear models................... 310 9.7 Stata resources.............................. 311 9.8 Exercises.................................. 311 10 Nonlinear regression methods 313 10.1 Introduction................................ 313 Contents 10.2 Nonlinear example: Doctor visits.................... 314 10.2.1 Data description ........................ 314 10.2.2 Poisson model description................... 315 10.3 Nonlinear regression methods...................... 316 10.3.1 MLE............................... 316 10.3.2 The poisson command..................... 317 10.3.3 Postestimation commands................... 318 10.3.4 NLS ............................... 319 10.3.5 The nl command........................ 319 10.3.6 GLM............................... 321 10.3.7 The glm command....................... 321 10.3.8 Other estimators........................ 322 10.4 Different estimates of the VCE..................... 323 10.4.1 General framework....................... 323 10.4.2 The vce() option........................ 324 10.4.3 Application of the vce() option ................ 324 10.4.4 Default estimate of the VCE.................. 326 10.4.5 Robust estimate of the VCE.................. 326 10.4.6 Cluster-robust estimate of the VCE ............. 327 10.4.7 Heteroskedasticity- and autocorrelation-consistent estimate of the VCE ........................... 328 10.4.8 Bootstrap standard errors................... 328 10.4.9 Statistical inference....................... 329 10.5 Prediction................................. 329 10.5.1 The predict and predictnl commands............. 329 10.5.2 Application of predict and predictnl.............. 330 10.5.3 Out-of-sample prediction.................... 331 10.5.4 Prediction at a specified value of one of the regressors . . . 332 10.5.5 Prediction at a specified value of all the regressors ..... 332 10.5.6 Prediction of other quantities................. 333 Contents xix 10.6 Marginal effects.............................. 333 10.6.1 Calculus and finite-difference methods............ 334 10.6.2 MEs estimates AME, MEM, and MER............ 334 10.6.3 Elasticities and semielasticities ................ 335 10.6.4 Simple interpretations of coefficients in single-index models 336 10.6.5 The mix command....................... 337 10.6.6 MEM: Marginal effect at mean................ 337 Comparison of calculus and finite-difference methods .... 338 10.6.7 MER: Marginal effect at representative value ........ 338 10.6.8 AME: Average marginal effect................. 339 10.6.9 Elasticities and semielasticities ................ 340 10.6.10 AME computed manually................... 342 10.6.11 Polynomial regressors...................... 343 10.6.12 Interacted regressors...................... 344 10.6.13 Complex interactions and nonlinearities ........... 344 10.7 Model diagnostics............................. 345 10.7.1 Goodness-of-fit measures.................... 345 10.7.2 Information criteria for model comparison.......... 346 10.7.3 Residuals ............................ 347 10.7.4 Model-specification tests.................... 348 10.8 Stata resources.............................. 349 10.9 Exercises.................................. 349 11 Nonlinear optimization methods 351 11.1 Introduction................................ 351 11.2 Newton-Raphson method........................ 351 11.2.1 NR method........................... 351 11.2.2 NR method for Poisson..................... 352 11.2.3 Poisson NR example using Mata ............... 353 Core Mata code for Poisson NR iterations.......... 353 Complete Stata and Mata code for Poisson NR iterations . 353 Contents 11.3 Gradient methods.............................355 11.3.1 Maximization options...................... 355 11.3.2 Gradient methods........................ 356 11.3.3 Messages during iterations................... 357 11.3.4 Stopping criteria........................ 357 11.3.5 Multiple maximums....................... 357 11.3.6 Numerical derivatives...................... 358 11.4 The ml command: If method ...................... 359 11.4.1 The ml command........................ 360 11.4.2 The If method.......................... 360 11.4.3 Poisson example: Single-index model............. 361 11.4.4 Negative binomial example: Two-index model........ 362 11.4.5 NLS example: Nonlikelihood model.............. 363 11.5 Checking the program.......................... 364 11.5.1 Program debugging using ml check and ml trace....... 365 11.5.2 Getting the program to run.................. 366 11.5.3 Checking the data........................ 366 11.5.4 Multicollinearity and near collinearity ............ 367 11.5.5 Multiple optimums....................... 368 11.5.6 Checking parameter estimation................ 369 11.5.7 Checking standard-error estimation.............. 370 11.6 The ml command: dO, dl, and d2 methods .............. 371 11.6.1 Evaluator functions....................... 371 11.6.2 The dO method......................... 373 11.6.3 The dl method......................... 374 11.6.4 The dl method with the robust estimate of the VCE .... 374 11.6.5 The d2 method......................... 375 11.7 The Mata optimizeQ function...................... 376 11.7.1 Type d and v evaluators.................... 376 11.7.2 Optimize functions....................... 377 Contents xxi 11.7.3 Poisson example......................... 377 Evaluator program for Poisson MLE............. 377 The optimizeQ function for Poisson MLE .......... 378 11.8 Generalized method of moments .................... 379 11.8.1 Definition............................ 380 11.8.2 Nonlinear IV example ..................... 380 11.8.3 GMM using the Mata optimize() function.......... 381 11.9 Stata resources.............................. 383 11.10 Exercises.................................. 383 12 Testing methods 385 12.1 Introduction................................ 385 12.2 Critical values and p-values....................... 385 12.2.1 Standard normal compared with Student s t......... 386 12.2.2 Chi-squared compared with F................. 386 12.2.3 Plotting densities........................ 386 12.2.4 Computing p-values and critical values............ 388 12.2.5 Which distributions does Stata use? ............. 389 12.3 Wald tests and confidence intervals................... 389 12.3.1 Wald test of linear hypotheses................. 389 12.3.2 The test command....................... 391 Test single coefficient...................... 392 Test several hypotheses..................... 392 Test of overall significance................... 393 Test calculated from retrieved coefficients and VCE..... 393 12.3.3 One-sided Wald tests...................... 394 12.3.4 Wald test of nonlinear hypotheses (delta method)...... 395 12.3.5 The testnl command...................... 395 12.3.6 Wald confidence intervals.................... 396 12.3.7 The lincom command...................... 396 12.3.8 The nlcom command (delta method)............. 397 xxii Contents 12.3.9 Asymmetric confidence intervals................398 12.4 Likelihood-ratio tests...........................399 12.4.1 Likelihood-ratio tests...................... 399 12.4.2 The Irtest command ...................... 401 12.4.3 Direct computation of LR tests................ 401 12.5 Lagrange multiplier test (or score test)................. 402 12.5.1 LM tests............................. 402 12.5.2 The estât command....................... 403 12.5.3 LM test by auxiliary regression................ 403 12.6 Test size and power............................ 405 12.6.1 Simulation DGP: OLS with chi-squared errors........ 405 12.6.2 Test size............................. 406 12.6.3 Test power............................ 407 12.6.4 Asymptotic test power..................... 410 12.7 Specification tests............................. 411 12.7.1 Moment-based tests....................... 411 12.7.2 Information matrix test .................... 411 12.7.3 Chi-squared goodness-of-fit test................ 412 12.7.4 Overidentifying restrictions test................ 412 12.7.5 Hausman test.......................... 412 12.7.6 Other tests ........................... 413 12.8 Stata resources............................... 413 12.9 Exercises.................................. 413 13 Bootstrap methods 415 13.1 Introduction................................415 13.2 Bootstrap methods............................415 13.2.1 Bootstrap estimate of standard error............. 415 13.2.2 Bootstrap methods....................... 416 13.2.3 Asymptotic refinement......... ...................416 13.2.4 Use the bootstrap with caution................416 Contents xxiii 13.3 Bootstrap pairs using the vce(bootstrap) option............ 417 13.3.1 Bootstrap-pairs method to estimate VCE .......... 417 13.3.2 The vce(bootstrap) option................... 418 13.3.3 Bootstrap standard-errors example.............. 418 13.3.4 How many bootstraps?..................... 419 13.3.5 Clustered bootstraps...................... 420 13.3.6 Bootstrap confidence intervals................. 421 13.3.7 The postestimation estât bootstrap command........ 422 13.3.8 Bootstrap confidence-intervals example............ 423 13.3.9 Bootstrap estimate of bias................... 423 13.4 Bootstrap pairs using the bootstrap command............. 424 13.4.1 The bootstrap command.................... 424 13.4.2 Bootstrap parameter estimate from a Stata estimation command ............................ 425 13.4.3 Bootstrap standard error from a Stata estimation command 426 13.4.4 Bootstrap standard error from a user-written estimation command ............................ 426 13.4.5 Bootstrap two-step estimator................. 427 13.4.6 Bootstrap Hausman test.................... 429 13.4.7 Bootstrap standard error of the coefficient of variation . . . 430 13.5 Bootstraps with asymptotic refinement................. 431 13.5.1 Percentile-t method....................... 431 13.5.2 Percentile-t Wald test ..................... 432 13.5.3 Percentile-t Wald confidence interval............. 433 13.6 Bootstrap pairs using bsample and simulate.............. 434 13.6.1 The bsample command..................... 434 13.6.2 The bsample command with simulate............. 434 13.6.3 Bootstrap Monte Carlo exercise................ 436 13.7 Alternative resampling schemes..................... 436 13.7.1 Bootstrap pairs......................... 437 13.7.2 Parametric bootstrap...................... 437 XXIV Contents 13.7.3 Residual bootstrap....................... 439 13.7.4 Wild bootstrap......................... 440 13.7.5 Subsampling........................... 441 13.8 The jackknife............................... 441 13.8.1 Jackknife method........................ 441 13.8.2 The vce(jackknife) option and the jackknife command . . . 442 13.9 Stata resources.............................. 442 13.10 Exercises.................................. 442 14 Binary outcome models 445 14.1 Introduction................................ 445 14.2 Some parametric models......................... 445 14.2.1 Basic model........................... 445 14.2.2 Logit, probit, linear probability, and clog-log models .... 446 14.3 Estimation................................. 446 14.3.1 Latent-variable interpretation and identification....... 447 14.3.2 ML estimation.......................... 447 14.3.3 The logit and probit commands................ 448 14.3.4 Robust estimate of the VCE.................. 448 14.3.5 OLS estimation of LPM.................... 448 14.4 Example.................................. 449 14.4.1 Data description ........................ 449 14.4.2 Logit regression.......................... 450 14.4.3 Comparison of binary models and parameter estimates . . . 451 14.5 Hypothesis and specification tests.................... 452 14.5.1 Wald tests............................ 453 14.5.2 Likelihood-ratio tests...................... 453 14.5.3 Additional model-specification tests.............. 454 Lagrange multiplier test of generalized logit......... 454 Heteroskedastic probit regression............... 455 14.5.4 Model comparison........................ 456 Contents xxv 14.6 Goodness of fit and prediction...................... 457 14.6.1 Pseudo-R2 measure....................... 457 14.6.2 Comparing predicted probabilities with sample frequencies . 457 14.6.3 Comparing predicted outcomes with actual outcomes .... 459 14.6.4 The predict command for fitted probabilities......... 460 14.6.5 The prvalue command for fitted probabilities ........ 461 14.7 Marginal effects.............................. 462 14.7.1 Marginal effect at a representative value (MER)....... 462 14.7.2 Marginal effect at the mean (MEM) ............. 463 14.7.3 Average marginal effect (AME)................ 464 14.7.4 The prchange command.................... 464 14.8 Endogenous regressors.......................... 465 14.8.1 Example............................. 465 14.8.2 Model assumptions....................... 466 14.8.3 Structural-model approach................... 467 The ivprobit command..................... 467 Maximum likelihood estimates................. 468 Two-step sequential estimates................. 469 14.8.4 IVs approach.......................... 471 14.9 Grouped data............................... 472 14.9.1 Estimation with aggregate data................ 473 14.9.2 Grouped-data application................... 473 14.10 Stata resources.............................. 475 14.11 Exercises.................................. 475 15 Multinomial models 477 15.1 Introduction................................ 477 15.2 Multinomial models overview...................... 477 15.2.1 Probabilities and MEs..................... 477 15.2.2 Maximum likelihood estimation................ 478 15.2.3 Case-specific and alternative-specific regressors....... 479 xxvi Contents 15.2.4 Additive random-utility model................. 479 15.2.5 Stata multinomial model commands ............. 480 15.3 Multinomial example: Choice of fishing mode............. 480 15.3.1 Data description ........................ 480 15.3.2 Case-specific regressors..................... 483 15.3.3 Alternative-specific regressors................. 483 15.4 Multinomial logit model......................... 484 15.4.1 The mlogit command...................... 484 15.4.2 Application of the mlogit command.............. 485 15.4.3 Coefficient interpretation.................... 486 15.4.4 Predicted probabilities..................... 487 15.4.5 MEs............................... 488 15.5 Conditional logit model ......................... 489 15.5.1 Creating long-form data from wide-form data........ 489 15.5.2 The asclogit command..................... 491 15.5.3 The clogit command...................... 491 15.5.4 Application of the asclogit command............. 492 15.5.5 Relationship to multinomial logit model........... 493 15.5.6 Coefficient interpretation.................... 493 15.5.7 Predicted probabilities..................... 494 15.5.8 MEs............................... 494 15.6 Nested logit model............................ 496 15.6.1 Relaxing the independence of irrelevant alternatives as- sumption ............................. 497 15.6.2 NL model............................ 497 15.6.3 The nlogit command...................... 498 15.6.4 Model estimates......................... 499 15.6.5 Predicted probabilities..................... 501 15.6.6 MEs............................... 501 15.6.7 Comparison of logit models .................. 502 Contents xxvii 15.7 Multinomial probit model........................ 503 15.7.1 MNP............................... 503 15.7.2 The mprobit command..................... 503 15.7.3 Maximum simulated likelihood ................ 504 15.7.4 The asmprobit command.................... 505 15.7.5 Application of the asmprobit command............ 505 15.7.6 Predicted probabilities and MEs................ 507 15.8 Random-parameters logit ........................ 508 15.8.1 Random-parameters logit ................... 508 15.8.2 The mixlogit command..................... 508 15.8.3 Data preparation for mixlogit................. 509 15.8.4 Application of the mixlogit command............. 509 15.9 Ordered outcome models......................... 510 15.9.1 Data summary ......................... 511 15.9.2 Ordered outcomes........................ 512 15.9.3 Application of the ologit command.............. 512 15.9.4 Predicted probabilities..................... 513 15.9.5 MEs............................... 513 15.9.6 Other ordered models...................... 514 15.10 Multivariate outcomes.......................... 514 15.10.1 Bivariate probit......................... 515 15.10.2 Nonlinear SUR......................... 517 15.11 Stata resources.............................. 518 15.12 Exercises.................................. 518 16 Tobit and selection models 521 16.1 Introduction................................ 521 16.2 Tobit model................................ 521 16.2.1 Regression with censored data................. 521 16.2.2 Tobit model setup........................ 522 16.2.3 Unknown censoring point ................... 523 xxviii Contents 16.2.4 Tobit estimation ........................ 523 16.2.5 ML estimation in Stata..................... 524 16.3 Tobit model example........................... 524 16.3.1 Data summary ......................... 524 16.3.2 Tobit analysis.......................... 525 16.3.3 Prediction after tobit...................... 526 16.3.4 Marginal effects......................... 527 Left-truncated, left-censored, and right-truncated examples 527 Left-censored case computed directly............. 528 Marginal impact on probabilities............... 529 16.3.5 The ivtobit command...................... 530 16.3.6 Additional commands for censored regression........ 530 16.4 Tobit for lognormal data......................... 531 16.4.1 Data example.......................... 531 16.4.2 Setting the censoring point for data in logs.......... 532 16.4.3 Results.............................. 533 16.4.4 Two-limit tobit......................... 534 16.4.5 Model diagnostics........................ 534 16.4.6 Tests of normality and homoskedasticity........... 535 Generalized residuals and scores................ 535 Test of normality........................ 536 Test of homoskedasticity.................... 537 16.4.7 Next step?............................ 538 16.5 Two-part model in logs.......................... 538 16.5.1 Model structure......................... 538 16.5.2 Part 1 specification....................... 539 16.5.3 Part 2 of the two-part model.................. 540 16.6 Selection model.............................. 541 16.6.1 Model structure and assumptions............... 541 16.6.2 ML estimation of the sample-selection model......... 543 Contents xxix 16.6.3 Estimation without exclusion restrictions........... 543 16.6.4 Two-step estimation...................... 545 16.6.5 Estimation with exclusion restrictions ............ 546 16.7 Prediction from models with outcome in logs............. 547 16.7.1 Predictions from tobit..................... 548 16.7.2 Predictions from two-part model ............... 548 16.7.3 Predictions from selection model ............... 549 16.8 Stata resources.............................. 550 16.9 Exercises.................................. 550 17 Count-data models 553 17.1 Introduction................................ 553 17.2 Features of count data.......................... 553 17.2.1 Generated Poisson data .................... 554 17.2.2 Overdispersion and negative binomial data.......... 555 17.2.3 Modeling strategies....................... 556 17.2.4 Estimation methods ...................... 557 17.3 Empirical example 1........................... 557 17.3.1 Data summary ......................... 557 17.3.2 Poisson model.......................... 558 Poisson model results...................... 559 Robust estimate of VCE for Poisson MLE.......... 560 Test of overdispersion...................... 561 Coefficient interpretation and marginal effects........ 562 17.3.3 NB2 model ........................... 562 NB2 model results ....................... 563 Fitted probabilities for Poisson and NB2 models....... 565 The countfit command..................... 565 The prvalue command..................... 567 Discussion............................ 567 Generalized NB model..................... 567 xx¡í Contents 17.3.4 Nonlinear least-squares estimation .............. 568 17.3.5 Hurdle model.......................... 569 Variants of the hurdle model.................. 571 Application of the hurdle model................ 571 17.3.6 Finite-mixture models..................... 575 FMM specification....................... 575 Simulated FMM sample with comparisons.......• ¦ • 575 ML estimation of the FMM.................. 577 The fmm command....................... 578 Application: Poisson finite-mixture model.......... 578 Interpretation.......................... 579 Comparing marginal effects.................. 580 Application: NB finite-mixture model............. 582 Model selection......................... 584 Cautionary note......................... 585 17.4 Empirical example 2........................... 585 17.4.1 Zero-inflated data........................ 585 17.4.2 Models for zero-inflated data................. 586 17.4.3 Results for the NB2 model................... 587 The prcounts command .................... 588 17.4.4 Results for ZINB........................ 589 17.4.5 Model comparison........................ 590 The countfit command..................... 590 Model comparison using countfit ............... 590 17.5 Models with endogenous regressors................... 591 17.5.1 Structural-model approach................... 592 Model and assumptions .................... 592 Two-step estimation...................... 593 Application........................... 593 17.5.2 Nonlinear IV method..................... 596 Contents xxxi 17.6 Stata resources.............................. 598 17.7 Exercises.................................. 598 18 Nonlinear panel models 601 18.1 Introduction................................ 601 18.2 Nonlinear panel-data overview...................... 601 18.2.1 Some basic nonlinear panel models.............. 601 FE models............................ 602 RE models............................ 602 Pooled models or population-averaged models........ 602 Comparison of models..................... 603 18.2.2 Dynamic models ........................ 603 18.2.3 Stata nonlinear panel commands ............... 603 18.3 Nonlinear panel-data example...................... 604 18.3.1 Data description and summary statistics........... 604 18.3.2 Panel-data organization .................... 606 18.3.3 Within and between variation................. 606 18.3.4 FE or RE model for these data?................ 607 18.4 Binary outcome models ......................... 607 18.4.1 Panel summary of the dependent variable.......... 607 18.4.2 Pooled logit estimator..................... 608 18.4.3 The xtlogit command...................... 609 18.4.4 The xtgee command ...................... 610 18.4.5 PA logit estimator ....................... 610 18.4.6 RE logit estimator....................... 611 18.4.7 FE logit estimator ....................... 613 18.4.8 Panel logit estimator comparison............... 615 18.4.9 Prediction and marginal effects................ 616 18.4.10 Mixed-effects logit estimator.................. 616 18.5 Tobit model................................ 617 18.5.1 Panel summary of the dependent variable.......... 617 xxxl1 Contents 18.5.2 RE tobit model.........................617 18.5.3 Generalized tobit models.................. g!8 18.5.4 Parametric nonlinear panel models.............. 619 18.6 Count-data models................. g-^g 18.6.1 The xtpoisson command....................619 18.6.2 Panel summary of the dependent variable..........620 18.6.3 Pooled Poisson estimator.......... 620 18.6.4 PA Poisson estimator............ g2i 18.6.5 RE Poisson estimators.......... 622 18.6.6 FE Poisson estimator.......... g24 18.6.7 Panel Poisson estimators comparison............. g26 18.6.8 Negative binomial estimators........ 627 18.7 Stata resources .... „„o ......................... o/o 18.8 Exercises.............. A Programming in Stata CO1 bol A.I Stata matrix commands ~„i ........................ ool A. 1.1 Stata matrix overview iO1 ..................... bol A.1.2 Stata matrix input and output ......... g3l Matrix input by hand.......... 631 Matrix input from Stata estimation results.......... 632 A.1.3 Stata matrix subscripts and combining matrices....... 633 A.1.4 Matrix operators . COa ....................... oo4 A. 1.5 Matrix functions cn, ....................... bo4 A.1.6 Matrix accumulation commands......... 635 A. 1.7 OLS using Stata matrix commands.......... g36 A.2 Programs . . .............................. 637 A.2.1 Simple programs (no arguments or access to results)_____ 637 A.2.2 Modifying a program .... CQo ................. boo A.2.3 Programs with positional arguments............. 638 A.2.4 Temporary variables . ................... Contents xxxiii A.2.5 Programs with named positional arguments......... 639 A.2.6 Storing and retrieving program results............ 640 A.2.7 Programs with arguments using standard Stata syntax . . . 641 A.2.8 Ado-files............................. 642 A.3 Program debugging............................ 643 A.3.1 Some simple tips........................ 644 A.3.2 Error messages and return code................ 644 A.3.3 Trace............................... 645 B Mata 647 B.I How to run Mata............................. 647 B.I.I Mata commands in Mata.................... 647 B.1.2 Mata commands in Stata.................... 648 B.1.3 Stata commands in Mata.................... 648 B.1.4 Interactive versus batch use.................. 648 B.1.5 Mata help............................ 648 B.2 Mata matrix commands......................... 649 B.2.1 Mata matrix input....................... 649 Matrix input by hand...................... 649 Identity matrices, unit vectors, and matrices of constants . . 650 Matrix input from Stata data................. 651 Matrix input from Stata matrix................ 651 Stata interface functions.................... 652 B.2.2 Mata matrix operators..................... 652 Element-by-element operators................. 652 B.2.3 Mata functions......................... 653 Scalar and matrix functions.................. 653 Matrix inversion......................... 654 B.2.4 Mata cross products...................... 655 B.2.5 Mata matrix subscripts and combining matrices....... 655 xxxiv Contents B.2.6 Transferring Mata data and matrices to Stata........ 657 Creating Stata matrices from Mata matrices......... 657 Creating Stata data from a Mata vector........... 657 B.3 Programming in Mata.......................... 658 B.3.1 Declarations........................... 658 B.3.2 Mata program.......................... 658 B.3.3 Mata program with results output to Stata ......... 659 B.3.4 Stata program that calls a Mata program.......... 659 B.3.5 Using Mata in ado-files..................... 660 Glossary of abbreviations 661 References 665 Author index 673 Subject index 677
any_adam_object 1
author Cameron, Adrian Colin 1956-
Trivedi, Pravin K. 1943-
author_GND (DE-588)12870022X
(DE-588)118054791
author_facet Cameron, Adrian Colin 1956-
Trivedi, Pravin K. 1943-
author_role aut
aut
author_sort Cameron, Adrian Colin 1956-
author_variant a c c ac acc
p k t pk pkt
building Verbundindex
bvnumber BV035206543
classification_rvk QH 320
ST 253
ST 601
classification_tum DAT 307f
WIR 017f
ctrlnum (OCoLC)456523433
(DE-599)BVBBV035206543
discipline Informatik
Wirtschaftswissenschaften
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02318nam a2200553 c 4500</leader><controlfield tag="001">BV035206543</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220831 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">081210s2009 xx a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781597180481</subfield><subfield code="9">978-1-59718-048-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1597180483</subfield><subfield code="9">1-59718-048-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)456523433</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035206543</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-N2</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-1047</subfield><subfield code="a">DE-1028</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-M382</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-522</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-Re13</subfield></datafield><datafield tag="080" ind1=" " ind2=" "><subfield code="a">330.4</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 320</subfield><subfield code="0">(DE-625)141568:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 253</subfield><subfield code="0">(DE-625)143628:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 601</subfield><subfield code="0">(DE-625)143682:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 307f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WIR 017f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cameron, Adrian Colin</subfield><subfield code="d">1956-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)12870022X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Microeconometrics using Stata</subfield><subfield code="c">A. Colin Cameron ; Pravin K. Trivedi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">College Station, Texas</subfield><subfield code="b">Stata Press</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xl, 692 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverzeichnis Seite [665] - 672 ; Personen- u. Sachindex</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mikroökonomisches Modell</subfield><subfield code="0">(DE-588)4125908-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stata</subfield><subfield code="0">(DE-588)4617285-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mikroökonomie</subfield><subfield code="0">(DE-588)4039225-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ökonometrisches Modell</subfield><subfield code="0">(DE-588)4043212-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ökonometrisches Modell</subfield><subfield code="0">(DE-588)4043212-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mikroökonomie</subfield><subfield code="0">(DE-588)4039225-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Stata</subfield><subfield code="0">(DE-588)4617285-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mikroökonomie</subfield><subfield code="0">(DE-588)4039225-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Ökonometrisches Modell</subfield><subfield code="0">(DE-588)4043212-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Stata</subfield><subfield code="0">(DE-588)4617285-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-188</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Mikroökonomisches Modell</subfield><subfield code="0">(DE-588)4125908-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Stata</subfield><subfield code="0">(DE-588)4617285-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-188</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Trivedi, Pravin K.</subfield><subfield code="d">1943-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)118054791</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=017012872&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017012872</subfield></datafield></record></collection>
id DE-604.BV035206543
illustrated Illustrated
indexdate 2025-02-03T17:14:18Z
institution BVB
isbn 9781597180481
1597180483
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-017012872
oclc_num 456523433
open_access_boolean
owner DE-20
DE-473
DE-BY-UBG
DE-703
DE-N2
DE-19
DE-BY-UBM
DE-384
DE-1047
DE-1028
DE-355
DE-BY-UBR
DE-M382
DE-91
DE-BY-TUM
DE-522
DE-83
DE-11
DE-188
DE-Re13
DE-BY-UBR
owner_facet DE-20
DE-473
DE-BY-UBG
DE-703
DE-N2
DE-19
DE-BY-UBM
DE-384
DE-1047
DE-1028
DE-355
DE-BY-UBR
DE-M382
DE-91
DE-BY-TUM
DE-522
DE-83
DE-11
DE-188
DE-Re13
DE-BY-UBR
physical xl, 692 Seiten Illustrationen
publishDate 2009
publishDateSearch 2009
publishDateSort 2009
publisher Stata Press
record_format marc
spellingShingle Cameron, Adrian Colin 1956-
Trivedi, Pravin K. 1943-
Microeconometrics using Stata
Mikroökonomisches Modell (DE-588)4125908-7 gnd
Stata (DE-588)4617285-3 gnd
Mikroökonomie (DE-588)4039225-9 gnd
Ökonometrisches Modell (DE-588)4043212-9 gnd
subject_GND (DE-588)4125908-7
(DE-588)4617285-3
(DE-588)4039225-9
(DE-588)4043212-9
title Microeconometrics using Stata
title_auth Microeconometrics using Stata
title_exact_search Microeconometrics using Stata
title_full Microeconometrics using Stata A. Colin Cameron ; Pravin K. Trivedi
title_fullStr Microeconometrics using Stata A. Colin Cameron ; Pravin K. Trivedi
title_full_unstemmed Microeconometrics using Stata A. Colin Cameron ; Pravin K. Trivedi
title_short Microeconometrics using Stata
title_sort microeconometrics using stata
topic Mikroökonomisches Modell (DE-588)4125908-7 gnd
Stata (DE-588)4617285-3 gnd
Mikroökonomie (DE-588)4039225-9 gnd
Ökonometrisches Modell (DE-588)4043212-9 gnd
topic_facet Mikroökonomisches Modell
Stata
Mikroökonomie
Ökonometrisches Modell
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017012872&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT cameronadriancolin microeconometricsusingstata
AT trivedipravink microeconometricsusingstata