Unitary symmetry and combinatorics

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Louck, James D. 1928- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: New Jersey [u.a.] World Scientific 2008
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV035203869
003 DE-604
005 20120419
007 t|
008 081209s2008 xx |||| 00||| eng d
020 |a 9812814728  |9 981-281472-8 
020 |a 9789812814722  |9 978-981-281472-2 
035 |a (OCoLC)273893634 
035 |a (DE-599)GBV583137725 
040 |a DE-604  |b ger 
041 0 |a eng 
049 |a DE-29T  |a DE-703  |a DE-11  |a DE-19 
050 0 |a QA167 
082 0 |a 511.6  |2 22 
084 |a SK 950  |0 (DE-625)143273:  |2 rvk 
084 |a UK 3000  |0 (DE-625)145799:  |2 rvk 
100 1 |a Louck, James D.  |d 1928-  |e Verfasser  |0 (DE-588)141071044  |4 aut 
245 1 0 |a Unitary symmetry and combinatorics  |c James D. Louck 
264 1 |a New Jersey [u.a.]  |b World Scientific  |c 2008 
300 |a XXI, 619 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
500 |a Literaturverz. S. 597 - 609 
650 4 |a Combinatorial analysis 
650 4 |a Eightfold way (Nuclear physics) 
650 0 7 |a Kombinatorik  |0 (DE-588)4031824-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Kombinatorische Analysis  |0 (DE-588)4164746-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Unitäre Symmetrie  |0 (DE-588)4627368-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Kernphysik  |0 (DE-588)4030340-8  |2 gnd  |9 rswk-swf 
689 0 0 |a Unitäre Symmetrie  |0 (DE-588)4627368-2  |D s 
689 0 1 |a Kombinatorik  |0 (DE-588)4031824-2  |D s 
689 0 |5 DE-604 
689 1 0 |a Kombinatorische Analysis  |0 (DE-588)4164746-4  |D s 
689 1 1 |a Kernphysik  |0 (DE-588)4030340-8  |D s 
689 1 |5 DE-604 
856 4 2 |m Digitalisierung UB Bayreuth  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017010287&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-017010287 

Datensatz im Suchindex

DE-19_call_number 1705/SK 950 L886
1705/M 10 Lou=LS Theoretical Solid State Physics
DE-19_location 95
DE-BY-UBM_katkey 4595670
DE-BY-UBM_media_number 99995295594
41618242510012
_version_ 1823054964678721536
adam_text Contents Preface vii Notation xxi 1 Quantum Angular Momentum 1 1.1 Background and Viewpoint ................. 1 1.1.1 Euclidean and Cartesian 3-space .......... 1 1.1.2 Newtonian physics .................. 9 1.1.3 Nonrelativistic quantum physics .......... 10 1.1.4 Unitary frame rotations ............... 17 1.2 Abstract Angular Momentum ................ 28 1.2.1 Brief background and history ............ 28 1.2.2 One angular momentum ............... 30 1.2.3 Two angular momenta ................ 35 1.3 5O(3,R) andSÍ/(2) Soud Harmonics ........... 43 1.3.1 Inner products .................... 49 1.4 Combinatorial Features ................... 51 1.4.1 Combinatorial definition of Wigner-Clebsch-Gordan coefficients ...................... 51 1.4.2 Magic square realization ............... 59 1.5 Kronecker Product of Solid Harmonics ........... 61 1.6 SU(n) Solid Harmonics ................... 64 xiii xiv CONTENTS 1.6.1 Definition and properties of SU(n) solid harmonics 64 1.6.2 MacMahon and Schwinger master theorems .... 66 1.6.3 Combinatorial proof of the multiplication property 67 1.6.4 Maclaurin monomials ................ 71 1.6.5 Summary of relations ................ 74 1.7 Generalization to U{2) .................... 75 1.7.1 Definition of Č7(2) solid harmonics ......... 75 1.7.2 Basic multiplication properties ........... 78 1.7.3 Indeterminate and derivative actions on the U{2) solid harmonics .................... 81 2 Composite Systems 83 2.1 General Setting ........................ 83 2.1.1 Angular momentum state vectors of a composite system ......................... 83 2.1.2 Group actions in a composite system ........ 89 2.1.3 Standard form of the Kronecker direct sum .... 90 2.1.4 Reduction of Kronecker products .......... 93 2.1.5 Recoupling matrices ................. 94 2.2 Binary Coupling Theory ................... 97 2.2.1 Binary trees ......................100 2.2.2 Standard labeling of binary trees ..........107 2.2.3 Generalized WCG coefficients defined in terms of binary trees ......................109 2.2.4 Binary coupled state vectors ............112 2.2.5 Binary reduction of Kronecker products ......114 2.2.6 Binary recoupling matrices .............115 2.2.7 Triangle patterns and triangle coefficients .....119 2.2.8 Racah coefficients ..................131 2.2.9 Recoupling matrices for η = 3............137 2.2.10 Recoupling matrices for η = 4............140 CONTENTS xv 2.2.11 Structure of general triangle coefficients and recoupling matrices ..................152 2.3 Classification of Recoupling Matrices ............156 3 Graphs and Adjacency Diagrams 163 3.1 Binary Trees and Trivalent Trees .............. 163 3.2 Nonisomorphic Trivalent Trees ............... 172 3.2.1 Shape labels of binary trees ............. 184 3.3 Cubic Graphs and Trivalent Trees ............. 189 3.4 Cubic Graphs ......................... 198 3.4.1 Factoring properties of cubic graphs ........ 200 3.4.2 Join properties of cubic graphs ........... 213 3.4.3 Cubic graph matrices ................ 221 3.4.4 Labeled cubic graphs ................. 226 3.4.5 Summary and unsolved problems .......... 228 4 Generating Functions 229 4.1 Pfaffians and Double Pfaffians ................ 230 4.2 Skew-Symmetric Matrix ................... 232 4.3 Triangle Monomials ..................... 238 4.4 Coupled Wave Functions ................... 239 4.5 Recoupling Coefficients .................... 241 4.6 Special Cases ......................... 245 4.6.1 Cubic graph geometry of the 6 - j and 9 - j coefficients ......................255 4.7 Concluding Remarks .....................259 5 The D* -Polynomials: Form 261 5.1 Overview ........................... 261 5.2 Defining Relations ...................... 268 5.2.1 Another proof of the multiplication rule ......277 xvi CONTENTS 5.3 Restriction to Fewer Variables ................278 5.4 Vector Space Aspects .....................280 5.5 Fundamental Structural Relations .............283 5.5.1 Structural relations ..................283 5.5.2 Principal objectives and tasks ............284 6 Operator Actions in Hilbert Space 285 6.1 Introductory Remarks .................... 285 6.2 Action of Fundamental Shift Operators .......... 286 6.3 Digraph Interpretation .................... 295 6.4 Algebra of Shift Operators .................. 301 6.5 Hilbert Space and ^-Polynomials ............ 304 6.6 Shift Operator Polynomials ................. 308 6.7 Kronecker Product Reduction ................ 312 6.8 More on Explicit Operator Actions ............. 318 7 The Dx -Polynomials: Structure 325 7.1 The C A) Matrices .....................325 7.2 Reduction of ΣΡ(Ζ) <g> DX(Z) ................329 7.3 Binary Tree Structure: С 4 -Coefficients ..........335 7.3.1 The Dx -polynomials for partitions with two nonzero parts ...............342 7.3.2 Recurrence relation for the Dx—polynomials . . . 351 8 The General Linear and Unitary Groups 355 8.1 Background and Review ...................355 8.2 GL(n, C) and its Unitary Subgroup U(n) .........358 8.3 Commuting Hermitian Observables .............368 8.3.1 The Gelfand invariants ................368 8.4 Differential Operator Actions ................370 CONTENTS xvii 8.5 Eigenvalues of the Gelfand Invariants ............371 8.5.1 A new class of symmetric functions ........373 8.5.2 The general eigenvalues of the Gelfand invariants 375 9 Tensor Operator Theory 379 9.1 Introduction ..........................379 9.1.1 A basis of irreducible tensor operators .......382 9.2 Unit Tensor Operators ....................386 9.2.1 Summary of properties of unit tensor operators . . 389 9.2.2 Explicit unit tensor operators ............392 9.3 Canonical Tensor Operators .................394 9.3.1 Application of the factorization lemma to canoni¬ cal tensor operators .................399 9.3.2 Subgroup conditions and reduced matrix elements 403 9.4 Properties of Reduced Matrix Elements ..........408 9.4.1 Unit projective operators ..............410 9.4.2 The pattern calculus .................415 9.4.3 Shift invariance of Kostka and Littlewood-Richardson numbers ...........421 9.5 The Unitary Group t/(3) ...................422 9.5.1 The U(S) canonical tensor operators ........422 9.6 The Ï7(3) Characteristic Null Spaces ............425 9.7 The U(3) : U(2) Unit Projective Operators ........432 9.7.1 Coupling rules and Racah coefficients .......433 9.7.2 Limit relations ....................440 10 Compendium A. Basic Algebraic Objects 447 10.1 Groups ............................. U7 10.1.1 Group actions ..................... ^9 10.2 Rings ............................. 451 10.2.1 Rings of polynomials ................. 452 xviii CONTENTS 10.2.2 Vector spaces of polynomials ............455 10.3 Abstract Hubert Spaces ...................456 10.3.1 Inner product spaces ................. 456 10.3.2 Linear operators ................... 458 10.3.3 Inner products and linear operators ........ 460 10.3.4 Orthonormalization methods ............ 461 10.3.5 Matrix representations of linear operators ..... 464 10.4 Properties of Matrices .................... 465 10.4.1 Properties of normal matrices ............ 467 10.4.2 Inner product on the space of complex matrices . . 468 10.4.3 Exponentiated matrices ............... 469 10.4.4 Lie bracket polynomials ............... 476 10.5 Tensor Product Spaces .................... 486 10.6 Vector Spaces of Polynomials ................ 488 10.7 Group Representations .................... 494 10.7.1 Irreducible representations of groups ........499 10.7.2 Schur s lemmas ....................501 11 Compendium B: Combinatorial Objects 505 11.1 Partitions and Tableaux ...................506 11.1.1 Restricted compositions ...............512 11.1.2 Linear ordering of sequences and partitions .... 513 11.2 Young Frames and Tableaux .................514 11.2.1 Skew tableaux ....................520 11.3 Gelfand-Tsetlin Patterns ...................523 11.3.1 Combinatorial origin of Gelfand-Tsetlin patterns . 523 11.3.2 Group theoretical origin of Gelfand-Tsetlin patterns ........................528 11.3.3 Skew Gelfand-Tsetlin patterns ...........528 11.3.4 Notations .......................532 CONTENTS xix 11.3.5 Triangular and skew Gelfand-Tsetlin patterns ... 533 11.3.6 Words and lattice permutations ...........535 11.3.7 Lattice permutations and Littlewood-Richardson numbers .......................538 11.3.8 Kostka and Littlewood-Richardson numbers .... 550 11.4 Generating Functions and Relations ............556 11.4.1 Notations ....................... 557 11.4.2 Counting relations .................. 558 11.4.3 Generating relations of functions .......... 559 11.4.4 Operator generated functions ............ 561 11.5 Multivariable Special Functions .............. 563 11.5.1 Solid harmonics ....................564 11.5.2 Double harmonic functions in R3 ..........565 11.5.3 Hypergeometric functions ..............565 11.5.4 MacMahon s master theorem ............568 11.5.5 Power of a determinant ...............568 11.6 Symmetric Functions .....................570 11.6.1 Introduction ..................... 570 11.6.2 Four basic symmetric functions ........... 571 11.6.3 Vandermonde determinants ............. 572 11.6.4 Schur functions .................... 573 11.6.5 Dual bases for symmetric functions ......... 578 11.7 Sylvester s Identity ...................... 580 11.8 Derivation of Weyľs Dimension Formula .......... 582 11.8.1 Vandermonde determinants, Bernoulli polynomi¬ als, and Weyl s formula ...............582 11.9 Other Topics .........................585 11.9.1 Alternating sign matrices ..............585 11.9.2 Binary trees, graphs, and digraphs .........595 11.9.3 Umbral calculus and double tableau calculus . . . 595 xx CONTENTS 11.9.4 Special functions................... 596 11.9.5 Other generalizations ................596 Bibliography 597 Index 611
any_adam_object 1
author Louck, James D. 1928-
author_GND (DE-588)141071044
author_facet Louck, James D. 1928-
author_role aut
author_sort Louck, James D. 1928-
author_variant j d l jd jdl
building Verbundindex
bvnumber BV035203869
callnumber-first Q - Science
callnumber-label QA167
callnumber-raw QA167
callnumber-search QA167
callnumber-sort QA 3167
callnumber-subject QA - Mathematics
classification_rvk SK 950
UK 3000
ctrlnum (OCoLC)273893634
(DE-599)GBV583137725
dewey-full 511.6
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 511 - General principles of mathematics
dewey-raw 511.6
dewey-search 511.6
dewey-sort 3511.6
dewey-tens 510 - Mathematics
discipline Physik
Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01847nam a2200481 c 4500</leader><controlfield tag="001">BV035203869</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120419 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">081209s2008 xx |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812814728</subfield><subfield code="9">981-281472-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812814722</subfield><subfield code="9">978-981-281472-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)273893634</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV583137725</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA167</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.6</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 3000</subfield><subfield code="0">(DE-625)145799:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Louck, James D.</subfield><subfield code="d">1928-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)141071044</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Unitary symmetry and combinatorics</subfield><subfield code="c">James D. Louck</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey [u.a.]</subfield><subfield code="b">World Scientific</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 619 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 597 - 609</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eightfold way (Nuclear physics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorische Analysis</subfield><subfield code="0">(DE-588)4164746-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unitäre Symmetrie</subfield><subfield code="0">(DE-588)4627368-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kernphysik</subfield><subfield code="0">(DE-588)4030340-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Unitäre Symmetrie</subfield><subfield code="0">(DE-588)4627368-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Kombinatorische Analysis</subfield><subfield code="0">(DE-588)4164746-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Kernphysik</subfield><subfield code="0">(DE-588)4030340-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=017010287&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017010287</subfield></datafield></record></collection>
id DE-604.BV035203869
illustrated Not Illustrated
indexdate 2025-02-03T17:28:01Z
institution BVB
isbn 9812814728
9789812814722
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-017010287
oclc_num 273893634
open_access_boolean
owner DE-29T
DE-703
DE-11
DE-19
DE-BY-UBM
owner_facet DE-29T
DE-703
DE-11
DE-19
DE-BY-UBM
physical XXI, 619 S.
publishDate 2008
publishDateSearch 2008
publishDateSort 2008
publisher World Scientific
record_format marc
spellingShingle Louck, James D. 1928-
Unitary symmetry and combinatorics
Combinatorial analysis
Eightfold way (Nuclear physics)
Kombinatorik (DE-588)4031824-2 gnd
Kombinatorische Analysis (DE-588)4164746-4 gnd
Unitäre Symmetrie (DE-588)4627368-2 gnd
Kernphysik (DE-588)4030340-8 gnd
subject_GND (DE-588)4031824-2
(DE-588)4164746-4
(DE-588)4627368-2
(DE-588)4030340-8
title Unitary symmetry and combinatorics
title_auth Unitary symmetry and combinatorics
title_exact_search Unitary symmetry and combinatorics
title_full Unitary symmetry and combinatorics James D. Louck
title_fullStr Unitary symmetry and combinatorics James D. Louck
title_full_unstemmed Unitary symmetry and combinatorics James D. Louck
title_short Unitary symmetry and combinatorics
title_sort unitary symmetry and combinatorics
topic Combinatorial analysis
Eightfold way (Nuclear physics)
Kombinatorik (DE-588)4031824-2 gnd
Kombinatorische Analysis (DE-588)4164746-4 gnd
Unitäre Symmetrie (DE-588)4627368-2 gnd
Kernphysik (DE-588)4030340-8 gnd
topic_facet Combinatorial analysis
Eightfold way (Nuclear physics)
Kombinatorik
Kombinatorische Analysis
Unitäre Symmetrie
Kernphysik
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017010287&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT louckjamesd unitarysymmetryandcombinatorics