Advances in mathematical and statistical modeling

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Arnold, Barry C. 1939- (HerausgeberIn)
Format: Buch
Sprache:English
Veröffentlicht: Boston [u.a.] Birkhäuser 2008
Schriftenreihe:Statistics for industry and technology
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV035177194
003 DE-604
005 20180131
007 t
008 081124s2008 xxuad|| |||| 10||| eng d
015 |a 07,N14,0694  |2 dnb 
015 |a 08,A47,0946  |2 dnb 
016 7 |a 98346930X  |2 DE-101 
020 |a 9780817646257  |c (Birkhäuser Boston) Pp. : ca. sfr 163.00 (freier Pr.)  |9 978-0-8176-4625-7 
020 |a 9780817646264  |9 978-0-8176-4626-4 
024 3 |a 9780817646257 
028 5 2 |a 11827573 
035 |a (OCoLC)154712001 
035 |a (DE-599)DNB98346930X 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a xxu  |c XD-US  |a gw  |c XA-DE  |a sz  |c XA-CH 
049 |a DE-824  |a DE-703  |a DE-11 
050 0 |a QA276.4 
082 0 |a 519.502855369  |2 22 
082 0 |a 519  |2 22/ger 
084 |a QH 200  |0 (DE-625)141539:  |2 rvk 
084 |a SK 820  |0 (DE-625)143258:  |2 rvk 
084 |a 510  |2 sdnb 
245 1 0 |a Advances in mathematical and statistical modeling  |c Barry C. Arnold ... ed. 
264 1 |a Boston [u.a.]  |b Birkhäuser  |c 2008 
300 |a XXXIII, 368 S.  |b Ill., graph. Darst.  |c 26 cm 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Statistics for industry and technology 
500 |a Literaturangaben 
650 7 |a Statistische modellen  |2 gtt 
650 4 |a Datenverarbeitung 
650 4 |a Mathematical statistics  |x Data processing  |x Congresses 
650 0 7 |a Statistisches Modell  |0 (DE-588)4121722-6  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)4143413-4  |a Aufsatzsammlung  |2 gnd-content 
655 7 |0 (DE-588)1071861417  |a Konferenzschrift  |2 gnd-content 
689 0 0 |a Statistisches Modell  |0 (DE-588)4121722-6  |D s 
689 0 |5 DE-604 
700 1 |a Arnold, Barry C.  |d 1939-  |0 (DE-588)111442435  |4 edt 
856 4 2 |u http://d-nb.info/98346930X/04  |3 Inhaltsverzeichnis 
856 4 2 |m SWB Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016984031&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
999 |a oai:aleph.bib-bvb.de:BVB01-016984031 

Datensatz im Suchindex

_version_ 1804138348291293184
adam_text CONTENTS PREFACE XVII LIST OF CONTRIBUTORS XXI LIST OF TABLES XXVII LIST OF FIGURES XXXI PART I DISTRIBUTION THEORY AND APPLICATIONS 1 ENRIQUE CASTILLO S CONTRIBUTIONS TO CONDITIONAL SPECIFICATION BARRY C ARNOLD 3 1.1 INTRODUCTION , 3 1.2 CONDITIONALS IN GIVEN EXPONENTIAL FAMILIES 4 1.3 CONDITIONALS IN GIVEN NON-EXPONENTIAL FAMILIES 8 1.4 TRINUTATED AND WEIGHTED DISTRIBUTIONS 9 1.5 A DIGRESSION ON IMPROPER MODELS 9 L.FI CHARAETEMATKNIS OF CLASSICAL MODELS VIA CONDITIONAL SPECIFICATIONS.. 10 1.7 BACK TO THE BAYESIAN SCENARIO 10 1.8 INFERENCE FOR CONDITIONALLY SPECIFIED MODELS 11 1.9 INCOMPLETE AND IMPRECISE CONDITIONAL SPECIFICATION 11 1.10 FUTURE PROSPECTS 17 REFERENCES 17 2 THE POLYGONAL DISTRIBUTION DIMURIS KARLIA AND, EVDOKIA XCKALAKI 21 2.1 INTRODUCTION 21 2.2 THE TRIANGULAR DISTRIBUTION 22 2.3 THE POLYGONAL DISTRIBUTION 23 2.3.1 ESTIMATION 25 2.4 THE POLYGONAL DISTRIBUTION AS A MIXING DENSITY *... 26 2.4.1 TILT! BINOMIAL TRIANGULAR DISTRIBUTION 26 2.4.2 AN APPLICATION 28 2.4.3 THE NEGATIVE BINOMIAL TRIANGULAR DISTRIBUTION 30 2.5 DISCUSSION 32 REFERENCOH 32 VIII CONTENTS 3 CONDITIONALLY SPECIFIED MODELS: NEW DEVELOPMENTS AND APPLICATIONS JOSE MARIA SARABIA, MARIA SARABIA, AND MARTA PASCUAL 35 3.1 INTRODUCTION 35 3.2 BIVARIATE POWER CONDITIONALS DISTRIBUTION 36 3.2.1 BIVARIATE POISSON CONDITIONALS DISTRIBUTION 36 3.2.2 BIVARIATE BINOMIAL CONDITIONALS DISTRIBUTION 37 3.2.3 A GENERAL CLASS 37 3.3 MIXTURE CONDITIONAL MODELS WITH APPLICATIONS TO ACTUARIAL STATISTICS. 38 3.4 BIVARIATE INCOME DISTRIBUTIONS 39 3.5 FLEXIBLE CONJUGATE PRIOR FAMILIES 39 3.5.1 HURDLE COUNT DATA MODELS: BAYESIAN ANALYSIS 40 3.5.2 ESTIMATING WITH INCOMPLETE COUNT DATA 40 3.6 CONDITIONAL HAZARD FUNCTIONS 41 REFERENCES 42 4 MODELLING OF INSURANCE CLAIM COUNT WITH HURDLE DISTRIBUTION FOR PANEL DATA JEAN-PHILIPPE BOUCHER, MICHEL DENUIT T AND MONTSERRAT GUILLEN 45 4.1 INTRODUCTION 45 4.1.1 DATA USED 46 4.2 CROSS SECTION VERSUS PANEL DATA 47 4.2.1 MODELLING 47 4.3 POISSON DISTRIBUTION 48 4.3.1 OVERVIEW 48 4.3.2 PANEL DATA 48 4.4 HURDLE MODELS 49 4.4.1 OVERVIEW 49 4.4.2 PANEL DATA 52 4.5 PREDICTIVE DISTRIBUTION 53 4.5.1 POISSON 53 4.5.2 HURDLE 54 4.5.3 LINEAR CREDIBILITY 55 4.6 INSURANCE APPLICATION. 55 4.6.1 ESTIMATIONS 55 4.6.2 PREMIUMS 56 4.7 CONCLUSION 58 REFERENCES 58 5 DISTANCE-BASED ASSOCIATION AND MULTI-SAMPLE TESTS FOR GENERAL MULTIVARIATE DATA CARLES M. CUADRAS 61 5.1 INTRODUCTION 61 5.2 MULTIVARIATE ASSOCIATION 62 5.2.1 EXAMPLE OF MULTIVARIATE ASSOCIATION 63 5.3 THE PROXIMITY FUNCTION 64 5.4 THE DISTANCE-BASED BAYES ALLOCATION RULE 65 5.5 MULTIVARIATE MULTIPLE-SAMPLE TESTS 66 5.5.1 PARTITIONING THE GEOMETRIC VARIABILITY , 66 CONTENTS IX 5.5.2 TESTS WII.LI PRINCIPAL COORDINATES 07 5.5.. J TESTS WII.LI PROXIMITY FUNETIOIIH FJ8 R .H.* 1 MULTIVNRIUT.O DISPERSION (J ) 5.5.5 EXAMPLES OF NMLLKHIUNPLC! TESTS (IF) REL ERENCOH , 7() PART II PROBABILITY AND STATISTICS (I EMPIRICAL BAYES ASSESSMENT OF THO HYPERPARAMETERS IN BAYESIAN FACTOR ANALYSIS *V. ,LAMC» PITSH, KEY-11 SHIN, AND LEE. HUNT/ RUN 75 (I.L INTRODUCTION * , ., , 75 FI.2 THE HFA MODCIL 7FI (I.. I ASHCHHIH^, THE HY[)( I RPFVRAI[I(;1.(IRS 77 (I.. J. I A.SHCHSNX NT OF AN , 77 (I.3.2 ASKIIKNIIICIIL, OF NIIIIINIIIL 78 VTM. .I AHHFSHINCIIT, OF H 78 ().. I. I AHHIISHLLKMLT OF /7 78 II. A. 5 ITERATIVE CUIIIPUUI.TIOII OF THO LIYPORPA.NIIIKIT.OR.S 70 ()..] HAYESIAU IWTIINNLIOII OF A, I L 70 0.5 I LXUINPJE 81 (I.(I MCTLIOD ( OIIIJIARISON AND SUMMARY 84 RUFENUIET H 85 PAR!; ILL ORDOR STATLSTICK AND AIIALYNIA 7 NOGATIVO MIXTNRH, ORDOR STATIHTICH, AND SYATEMH JTM/I NTWURM MID I RDRO J. HERNANDEZ 8!J 7.1 .INTRODUCTION 80 7.2 HDATION.SLIIPH BETWEEN MIXTUMS AND SY.STOMS 90 7.I J I ROIXFRLIT H OF MIXTURES AND SYSTEMS 92 7.4 TIN. HRIDW STRNCL.UIC . OF) API I ( NDIX 5)8 HCFCN^NCCH 90 8 MODOLH OF ORCUSRCUL DATA AND PRODUCTH OF BETA RANDOM VARIABLES ERIC BRUTNTR TIN.D, LIDO KAMPX 1.01 8.1 INTMCLUEUUN , 101 8.2 ITITCRUICDIATI! (JRDCI 1 8(.AL;I,STICS IMD UIT! OJ DISROD DIRICIIKIT DIHTRIHUTION . 1013 8, ( J PROPCRL,II!,S OF I VAT^UONAL ORDOR STATISTICW I(}5 ILT ICRI IU CK 100 9 EXACT INFORONCO AND OPTIMAL CENSORING SCHEME FOR A SIMPLE STCP-STREHH MODOL UNDER PROGRESSIVE TYJ)E-II CENSORING QIHAN KIC, N. IHDAKRIXLMTM, AND JJONP-LTOON HAN 107 !.).L LUFRTIDIK TIOU 107 0.2 MODEL DESCRIPTION MID MLKS 100 X CONTENTS 9.3 CONDITIONAL DISTRIBUTIONS OF THE MLES ILL 9.4 CONFIDENCE INTERVALS 117 9.4.1 EXACT CONFIDENCE INTERVALS 117 9.4.2 ASYMPTOTIC CONFIDENCE INTERVALS 118 9.4.3 BOOTSTRAP CONFIDENCE INTERVALS 118 9.5 SIMULATION STUDY 121 9.6 OPTIMAL CENSORING SCHEME 121 9.7 ILLUSTRATIVE EXAMPLES 123 9.8 CONCLUSIONS 125 APPENDIX: TABLES AND FIGURES 126 REFERENCES 136 PART IV ENGINEERING MODELING 10 NON-GAUSSIAN STATE ESTIMATION IN POWER SYSTEMS ROBERTO MMGUEZ, ANTONIO J. CONEJO, AND ALI S. HADI 141 10.1 INTRODUCTION 141 10.2 MAXIMUM LIKELIHOOD ESTIMATION 142 10.3 TRANSFORMATION OF RANDOM VARIABLES 143 10.3.1 ROSENBLATT TRANSFORMATION 144 10.3.2 NATAF TRANSFORMATION 144 10.3.3 ORTHOGONAL TRANSFORMATION OF NORMAL RANDOM VARIABLES 145 10.4 THE TRANSFORMED LIKELIHOOD ESTIMATION PROBLEM 146 10.5 GENERAL STATE ESTIMATION (GSE) FORMULATION 147 10.5.1 INDEPENDENT GAUSSIAN PROBABILITY DENSITY FUNCTION 147 10.5-2 DEPENDENT GAUSSIAN PROBABILITY DENSITY FUNCTION 148 10.5.3 DEPENDENT NON-GAUSSIAN PROBABILITY DENSITY FUNCTION 148 10.6 BAD DATA DETECTION 148 10.7 ILLUSTRATIVE EXAMPLE 148 10.7.1 STATISTICAL ASSUMPTIONS 149 10.8 CONCLUSIONS 154 REFERENCES 155 11 STATISTICS APPLIED TO WAVE CLIMATE ON A BEACH PROFILE CARMEN CASTILLO AND CRISTINA SOLARES 157 11.1 INTRODUCTION * 157 11.2 OFFSHORE WAVE CLIMATE 158 11.3 LOCAL WAVE HEIGHT DESCRIPTION 161 11.3.1 CONDITIONAL PROBABILITIES 161 11.3.2 ABSOLUTE PROBABILITIES 163 11.4 CONSECUTIVE WAVE HEIGHTS 164 11.5 MAXIMUM WAVE HEIGHT IQQ 11.5.1 CONDITIONAL PROBABILITIES 166 11.5.2 ABSOLUTE PROBABILITIES 167 11.6 CONCLUSIONS 168 REFERENCES CONTENTS XI PART V EXTREME VALUE THEORY 12 ON SOME DEPENDENCE MEASURES FOR MULTIVARIATE EXTREME VALUE DISTRIBUTIONS ISHAY WEISSMAN 171 12.1 INTRODUCTION 171 12.2 DEPENDENCE COEFFICIENTS 172 12.3 EXAMPLES 174 12.4 RELATION BETWEEN RJ AND T2 176 12.5 COMBINING TWO INDEPENDENT MODELS 179 REFERENCES 180 13 RATIO OF MAXIMUM, TO THE SUM FOR TESTING SUPER HEAVY TAILS CLAUDIA NEVES AND ISABEL PRAGA ALVES 181 13.1 INTRODUCTION 181 13.2 MAIN RESULTS 183 13-3 SIMULATION RESULTS AND REAL DATA ANALYSIS 184 13.4 AUXILIARY RESULTS 188 13-5 PROOFS 189 REFERENCES 193 14 TAIL BEHAVIOUR: AN EMPIRICAL STUDY M. IVETTE GOMES, DINIS PESTANA, LIGIA RODRIGUES, AND CLARA VISEU 195 14.1 INTRODUCTION 195 14.2 ASYMPTOTIC CPS FOR THE TAIL INDEX AND THE VAR 197 14.3 REDUCED BIAS TAIL INDEX AND QUANTILE ESTIMATORS 198 14.3.1 TAIL INDEX ESTIMATION 198 14.3.2 ASYMPTOTIC CI S FOR 7 BASED ON SECOND ORDER REDUCED-BIAS TAIL INDEX ESTIMATION 199 14.3.3 ADAPTIVE CHOICE OF THE LEVEL FOR REDUCED-BIAS ESTIMATORS 199 14.3.4 EXTREME QUANTILE OR VAR ESTIMATIO N 200 14.3.5 ASYMPTOTIC CI S FOR VAR P ON THE BASIS OF REDUCED-BIAS ESTIMATORS 200 14.4 AN ALGORITHM FOR SEMI-PARAMETRIC TAIL ESTIMATION 200 14.5 THE USE OF A PARAMETRIC QUANTILE METHOD IN TAIL INDEX AND QUANTILE ESTIMATION 201 14.6 FINANCIAL DATA ANALYSIS 203 14.6.1 SECOND ORDER PARAMETER ESTIMATION 203 14.6.2 TAIL INDEX AND VAR P ESTIMATION 203 14.6.3 GRAPHICAL ILLUSTRATION OF THE ADAPTIVE THRESHOLD CHOICE FOR TAIL INDEX AND VAR ESTIMATION 204 14.6.4 THE USE OF A PERCENTILE METHOD IN QUANTILE ESTIMATION 205 REFERENCES - 206 15 AN EXAMPLE OF REAL-LIFE DATA WHERE THE HILL ESTIMATOR IS CORRECT ROLF-DIETER REISS AND ULF CORMANN 209 15.1 INTRODUCTION 209 15.2 THE PARETO MODELING 210 XII CONTENTS 15.3 THE HILL ESTIMATOR 211 15.4 MODIFIED PICKANDS ESTIMATORS 212 15.5 ANALYZING THE LONG TERM COPEPOD DATA 213 15.5.1 THE DATA SET 213 15.5.2 PARAMETRIC ESTIMATES FOR THE COPEPOD DATA 213 15.5.3 MEDIAN EXCESS FUNCTIONS 214 15.6 COMPUTATIONAL ASPECTS 215 REFERENCES 215 PART VI BUSINESS AND ECONOMICS APPLICATIONS 16 DERIVING CREDIBILITY PREMIUMS UNDE R DIFFERENT BAYESIAN METHODOLOGY EMILIO GOMEZ DENIZ - 219 16.1 INTRODUCTION 219 16.2 CLASSICAL MODEL OF BIIHLMANN 221 16.3 STANDARD BAYESIAN CREDIBILITY 222 16.4 CREDIBILITY BASED ON ROBUST BAYESIAN ANALYSIS 223 16.5 BEYOND THE LOSS FUNCTION 226 16.6 DISCUSSION 228 REFERENCES 228 17 THE INFLUENCE OF TRANSPORT LINKS ON DISAGGREGATION AND REGIONALIZATION METHODS IN INTERREGIONAL INPUT-OUTPUT MODELS BETWEEN METROPOLITAN AND REMOTE AREAS FERNANDO ESCOBEDO AND JOSE M. URENA 231 17.1 INTRODUCTION 231 17.2 METHODOLOGY 232 17.3 RESULTS AND DISCUSSION 236 17.4 CONCLUSIONS 240 REFERENCES 240 PART VII STATISTICAL METHODS 18 JACKKNIFE BIAS CORRECTION OF A CLOCK OFFSET ESTIMATOR DANIEL R. JESKE 245 18.1 INTRODUCTION 245 18.2 CANDIDATE CLOCK OFFSET ESTIMATORS 247 18.2.1 PAXSON S ESTIMATOR , , 247 18.2.2 BOOTSTRAP BIAS-CORRECTION 247 18.2.3 JACKKNIFE BIAS-CORRECTION 248 18.3 MEAN SQUARED ERROR UNDER EXPONENTIAL AND PARETO DISTRIBUTIONS .... 248 18.3.1 EXPONENTIAL DISTRIBUTION 248 18.3.2 PARETO DISTRIBUTION 249 18.4 ADDITIONAL MEAN SQUARED ERROR COMPARISONS VIA SIMULATION 250 18.4.1 LOGNORMAL, GAMMA AND WEIBULL DISTRIBUTION 250 18.4.2 HEAVY TAILED DISTRIBUTIONS 252 CONTENTS XIII 18.5 SUMMARY 253 REFERENCES 254 19 PRETESTING IN POLYTOMOUS LOGISTIC REGRESSION MODELS BASED ON PHI-DIVERGENCE MEASURES LEANDRO PARDO, MARIA LUISA MENENDEZ, AND NIRIAN MARTIN 255 19.1 INTRODUCTION 255 19.2 PRELIMINARIES AND NOTATION 257 19.3 CONTIGUOUS ALTERNATIVE HYPOTHESES 259 19.4 ASYMPTOTIC DISTRIBUTIONAL QUADRATIC RISK OF J§^ 3 , 3^ AND 3J^ 2 262 19.5 COMPARISON OF FI CH , (3^ AND ^ LT4 A 264 REFERENCES 265 20 A UNIFIED APPROACH TO MODEL SELECTION, DISCRIMINATION, GOODNESS OF FIT AND OUTLIERS IN TIME SERIES DANIEL PENA AND PEDRO GALEANO 267 20.1 INTRODUCTION 267 20.2 ESTIMATING ARMA TIME SERIES MODELS 268 20.3 QUADRATIC DISCRIMINATION OF ARMA TIME SERIES MODELS 269 20.4 GOODNESS OF FIT FOR ARMA TIME SERIES MODELS 271 20.5 OUTLIERS IN ARMA TIME SERIES MODELS 273 REFERENCES 277 21 GENERALIZED LINEAR MODELS DIAGNOSTICS FOR BINARY DATA USING DIVERGENCE MEASURES J. A, PARDO AND M. C. PARDO 279 21.1 INTRODUCTION 279 21.2 CHECKING GOODNESS-OF-FIT 281 21.3 SIMULATION STUDY 283 21.4 OUTLYING DETECTION PROCEDURES 285 REFERENCES 288 PART VIII APPLIED MATHEMATICS 22 SOME PROBLEMS IN GEOMETRIC PROCESSING OF SURFACES JAIME PUIG-PEY, AKEMI GDLVEZ, ANDRES IGLESIAS, PEDRO CORCUERA, AND JOSE RODRIGUEZ 293 22.1 INTRODUCTION 293 22.2 MATHEMATICAL PRELIMINARIES 294 22.3 HELICAL CURVES ON SURFACES 296 22.3.1 IMPLICIT SURFACES 297 22.3.2 PARAMETRIC SURFACES 297 22.4 SILHOUETTE CURVE ON A SURFACE 299 22.4.1 SURFACE IN IMPLICIT FORM 299 22.4.2 SURFACES IN PARAMETRIC FORM 301 22.5 CONCLUSIONS AND FURTHER REMARKS 302 REFERENCES 303 XIV CONTENTS 23 GENERALIZED INVERSE COMPUTATION BASED ON AN ORTHOGONAL DECOMPOSITION METHODOLOGY PATRICIA GOMEZ, BEATRIZ LACRUZ, AND ROSA EVA PRUNEDA 305 23.1 INTRODUCTION 305 23.2 GENERALIZED INVERSE 306 23.3 THE ALGORITHM TO OBTAIN A GENERALIZED INVERSE 307 23.4 GENERALIZED INVERSE UPDATING ALGORITHM 309 23.5 LEAST SQUARES ESTIMATION FOR LESS THAN FULL RANK MODELS 312 23.6 CONCLUSIONS 315 REFERENCES , 315 24 SINGLE AND ENSEMBLE FAULT CLASSIFIERS BASED ON FEATURES SELECTED BY MULTI-OBJECTIVE GENETIC ALGORITHMS ENRICO ZIO, PIERO BARALDI, GIULIO GOLAM, AND NICOLA PEDRONI 317 24.1 INTRODUCTION 317 24.2 FEATURE SELECTION FOR PATTERN CLASSIFICATION 318 24.2.1 AN OVERVIEW OF FEATURE SELECTION TECHNIQUES 319 24.3 GA-BASED FEATURE SELECTION FOR PATTERN CLASSIFICATION 320 24.4 CLASSIFICATION OF TRANSIENTS IN THE FEEDWATER SYSTEM OF A BOILING WATER REACTOR 322 24.5 THE ENSEMBLE APPROACH TO PATTERN CLASSIFICATION 323 24.5.1 THE CONSTRUCTION OF THE ENSEMBLE 323 24.5.2 INTEGRATION OF CLASS ASSIGNMENTS 324 24.6 APPLICATION TO MULTIPLE FAULT CLASSIFICATION 326 24.7 CONCLUSIONS 327 REFERENCES 328 25 FEASIBILITY CONDITIONS IN ENGINEERING PROBLEMS INVOLVING A PARAMETRIC SYSTEM OF LINEAR INEQUALITIES CRISTINA SOLARES AND EDUARDO W. V. CHAVES 331 25.1 INTRODUCTION 331 25.2 THE HEAT TRANSFER PROBLEM 332 25.3 A FRACTURE MECHANICAL PROBLEM 335 25.4 THE BEAM PROBLEM 336 25.5 CONCLUSIONS 340 REFERENCES , 340 26 FORECASTING NONLINEAR SYSTEMS WITH NEURAL NETWORKS VIA ANTICIPATED SYNCHRONIZATION SIXTO HERRERA, DANIEL SAN-MARTIN, ANTONIO S. COFIFIO, AND JOSE M. GUTIERREZ 341 26.1 INTRODUCTION 341 26-2 ANTICIPATED SYNCHRONIZATION 342 26.3 NONLINEAR TIME SERIES MODELING WITH NEURAL NETWORKS 345 26.4 ERROR GROWTH IN SYNCHRONIZED CHAINS 347 26.5 CONCLUSIONS 349 REFERENCES , 349 CONTENTS XV PART IX DISCRETE DISTRIBUTIONS 27 THE DISCRETE HALF-NORMAL DISTRIBUTION ADRIENNE W. KEMP 353 27.1 INTRODUCTION 353 27.2 THE MAXIMUM ENTROPY DERIVATION 354 27.3 THE LIMITING G-HYPER-POISSON-I DERIVATION 355 27.4 THE MORSE M/M/L QUEUE WITH BALKING 355 27.5 SUCCESS RUN PROCESSES 356 27.6 MIXED HEINE DISTRIBUTION 357 27.7 PROPERTIES 358 REFERENCES 359 28 PARAMETER ESTIMATION FOR CERTAIN Q-HYPERGEOMETRIC DISTRIBUTIONS DAVID KEMP 361 28.1 INTRODUCTION 361 28.2 SPECIAL CASES AND PROPERTIES 362 28.3 ESTIMATION 364 REFERENCES 365 INDEX 367
adam_txt CONTENTS PREFACE XVII LIST OF CONTRIBUTORS XXI LIST OF TABLES XXVII LIST OF FIGURES XXXI PART I DISTRIBUTION THEORY AND APPLICATIONS 1 ENRIQUE CASTILLO'S CONTRIBUTIONS TO CONDITIONAL SPECIFICATION BARRY C ARNOLD 3 1.1 INTRODUCTION , 3 1.2 CONDITIONALS IN GIVEN EXPONENTIAL FAMILIES 4 1.3 CONDITIONALS IN GIVEN NON-EXPONENTIAL FAMILIES 8 1.4 TRINUTATED AND WEIGHTED DISTRIBUTIONS 9 1.5 A DIGRESSION ON IMPROPER MODELS 9 L.FI CHARAETEMATKNIS OF CLASSICAL MODELS VIA CONDITIONAL SPECIFICATIONS. 10 1.7 BACK TO THE BAYESIAN SCENARIO 10 1.8 INFERENCE FOR CONDITIONALLY SPECIFIED MODELS 11 1.9 INCOMPLETE AND IMPRECISE CONDITIONAL SPECIFICATION 11 1.10 FUTURE PROSPECTS 17 REFERENCES 17 2 THE POLYGONAL DISTRIBUTION DIMURIS KARLIA AND, EVDOKIA XCKALAKI 21 2.1 INTRODUCTION 21 2.2 THE TRIANGULAR DISTRIBUTION 22 2.3 THE POLYGONAL DISTRIBUTION 23 2.3.1 ESTIMATION 25 2.4 THE POLYGONAL DISTRIBUTION AS A MIXING DENSITY *. 26 2.4.1 TILT! BINOMIAL TRIANGULAR DISTRIBUTION 26 2.4.2 AN APPLICATION 28 2.4.3 THE NEGATIVE BINOMIAL TRIANGULAR DISTRIBUTION 30 2.5 DISCUSSION 32 REFERENCOH 32 VIII CONTENTS 3 CONDITIONALLY SPECIFIED MODELS: NEW DEVELOPMENTS AND APPLICATIONS JOSE MARIA SARABIA, MARIA SARABIA, AND MARTA PASCUAL 35 3.1 INTRODUCTION 35 3.2 BIVARIATE POWER CONDITIONALS DISTRIBUTION 36 3.2.1 BIVARIATE POISSON CONDITIONALS DISTRIBUTION 36 3.2.2 BIVARIATE BINOMIAL CONDITIONALS DISTRIBUTION 37 3.2.3 A GENERAL CLASS 37 3.3 MIXTURE CONDITIONAL MODELS WITH APPLICATIONS TO ACTUARIAL STATISTICS. 38 3.4 BIVARIATE INCOME DISTRIBUTIONS 39 3.5 FLEXIBLE CONJUGATE PRIOR FAMILIES 39 3.5.1 HURDLE COUNT DATA MODELS: BAYESIAN ANALYSIS 40 3.5.2 ESTIMATING WITH INCOMPLETE COUNT DATA 40 3.6 CONDITIONAL HAZARD FUNCTIONS 41 REFERENCES 42 4 MODELLING OF INSURANCE CLAIM COUNT WITH HURDLE DISTRIBUTION FOR PANEL DATA JEAN-PHILIPPE BOUCHER, MICHEL DENUIT T AND MONTSERRAT GUILLEN 45 4.1 INTRODUCTION 45 4.1.1 DATA USED 46 4.2 CROSS SECTION VERSUS PANEL DATA 47 4.2.1 MODELLING 47 4.3 POISSON DISTRIBUTION 48 4.3.1 OVERVIEW 48 4.3.2 PANEL DATA 48 4.4 HURDLE MODELS 49 4.4.1 OVERVIEW 49 4.4.2 PANEL DATA 52 4.5 PREDICTIVE DISTRIBUTION 53 4.5.1 POISSON 53 4.5.2 HURDLE 54 4.5.3 LINEAR CREDIBILITY 55 4.6 INSURANCE APPLICATION. 55 4.6.1 ESTIMATIONS 55 4.6.2 PREMIUMS 56 4.7 CONCLUSION 58 REFERENCES 58 5 DISTANCE-BASED ASSOCIATION AND MULTI-SAMPLE TESTS FOR GENERAL MULTIVARIATE DATA CARLES M. CUADRAS 61 5.1 INTRODUCTION 61 5.2 MULTIVARIATE ASSOCIATION 62 5.2.1 EXAMPLE OF MULTIVARIATE ASSOCIATION 63 5.3 THE PROXIMITY FUNCTION 64 5.4 THE DISTANCE-BASED BAYES ALLOCATION RULE 65 5.5 MULTIVARIATE MULTIPLE-SAMPLE TESTS 66 5.5.1 PARTITIONING THE GEOMETRIC VARIABILITY , 66 CONTENTS IX 5.5.2 TESTS WII.LI PRINCIPAL COORDINATES 07 5.5.'J TESTS WII.LI PROXIMITY FUNETIOIIH FJ8 R .H.* 1 MULTIVNRIUT.O DISPERSION (J ) 5.5.5 EXAMPLES OF NMLLKHIUNPLC! TESTS (IF) REL'ERENCOH , 7() PART II PROBABILITY AND STATISTICS (I EMPIRICAL BAYES ASSESSMENT OF THO HYPERPARAMETERS IN BAYESIAN FACTOR ANALYSIS *V. ,LAMC» PITSH, KEY-11 SHIN, AND LEE. HUNT/ RUN 75 (I.L INTRODUCTION * , ., , 75 FI.2 THE HFA MODCIL 7FI (I.'I ASHCHHIH^, THE HY[)( I RPFVRAI[I(;1.(IRS 77 (I.'J. I A.SHCHSNX'NT OF AN , 77 (I.3.2 ASKIIKNIIICIIL, OF NIIIIINIIIL \ 78 VTM.'.I AHHFSHINCIIT, OF H 78 ().'I.'I AHHIISHLLKMLT OF /7 78 II.'A. 5 ITERATIVE CUIIIPUUI.TIOII OF THO LIYPORPA.NIIIKIT.OR.S 70 ().] HAYESIAU IWTIINNLIOII OF A, I \\L' 70 0.5 I'LXUINPJE 81 (I.(I MCTLIOD ('OIIIJIARISON AND SUMMARY 84 RUFENUIET'H 85 PAR!; ILL ORDOR STATLSTICK AND AIIALYNIA 7 NOGATIVO MIXTNRH, ORDOR STATIHTICH, AND SYATEMH JTM/I' NTWURM MID I'RDRO J. HERNANDEZ 8!J 7.1 .INTRODUCTION 80 7.2 HDATION.SLIIPH BETWEEN MIXTUMS AND SY.STOMS 90 7.I'J I'ROIXFRLIT'H OF MIXTURES AND SYSTEMS 92 7.4 TIN.' HRIDW STRNCL.UIC .' OF) API I ( NDIX 5)8 HCFCN^NCCH 90 8 MODOLH OF ORCUSRCUL DATA AND PRODUCTH OF BETA RANDOM VARIABLES ERIC BRUTNTR TIN.D, LIDO KAMPX 1.01 8.1 INTMCLUEUUN , 101 8.2 ITITCRUICDIATI! (JRDCI 1 8(.AL;I,STICS IMD UIT! OJ'DISROD DIRICIIKIT DIHTRIHUTION . 1013 8, ( 'J PROPCRL,II!,S OF I'VAT^UONAL ORDOR STATISTICW I(}5 ILT'ICRI'IU'CK 100 9 EXACT INFORONCO AND OPTIMAL CENSORING SCHEME FOR A SIMPLE STCP-STREHH MODOL UNDER PROGRESSIVE TYJ)E-II CENSORING QIHAN KIC, N. IHDAKRIXLMTM, AND JJONP-LTOON HAN 107 !.).L LUFRTIDIK'TIOU 107 0.2 MODEL DESCRIPTION MID MLKS 100 X CONTENTS 9.3 CONDITIONAL DISTRIBUTIONS OF THE MLES ILL 9.4 CONFIDENCE INTERVALS 117 9.4.1 EXACT CONFIDENCE INTERVALS 117 9.4.2 ASYMPTOTIC CONFIDENCE INTERVALS 118 9.4.3 BOOTSTRAP CONFIDENCE INTERVALS 118 9.5 SIMULATION STUDY 121 9.6 OPTIMAL CENSORING SCHEME 121 9.7 ILLUSTRATIVE EXAMPLES 123 9.8 CONCLUSIONS 125 APPENDIX: TABLES AND FIGURES 126 REFERENCES 136 PART IV ENGINEERING MODELING 10 NON-GAUSSIAN STATE ESTIMATION IN POWER SYSTEMS ROBERTO MMGUEZ, ANTONIO J. CONEJO, AND ALI S. HADI 141 10.1 INTRODUCTION 141 10.2 MAXIMUM LIKELIHOOD ESTIMATION 142 10.3 TRANSFORMATION OF RANDOM VARIABLES 143 10.3.1 ROSENBLATT TRANSFORMATION 144 10.3.2 NATAF TRANSFORMATION 144 10.3.3 ORTHOGONAL TRANSFORMATION OF NORMAL RANDOM VARIABLES 145 10.4 THE TRANSFORMED LIKELIHOOD ESTIMATION PROBLEM 146 10.5 GENERAL STATE ESTIMATION (GSE) FORMULATION 147 10.5.1 INDEPENDENT GAUSSIAN PROBABILITY DENSITY FUNCTION 147 10.5-2 DEPENDENT GAUSSIAN PROBABILITY DENSITY FUNCTION 148 10.5.3 DEPENDENT NON-GAUSSIAN PROBABILITY DENSITY FUNCTION 148 10.6 BAD DATA DETECTION 148 10.7 ILLUSTRATIVE EXAMPLE 148 10.7.1 STATISTICAL ASSUMPTIONS 149 10.8 CONCLUSIONS 154 REFERENCES 155 11 STATISTICS APPLIED TO WAVE CLIMATE ON A BEACH PROFILE CARMEN CASTILLO AND CRISTINA SOLARES 157 11.1 INTRODUCTION * 157 11.2 OFFSHORE WAVE CLIMATE 158 11.3 LOCAL WAVE HEIGHT DESCRIPTION 161 11.3.1 CONDITIONAL PROBABILITIES 161 11.3.2 ABSOLUTE PROBABILITIES 163 11.4 CONSECUTIVE WAVE HEIGHTS 164 11.5 MAXIMUM WAVE HEIGHT IQQ 11.5.1 CONDITIONAL PROBABILITIES 166 11.5.2 ABSOLUTE PROBABILITIES 167 11.6 CONCLUSIONS 168 REFERENCES CONTENTS XI PART V EXTREME VALUE THEORY 12 ON SOME DEPENDENCE MEASURES FOR MULTIVARIATE EXTREME VALUE DISTRIBUTIONS ISHAY WEISSMAN 171 12.1 INTRODUCTION 171 12.2 DEPENDENCE COEFFICIENTS 172 12.3 EXAMPLES 174 12.4 RELATION BETWEEN RJ AND T2 176 12.5 COMBINING TWO INDEPENDENT MODELS 179 REFERENCES 180 13 RATIO OF MAXIMUM, TO THE SUM FOR TESTING SUPER HEAVY TAILS CLAUDIA NEVES AND ISABEL PRAGA ALVES 181 13.1 INTRODUCTION 181 13.2 MAIN RESULTS 183 13-3 SIMULATION RESULTS AND REAL DATA ANALYSIS 184 13.4 AUXILIARY RESULTS 188 13-5 PROOFS 189 REFERENCES 193 14 TAIL BEHAVIOUR: AN EMPIRICAL STUDY M. IVETTE GOMES, DINIS PESTANA, LIGIA RODRIGUES, AND CLARA VISEU 195 14.1 INTRODUCTION 195 14.2 ASYMPTOTIC CPS FOR THE TAIL INDEX AND THE VAR 197 14.3 REDUCED BIAS TAIL INDEX AND QUANTILE ESTIMATORS 198 14.3.1 TAIL INDEX ESTIMATION 198 14.3.2 ASYMPTOTIC CI'S FOR 7 BASED ON SECOND ORDER REDUCED-BIAS TAIL INDEX ESTIMATION 199 14.3.3 ADAPTIVE CHOICE OF THE LEVEL FOR REDUCED-BIAS ESTIMATORS 199 14.3.4 EXTREME QUANTILE OR VAR ESTIMATIO N 200 14.3.5 ASYMPTOTIC CI'S FOR VAR P ON THE BASIS OF REDUCED-BIAS ESTIMATORS 200 14.4 AN ALGORITHM FOR SEMI-PARAMETRIC TAIL ESTIMATION 200 14.5 THE USE OF A PARAMETRIC QUANTILE METHOD IN TAIL INDEX AND QUANTILE ESTIMATION 201 14.6 FINANCIAL DATA ANALYSIS 203 14.6.1 SECOND ORDER PARAMETER ESTIMATION 203 14.6.2 TAIL INDEX AND VAR P ESTIMATION 203 14.6.3 GRAPHICAL ILLUSTRATION OF THE ADAPTIVE THRESHOLD CHOICE FOR TAIL INDEX AND VAR ESTIMATION 204 14.6.4 THE USE OF A PERCENTILE METHOD IN QUANTILE ESTIMATION 205 REFERENCES - 206 15 AN EXAMPLE OF REAL-LIFE DATA WHERE THE HILL ESTIMATOR IS CORRECT ROLF-DIETER REISS AND ULF CORMANN 209 15.1 INTRODUCTION 209 15.2 THE PARETO MODELING 210 XII CONTENTS 15.3 THE HILL ESTIMATOR 211 15.4 MODIFIED PICKANDS ESTIMATORS 212 15.5 ANALYZING THE LONG TERM COPEPOD DATA 213 15.5.1 THE DATA SET 213 15.5.2 PARAMETRIC ESTIMATES FOR THE COPEPOD DATA 213 15.5.3 MEDIAN EXCESS FUNCTIONS 214 15.6 COMPUTATIONAL ASPECTS 215 REFERENCES 215 PART VI BUSINESS AND ECONOMICS APPLICATIONS 16 DERIVING CREDIBILITY PREMIUMS UNDE R DIFFERENT BAYESIAN METHODOLOGY EMILIO GOMEZ DENIZ - 219 16.1 INTRODUCTION 219 16.2 CLASSICAL MODEL OF BIIHLMANN 221 16.3 STANDARD BAYESIAN CREDIBILITY 222 16.4 CREDIBILITY BASED ON ROBUST BAYESIAN ANALYSIS 223 16.5 BEYOND THE LOSS FUNCTION 226 16.6 DISCUSSION 228 REFERENCES 228 17 THE INFLUENCE OF TRANSPORT LINKS ON DISAGGREGATION AND REGIONALIZATION METHODS IN INTERREGIONAL INPUT-OUTPUT MODELS BETWEEN METROPOLITAN AND REMOTE AREAS FERNANDO ESCOBEDO AND JOSE M. URENA 231 17.1 INTRODUCTION 231 17.2 METHODOLOGY 232 17.3 RESULTS AND DISCUSSION 236 17.4 CONCLUSIONS 240 REFERENCES 240 PART VII STATISTICAL METHODS 18 JACKKNIFE BIAS CORRECTION OF A CLOCK OFFSET ESTIMATOR DANIEL R. JESKE 245 18.1 INTRODUCTION 245 18.2 CANDIDATE CLOCK OFFSET ESTIMATORS 247 18.2.1 PAXSON'S ESTIMATOR , , 247 18.2.2 BOOTSTRAP BIAS-CORRECTION 247 18.2.3 JACKKNIFE BIAS-CORRECTION 248 18.3 MEAN SQUARED ERROR UNDER EXPONENTIAL AND PARETO DISTRIBUTIONS . 248 18.3.1 EXPONENTIAL DISTRIBUTION 248 18.3.2 PARETO DISTRIBUTION 249 18.4 ADDITIONAL MEAN SQUARED ERROR COMPARISONS VIA SIMULATION 250 18.4.1 LOGNORMAL, GAMMA AND WEIBULL DISTRIBUTION 250 18.4.2 HEAVY TAILED DISTRIBUTIONS 252 CONTENTS XIII 18.5 SUMMARY 253 REFERENCES 254 19 PRETESTING IN POLYTOMOUS LOGISTIC REGRESSION MODELS BASED ON PHI-DIVERGENCE MEASURES LEANDRO PARDO, MARIA LUISA MENENDEZ, AND NIRIAN MARTIN 255 19.1 INTRODUCTION 255 19.2 PRELIMINARIES AND NOTATION 257 19.3 CONTIGUOUS ALTERNATIVE HYPOTHESES 259 19.4 ASYMPTOTIC DISTRIBUTIONAL QUADRATIC RISK OF J§^ 3 , 3^ AND 3J^ 2 262 19.5 COMPARISON OF FI CH , (3^ AND ^ LT4 A 264 REFERENCES 265 20 A UNIFIED APPROACH TO MODEL SELECTION, DISCRIMINATION, GOODNESS OF FIT AND OUTLIERS IN TIME SERIES DANIEL PENA AND PEDRO GALEANO 267 20.1 INTRODUCTION 267 20.2 ESTIMATING ARMA TIME SERIES MODELS 268 20.3 QUADRATIC DISCRIMINATION OF ARMA TIME SERIES MODELS 269 20.4 GOODNESS OF FIT FOR ARMA TIME SERIES MODELS 271 20.5 OUTLIERS IN ARMA TIME SERIES MODELS 273 REFERENCES 277 21 GENERALIZED LINEAR MODELS DIAGNOSTICS FOR BINARY DATA USING DIVERGENCE MEASURES J. A, PARDO AND M. C. PARDO 279 21.1 INTRODUCTION 279 21.2 CHECKING GOODNESS-OF-FIT 281 21.3 SIMULATION STUDY 283 21.4 "OUTLYING" DETECTION PROCEDURES 285 REFERENCES 288 PART VIII APPLIED MATHEMATICS 22 SOME PROBLEMS IN GEOMETRIC PROCESSING OF SURFACES JAIME PUIG-PEY, AKEMI GDLVEZ, ANDRES IGLESIAS, PEDRO CORCUERA, AND JOSE RODRIGUEZ 293 22.1 INTRODUCTION 293 22.2 MATHEMATICAL PRELIMINARIES 294 22.3 HELICAL CURVES ON SURFACES 296 22.3.1 IMPLICIT SURFACES 297 22.3.2 PARAMETRIC SURFACES 297 22.4 SILHOUETTE CURVE ON A SURFACE 299 22.4.1 SURFACE IN IMPLICIT FORM 299 22.4.2 SURFACES IN PARAMETRIC FORM 301 22.5 CONCLUSIONS AND FURTHER REMARKS 302 REFERENCES 303 XIV CONTENTS 23 GENERALIZED INVERSE COMPUTATION BASED ON AN ORTHOGONAL DECOMPOSITION METHODOLOGY PATRICIA GOMEZ, BEATRIZ LACRUZ, AND ROSA EVA PRUNEDA 305 23.1 INTRODUCTION 305 23.2 GENERALIZED INVERSE 306 23.3 THE ALGORITHM TO OBTAIN A GENERALIZED INVERSE 307 23.4 GENERALIZED INVERSE UPDATING ALGORITHM 309 23.5 LEAST SQUARES ESTIMATION FOR LESS THAN FULL RANK MODELS 312 23.6 CONCLUSIONS 315 REFERENCES , 315 24 SINGLE AND ENSEMBLE FAULT CLASSIFIERS BASED ON FEATURES SELECTED BY MULTI-OBJECTIVE GENETIC ALGORITHMS ENRICO ZIO, PIERO BARALDI, GIULIO GOLAM, AND NICOLA PEDRONI 317 24.1 INTRODUCTION 317 24.2 FEATURE SELECTION FOR PATTERN CLASSIFICATION 318 24.2.1 AN OVERVIEW OF FEATURE SELECTION TECHNIQUES 319 24.3 GA-BASED FEATURE SELECTION FOR PATTERN CLASSIFICATION 320 24.4 CLASSIFICATION OF TRANSIENTS IN THE FEEDWATER SYSTEM OF A BOILING WATER REACTOR 322 24.5 THE ENSEMBLE APPROACH TO PATTERN CLASSIFICATION 323 24.5.1 THE CONSTRUCTION OF THE ENSEMBLE 323 24.5.2 INTEGRATION OF CLASS ASSIGNMENTS 324 24.6 APPLICATION TO MULTIPLE FAULT CLASSIFICATION 326 24.7 CONCLUSIONS 327 REFERENCES 328 25 FEASIBILITY CONDITIONS IN ENGINEERING PROBLEMS INVOLVING A PARAMETRIC SYSTEM OF LINEAR INEQUALITIES CRISTINA SOLARES AND EDUARDO W. V. CHAVES 331 25.1 INTRODUCTION 331 25.2 THE HEAT TRANSFER PROBLEM 332 25.3 A FRACTURE MECHANICAL PROBLEM 335 25.4 THE BEAM PROBLEM 336 25.5 CONCLUSIONS 340 REFERENCES , 340 26 FORECASTING NONLINEAR SYSTEMS WITH NEURAL NETWORKS VIA ANTICIPATED SYNCHRONIZATION SIXTO HERRERA, DANIEL SAN-MARTIN, ANTONIO S. COFIFIO, AND JOSE M. GUTIERREZ 341 26.1 INTRODUCTION 341 26-2 ANTICIPATED SYNCHRONIZATION 342 26.3 NONLINEAR TIME SERIES MODELING WITH NEURAL NETWORKS 345 26.4 ERROR GROWTH IN SYNCHRONIZED CHAINS 347 26.5 CONCLUSIONS 349 REFERENCES , 349 CONTENTS XV PART IX DISCRETE DISTRIBUTIONS 27 THE DISCRETE HALF-NORMAL DISTRIBUTION ADRIENNE W. KEMP 353 27.1 INTRODUCTION 353 27.2 THE MAXIMUM ENTROPY DERIVATION 354 27.3 THE LIMITING G-HYPER-POISSON-I DERIVATION 355 27.4 THE MORSE M/M/L QUEUE WITH BALKING 355 27.5 SUCCESS RUN PROCESSES 356 27.6 MIXED HEINE DISTRIBUTION 357 27.7 PROPERTIES 358 REFERENCES 359 28 PARAMETER ESTIMATION FOR CERTAIN Q-HYPERGEOMETRIC DISTRIBUTIONS DAVID KEMP 361 28.1 INTRODUCTION 361 28.2 SPECIAL CASES AND PROPERTIES 362 28.3 ESTIMATION 364 REFERENCES 365 INDEX 367
any_adam_object 1
any_adam_object_boolean 1
author2 Arnold, Barry C. 1939-
author2_role edt
author2_variant b c a bc bca
author_GND (DE-588)111442435
author_facet Arnold, Barry C. 1939-
building Verbundindex
bvnumber BV035177194
callnumber-first Q - Science
callnumber-label QA276
callnumber-raw QA276.4
callnumber-search QA276.4
callnumber-sort QA 3276.4
callnumber-subject QA - Mathematics
classification_rvk QH 200
SK 820
ctrlnum (OCoLC)154712001
(DE-599)DNB98346930X
dewey-full 519.502855369
519
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.502855369
519
dewey-search 519.502855369
519
dewey-sort 3519.502855369
dewey-tens 510 - Mathematics
discipline Mathematik
Wirtschaftswissenschaften
discipline_str_mv Mathematik
Wirtschaftswissenschaften
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02124nam a2200553 c 4500</leader><controlfield tag="001">BV035177194</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180131 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081124s2008 xxuad|| |||| 10||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N14,0694</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">08,A47,0946</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">98346930X</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817646257</subfield><subfield code="c">(Birkhäuser Boston) Pp. : ca. sfr 163.00 (freier Pr.)</subfield><subfield code="9">978-0-8176-4625-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817646264</subfield><subfield code="9">978-0-8176-4626-4</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780817646257</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11827573</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)154712001</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB98346930X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield><subfield code="a">gw</subfield><subfield code="c">XA-DE</subfield><subfield code="a">sz</subfield><subfield code="c">XA-CH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA276.4</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.502855369</subfield><subfield code="2">22</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 200</subfield><subfield code="0">(DE-625)141539:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advances in mathematical and statistical modeling</subfield><subfield code="c">Barry C. Arnold ... ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXIII, 368 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield><subfield code="c">26 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Statistics for industry and technology</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Statistische modellen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical statistics</subfield><subfield code="x">Data processing</subfield><subfield code="x">Congresses</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistisches Modell</subfield><subfield code="0">(DE-588)4121722-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Statistisches Modell</subfield><subfield code="0">(DE-588)4121722-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Arnold, Barry C.</subfield><subfield code="d">1939-</subfield><subfield code="0">(DE-588)111442435</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://d-nb.info/98346930X/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=016984031&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016984031</subfield></datafield></record></collection>
genre (DE-588)4143413-4 Aufsatzsammlung gnd-content
(DE-588)1071861417 Konferenzschrift gnd-content
genre_facet Aufsatzsammlung
Konferenzschrift
id DE-604.BV035177194
illustrated Illustrated
index_date 2024-07-02T22:56:33Z
indexdate 2024-07-09T21:26:45Z
institution BVB
isbn 9780817646257
9780817646264
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-016984031
oclc_num 154712001
open_access_boolean
owner DE-824
DE-703
DE-11
owner_facet DE-824
DE-703
DE-11
physical XXXIII, 368 S. Ill., graph. Darst. 26 cm
publishDate 2008
publishDateSearch 2008
publishDateSort 2008
publisher Birkhäuser
record_format marc
series2 Statistics for industry and technology
spelling Advances in mathematical and statistical modeling Barry C. Arnold ... ed.
Boston [u.a.] Birkhäuser 2008
XXXIII, 368 S. Ill., graph. Darst. 26 cm
txt rdacontent
n rdamedia
nc rdacarrier
Statistics for industry and technology
Literaturangaben
Statistische modellen gtt
Datenverarbeitung
Mathematical statistics Data processing Congresses
Statistisches Modell (DE-588)4121722-6 gnd rswk-swf
(DE-588)4143413-4 Aufsatzsammlung gnd-content
(DE-588)1071861417 Konferenzschrift gnd-content
Statistisches Modell (DE-588)4121722-6 s
DE-604
Arnold, Barry C. 1939- (DE-588)111442435 edt
http://d-nb.info/98346930X/04 Inhaltsverzeichnis
SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016984031&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis
spellingShingle Advances in mathematical and statistical modeling
Statistische modellen gtt
Datenverarbeitung
Mathematical statistics Data processing Congresses
Statistisches Modell (DE-588)4121722-6 gnd
subject_GND (DE-588)4121722-6
(DE-588)4143413-4
(DE-588)1071861417
title Advances in mathematical and statistical modeling
title_auth Advances in mathematical and statistical modeling
title_exact_search Advances in mathematical and statistical modeling
title_exact_search_txtP Advances in mathematical and statistical modeling
title_full Advances in mathematical and statistical modeling Barry C. Arnold ... ed.
title_fullStr Advances in mathematical and statistical modeling Barry C. Arnold ... ed.
title_full_unstemmed Advances in mathematical and statistical modeling Barry C. Arnold ... ed.
title_short Advances in mathematical and statistical modeling
title_sort advances in mathematical and statistical modeling
topic Statistische modellen gtt
Datenverarbeitung
Mathematical statistics Data processing Congresses
Statistisches Modell (DE-588)4121722-6 gnd
topic_facet Statistische modellen
Datenverarbeitung
Mathematical statistics Data processing Congresses
Statistisches Modell
Aufsatzsammlung
Konferenzschrift
url http://d-nb.info/98346930X/04
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016984031&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT arnoldbarryc advancesinmathematicalandstatisticalmodeling